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A B S T R A C T   

In this study, the proton-induced reactions of 68Zn and 69Ga aimed at generating 68Ga were 
simulated and modeled using Talys code and neural network software. In the first step, both 
targets were simulated under different proton energies and at different bombardments times to 
generate a total of six thousand data. Then, the obtained data from the Talys, including the 
various cross-sections, contaminations, the main product i.e. 68Ga, and other options were 
completely saved in the output file. Afterwards, the inputs of the neural network were selected 
from the output of the Talys by analyzing and considering most of the key features. A total of four 
inputs, two of which are different energies related to the reaction, the other is the process 
sequence and the fourth input is the bombardment time, were recognized as suitable inputs and 
the model was trained differently depending on the type of target. The selected model was a feed- 
forward neural network with 5 nodes in a middle layer, which was able to estimate the output of 
Talys code by changing the input parameters with extremely high accuracy. Two different models 
including the main model for estimating the output of the main sample (product) and the sub- 
model for estimating process pollution or impurity were trained, and then the trained model 
was tested on the deduced process data. The implementation results fully demonstrated the high 
accuracy of the method. The neural network model is much easier to implement than the Talys 
code, and its execution speed is very high. In addition, it can be used appropriately as a system 
alternative for optimization and different structures in medical and biological engineering.   

1. Introduction 

Nowadays, the applications of nuclear technology have become very diverse and have gained special place in various fields such as 
nuclear medicine, agriculture, industry and radionuclide production [1–8]. The application of nuclear medicine for treatment and 
diagnosis using radioisotopes was first made in 1937, and radioisotopes were used as tracers in imaging in 1924 [9]. The evaluation of 
nuclear data has a long history, a rationalized data format and supercomputing-capable calculations will merely further progress a 
library that has already come a long way since its inception in 1968 [10]. The first nuclear data library dates back to the 1950s [11]. At 
that time, the quantitative analysis of nuclear reactions was just the projectile of a few scattered points of experimental data, and there 
was no method to access the full form of information. However, the basic reactor physics codes available at that time made it possible 
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to predict the characteristics of reactors and other critical systems. In nuclear modeling, relatively simple optical models, surface 
densities, composite nuclear models are used to estimate the measured cross-sections [12–14]. During the 1980s and 1990s, various 
nuclear model codes became available. The idea of creating a Talys code was proposed in 1998 and was available in the market for a 
decade or more [15]. Entering these codes is proportional in the details of the input parameters. 

Gallium-68 (68Ga) is produced from the decay of germanium-68 (68Ge) with a relatively high half-life of 270 days, known as 
68Ge/68Ga generator. Today, gallium is known as one of the suitable radioisotopes in nuclear medicine for PET imaging. This 
radioisotope decays to the stable radioisotope zinc-68 (68Zn) with a half-life of 68 min and emits a positron with a maximum energy of 
1.97 MeV (89 %), electron capture (11 %), and finally gamma rays with an energy of 1.077 MeV [16]. The average positron energy of 
68Ga is 0.83 MeV, resulting in an average positron range of 0.35 cm. The practical half-life of 68Ga by T1/2 = 68 min provides satis-
factory radioactivity for different PET applications while delivering adequate radiation doses to the patients. Fig. 1 shows the decay 
scheme of 68Ge/68Ga to reach a stable radioisotope of 68Zn via electron capture and positron decay procedures. 

The cation of 68Ga3+ be able to cause stable complexes with different ligands that comprise nitrogen and oxygen as donor atoms. At 
this situations, 68Ga is suitable for complexation with numerous macromolecules and chelators, which enables the development of kits 
[17]. The content of the emitted particles and the energy range affect the obtained resolution in imaging. 68Ga has greater positron 
kinetic energy, and therefore higher positron range, and is anticipated to possess a lower spatial image resolution compared to 18F with 
average positron energy of 0.25 MeV and maximum of 0.63 MeV. Nevertheless, both experimental measurements and computational 
analyzes indicates a similarly great image quality for these two radionuclides with an assumed detector or scanner resolution of 2.5–4 
mm [18,19]. Meanwhile, 68Ga equals the biological half-life of various peptides utilized for positron imaging by virtue of its locali-
zation to the target, rapid blood clearance, and rapid diffusion. In the clinical use of 68Ga compared to 18F, the time between injection 
and scan to transfer activity from blood to tissue is an important factor that highlights the role of half-life. The half-life of 68Ga and 18F 
is 1.13 and 1.83 h, respectively. Since 68Ga (89.14 %) has a lower positron efficiency than 18F (96.86 %), as a result, its detection 
sensitivity will also be lower [20]. Radiochemically, the half-life of 68Ga (T1/2 = 68 min) provides sufficient radioactivity for various 
PET imaging applications to deliver acceptable doses of radiation to patients through the development of different kits with distinct 
macromolecules and chelators. 

In this research through a medium-range of cyclotron located in Karaj city of Iran, 68Zn(p,n)68Ga as direct reaction and 69Ga 
(p,2n)68Ge→68Ga as indirect reaction of generator are simulated by Talys code. Then, the Talys outputs are implemented in a neural 
network model to estimate the main output of the process besides the pollution outputs and the process loss based on the input pa-
rameters changes. 

2. Methods and materials 

2.1. Talys code simulation 

The Talys code has been prepared and developed by Dr. Arjan Koning and his colleagues in the Netherlands [15]. This calculation 
code has been intended for nuclear reactions in which the particles thrown towards the target can be neutrons, protons, deuterons, etc. 
This code can be run on Linux and Unix operating systems. In the Talys code, a series of inputs are required, including:  

A) Target mass number.  
B) Input energy of the projectile to hit the target.  
C) The name of the projectile.  
D) The name of the target element. 

Using a computer code is a proper way to simulate nuclear reactions, since nuclear experiments with limited facilities are 
expensive. This code can be used to find kernel models that better describe the interaction. Also, this code performs better and is easier 
to implement than Alice code. Talys is a software for analyzing and predicting nuclear reactions that is widely used for basic and 
applied sciences. 

Fig. 1. Decay scheme of 68Ge/68Ga generator towards stable radioisotope of 68Zn. [EC is electron capture and β+ is positron decay].  
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Important applications that directly or indirectly depend on the data generated by the nuclear reaction simulation codes are as 
follows: Conventional and modern nuclear power reactors, transport of radioactive waste, fusion reactors, applications of accelerators, 
national security, production of medicinal isotopes, radiotherapy, drilling an oil well, geophysics and astronomical physics. In this 
research, the process of input and output data for proton irradiation on 68Zn target by Talys code is investigated as follows, 

#General. 
Projectile p. 
Element Zn. 
Mass 68. 
Energy 10 14 0.5 # Ebeam from 10 MeV to 14 MeV with 0.5 MeV intervals. 
Also, 69Ga target was simulated under proton beam irradiation as: 
#General. 
Projectile p. 
Element Ga. 
Mass 69. 
Energy 15 30 0.5 # Ebeam from 15 MeV to 30 MeV with 0.5 MeV intervals. 
Since the derivation of two neutrons by an incident proton requires more energy, a proton beam with an energy of 15–30 MeV was 

considered for the 69Ga(p,2n)68Ge reaction. Fig. 2 compares the cross sections of (p, n/2n/3n) reactions in terms of incident proton 
energy for 68Zn and 69Ga targets. 

When the target is irradiated to reach the main product, competitive reactions always occur, which affect the quality of the main 
product and also reduce the production quantity. Therefore, to control and monitor competing or parallel reactions, appropriate 
targets such as natural gallium and 65Cu are used alongside the main target, which is irradiated simultaneously with the main target in 
experiment. 

Fig. 2. Comparison of (p,n), (p,2n), and (p,3n) reactions for the targets 68Zn (Top) and 69Ga (Bottom).  
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2.2. Neural network modelling 

An artificial neural network is actually a simple model of a biological neural network and it is a kind of learning and trainable 
system. In fact, the neural network works is such that it models the relationship between input and output without any specific or 
complex mathematical model. The artificial neural network is based on the following properties as a generalization of the mathe-
matical model of human or bio-neural recognition:  

A) Information processing occurs in a series of simple elements called nerve cells.  
B) The signal is exchanged between nerve cells through the connections between them.  
C) Each connection is assigned a weight, which is multiplied by the transmitted signal in the artificial neural network. Fig. 3 shows 

the block diagram of neural network modelling. 

Neural network applications include: Calculation of a known function, approximation of an unknown function, pattern recognition, 
signal processing, and learning or training to do the aforementioned items. 

A multilayer feed-forward neural network is projected as shown in Fig. 4. The Levenberg-Marquardt-Back-Propagation method is 
regularly selected for training artificial neural network (ANN) design in order to raise the convergence speed and prevent long teaching 
or training times. This algorithm is established upon numerical optimization procedures and is a universal form of the LMS (Least Mean 
Square) algorithm [21,22]. Meanwhile, back-propagation method is an estimated severest fall-off algorithm where the performance 
index is the MSE (Mean Square Error). The difference between back-propagation and LMS algorithm lies in the way the derivatives are 
computed. Obviously, the relationship between network weights and error for a multilayer network with nonlinear transfer functions 
is more complex than in a single layer network [23]. At this situation, the chain law is normally utilized to compute the derivatives. The 
back-propagation technique is typically utilized in controlled learning and the input data besides preferred outputs are afforded to the 
network. Subsequently, the network weight matrix is restructured and attuned to diminish the error function by computing the 
gradient of the error function. 

Fig. 3. Neural network modelling process via nerve cells connections (Top); Neural network in training neural nets in MATLAB toolbox including 
Epoch, Time, Performance, Gradient, Mu, and Validation checks (Bottom). 
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The obtained data from the Talys, including the various cross-sections, contaminations, the main product i.e. 68Ga, and other 
particle history options were completely saved in the output file. Then, the output from Talys was implemented as input to the neural 
network of MATLAB software. The designed program was adopted so that it can read all the outputs of Talys automatically and based 
on the parameters changed in the input, it considers the useful outputs and the equivalent outlier outputs separately, and then, adds the 
outlier outputs together and generates a data for neural network training. To properly train the network, a total of six thousand 
different modes of Talys code were run and the results saved to separate output files. The program designed by MATLAB software 
automatically reads the set of six thousand files and extracts the desired data for training the neural network. Finally, a feed-forward 
neural network with the number of middle layer nodes 5 and one middle layer to provide the appropriate output was the best 
recognized state. The network training algorithm was based on the “back-propagation-error” pattern, which is comparatively inves-
tigated here. 

Two feed-forward neural networks with “back-propagation-error” pattern were trained in a form that can model the main output of 
the process and the equivalent outputs of pollution or process outliers based on the input parameters and their changes. 

3. Results 

Fig. 5 compares the various cross-sections for direct reaction of 68Zn(p,n)68Ga [24–37] with an overall uncertainty of 7.4 % in terms 

Fig. 4. The scheme of feed-forward neural network (Top) besides its mathematical explanations (Bottom) where p, w, f, b, R and S are input data, 
weight matrix, transfer or activation function, bias vector, number of elements in input vector, and number of neurons in layer, respectively. 
Meanwhile, n and a parameters indicate input and output of log-sigmoid transfer function as a = logsig(n) [For more details, see supplementary file]. 

Fig. 5. The cross sections in terms of incident proton energy for the 68Zn(p,n)68Ga reaction [24–37].  
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of incident proton energy. It indicates that the maximum probability of the reaction occurs between 10 and 14 MeV of proton energy 
for (p,n) reaction. At this energy range, the maximum cross-section was about 0.9 b. Also, Fig. 6 shows the obtained production yield 
with threshold energy of 4 MeV so that with the increase of incident proton energy, the yield value also increases. The computed yields 
for 68Zn(p,n)68Ga reaction were 2820 and 7600 MBq/μA.h for 10 and 14 MeV proton energy, respectively. Meanwhile, the saturation 
activities for 1 μA irradiation were 4600 and 12400 MBq/μA, correspondingly. 

Fig. 7 compares different cross-sections for indirect reaction of 69Ga(p,2n)68Ge [26,38–40] along with an overall uncertainty of 
12.1 % in terms of incident proton energy. It demonstrates that the maximum probability of the reaction occurs between 15 and 30 
MeV of proton energy for (p,2n) reaction. The maximum cross-section was about 0.5 b. Meanwhile, Fig. 8 displays the acquired 
production yield with threshold energy of 12 MeV as the incident proton energy increases, the yield value also raises. The computed 
yields for 69Ga(p,2n)68Ge reaction were 0.116, 0.807, 1.71, and 2.29 MBq/μA.h for 15, 20, 25, and 30 MeV proton energy, respec-
tively. Meanwhile, the saturation activities for 1 μA irradiation were 1090, 7570, 16000, and 21500 MBq/μA, correspondingly. 

Fig. 9 shows very good agreement between the output of Talys and the output of the model designed by the neural network in the 
main output of Zn-68 process. The “plus” data signs are the output of the trained neural network model and the “circle” data signs are 
the output of the Talys code. In order to show the effectiveness of the training, Fig. 10 shows the mean square error values and the 
number of iterations of the neural network to fully ensure the correct training of the designed neural network. Fig. 10 shows the mean 
square error per number of iterations in which the outputs of the network and Talys were converged and the mean square error of 10 
was obtained. The curves of Train, Validation, Test, and Best have been demonstrated by the best performance of epoch 57. 

Fig. 11 shows the convergence of the neural network in terms of epochs to study the behavior of gradients, Mu, and validation- 
checks, such that their magnitudes in epoch 63 were 1.2709, 0.01, and 6, respectively. For gradient and Mu curves, the fluctua-
tions were detected at the first and at the end of the epochs. However, the validation-check curve just revealed the variations at the end 
of epochs towards 63. 

Fig. 12 shows the obtained error histogram. The correct error histogram should show a symmetrical situation around the point 
0 (the yellow vertical line in the middle of the figure), as it can be seen that the error histogram of the network has been acceptably 
trained and has a relatively good symmetry around the zero point. It needs to be explained that the data are divided into 3 categories of 
training, validation and testing by the MATLAB software itself. 

According to Fig. 13, it can be seen that the error regression is completely equal to 1, which indicates the complete correlation of the 
output data of the network and Talys. All categorizations of training, validation and testing show the estimated useful and effective 
mass of gallium-68. 

4. Discussion 

Fig. 14 compares the product energy-angle distributions for 68Zn and 69Ga targets in which differential data with respect to the 
angle and energy have been drawn as d2σ/dΩ/dE (Eout) in terms of incident proton energy. 

Fig. 15 shows the adaptation of Talys output and neural network output for the 68Zn(p,n)68Ga reaction contaminations. 
Fig. 16 also shows the mean square error for the reaction contaminations in 3 categories of training, validation and testing at 263 

epochs. While the epochs increased, the relevant error decreased as the best validation performance of these contaminations was found 
at epoch 257 by 0.00024376. In addition to that, Fig. 17 shows the training process of neural network for the reaction contaminations. 
The Gradient, Mu, and Validation behaviors for reaction contaminations demonstrated some fluctuations at beginning and end of the 
curves. 

Fig. 18 compares the obtained error histogram for the reaction contaminations based on training, validation, and test situations 
around the zero point, where the plots are not symmetrical. In the following, Fig. 19 shows the regression of the error for the con-
taminations, that our output data for the contaminations caused by the reaction reached our desired result with a small percentage of 
error. 

Here, the impact of each of the input parameters on the output material is identified. Based on neural network modeling, the effect 
of changing each of the input parameters, including time, radiation energy (ebeam), and the amount of reaction current (ibeam), on 

Fig. 6. Yield calculated from the recommended cross sections for the 68Zn(p,n)68Ga reaction.  
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the output of useful material (main product) and the output of loss was investigated. The loss function is a tool that maps the amounts 
of some variables to a real number that intuitively signifies some “cost” related to those amounts. In backpropagation, the loss function 
computes the alteration between the network output and the expected output after a training instance is propagated across the 
network. 

Fig. 20 shows the effect of the time parameter from 10 to 20 min on the useful output in the upper graph and on the pollutant output 
in the lower graph. It turned out that time is not an important parameter with regard to process optimization criteria. Simultaneously, 
Fig. 21 shows the amount of changes in ibeam on the output, which again had a steady-state graph and revealed that the change of this 
parameter had no particular effect on the output. 

However, the most important graph is the effect of energy change on useful output and material pollution, shown in Fig. 22. In the 
upper part, which increases with energy up to 12 MeV, the useful material increased, but with further increases in energy, useful 
material decreased. Meanwhile, the lower part of Fig. 22 shows that with the increase in energy up to 12 MeV, the pollution has also 
increased, and from 12 MeV onwards, the trend of increasing extraneous substances has intensified rapidly. This shows that increasing 

Fig. 7. The cross sections in terms of incident proton energy for the 69Ga(p,2n)68Ge reaction [26,38–40].  

Fig. 8. Yield calculated from the recommended cross sections for the 69Ga(p,2n)68Ge reaction.  

Fig. 9. Comparing the outputs from trained neural network model and Talys code for 68Zn.  
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energy from 12 MeV onwards has no effect on improving the process and somehow makes it worse. 
One of the limitations of this design is that by changing the nuclear reaction conditions such as the type of target substance, its mass 

number, or sample dimensions, the trained model will not be able to predict the new process since no training data has been entered 
based on the nature of this process. 

In view of the diverse possible uses of radiopharmaceuticals, radiochemical analysis is also of particular importance. Therefore, 
according to the specific radioisotope of this study, 68Ga exists only in oxidation state III in aqueous solution and at physiological pH 
values. Given the recognized need to preclude the formation of insoluble Ga(OH)3 and soluble Ga(OH)4, the synthesis of 68Ga-labeled 
radiopharmaceuticals is performed in the presence of weakly coordinating ligands like oxalate, acetate, and citrate, which limit the 

Fig. 10. Mean square error per iterations from network and Talys outputs for 63 epochs by best validation performance of epoch 57.  

Fig. 11. The convergence of gradient, Mu, and validation curves for 63 epochs.  

Fig. 12. The symmetric error histogram for training (blue), validation (green), and test (red) conditions around zero point of yellow vertical line.  
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kinetics of complex formation drastically reduce [41]. Gallium(III) is categorized into a hard Lewis acid and so binds to hard Lewis base 
donor atoms like oxygen and nitrogen, commonly forming six coordinate bonds in a nearly octahedral geometry. A number of hopeful 
68Ga tracers composed of large biomolecules, small molecules, and particles targeting biological activities like apoptosis, angiogenesis, 
and proliferation are presently in preclinical and experimental examination [42–44]. Regardless of whether clinics choose solid or 
liquid targets, a competent tool of purifying the 68Ga from the irradiated 68Zn is needed. The limitations of 68Ga generated in the 
cyclotron are obvious: 1) a cyclotron with appropriate targets, 2) the simultaneous generation of 67Ga and 66Ga, and 3) the possibility 
of residual amounts of 68Zn and other metal impurities influencing labeling effectiveness. These parameters place high demands on the 
target material, the proton current and energy, and the quality of the reagents as well as the 68Zn/68Ga separation techniques. 

According to Karaj cyclotron in Iran - Cyclon30, IBA, Belgium – by maximum proton energy of 30 MeV, both reactions had an end- 
of-irradiation yield by 1437 and 5.13 MBq/μA.h for 68Zn(p,n)68Ga and 69Ga(p,2n)68Ge reactions, respectively. 

Fig. 23 shows the evaluated cross-sections for 68Zn(p,n)68Ga reaction besides its impurities including 67Ga and 65Cu. As it is clear 
from Fig. 23, the impurity production of gallium-67 appears as a competing reaction up to 0.65 b around the energy of 20 MeV. For this 
reason, in this project, the amount of landing energy to investigate this reaction was considered between 10 and 14 MeV (blue curve in 

Fig. 13. Acquired error regression for training, validation and testing forms by positive correlation of 1.  

Fig. 14. The product energy-angle distributions for 68Zn (incident proton energy of 10, 12, and 14 MeV) and 69Ga (incident proton energy of 16, 20, 
and 30 MeV) targets. 
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bottom diagram) in order to reduce the generation impurities. 
Fig. 24 shows the evaluated cross-sections for 69Ga(p,2n)68Ge→68Ga reaction besides its impurities including 69Ge and 66Zn. As can 

be seen from Fig. 24, the impurity production of germanium-69 appears as a big and fierce competitor reaction up to 0.63 b between 
energy 5 and 15 MeV. But this reaction is more likely to occur at the energy range of 15–25 MeV (green curve in bottom diagram). 
Hence, the amount of incident proton energy to assess this reaction was considered between 15 and 30 MeV in order to diminish the 
induced impurities. 

To fabricate 68Ge/68Ga generators and in order to separate 68Ga from 68Ge, two approaches are regularly employed. The first 
technique applies organic milieus from phenolic groups that create stable complexes with Ge(IV), preparing the elution of 68Ga3+ as 
68GaCl¡4 with HCl as the eluent. On the other hand, an N-methylglucamine-established polymer and a 0.1 M tri-sodium citrate solution 
can be utilized as eluent [45]. The second technique applies inorganic oxide milieus like SnO2, Al2O3, Sb2O5, TiO2, and ZrO2 and eluted 

Fig. 15. Matching of Talys and network outputs for 68Zn(p,n)68Ga pollution.  

Fig. 16. Mean square error for reaction pollution in training, validation and testing forms.  

Fig. 17. The gradient, Mu, and validation curves for reaction pollution at 263 epochs.  
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Fig. 18. The error histogram for derived pollution in Training (blue), Validation (green), and Test (red) conditions around zero point of yellow 
vertical line. 

Fig. 19. The error regression of derived pollution in training, validation and testing forms.  

Fig. 20. Time impact on the process output for useful (Top) and pollution (bottom) materials.  
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with EDTA or HCl [46]. At present, the commercially existing “ionic” generators use HCl in dissimilar densities to elute 68Ga in labeling 
reaction appropriately [47]. Regardless of which generator is utilized, the slow complexation, the large eluate volume, the kinetics, 
and the existence of metallic impurities like Fe3+, Ti4+, and Zn2+ that can complicate labeling perfusion with 68Ga3+ must be taken into 
account as they compete for the similar chelators. Thus, post-processing cleaning approaches to remove contaminants have been 
detailed in recent researches [48–50]. 

For the routine generation of 68Ge, two nuclear reactions are available: 1) 66Zn(α,2n)68Ge in which the natural abundance of 66Zn is 
28 % and has been yielded up to 2 μCi/μA h by 35 MeV alpha energy per current beam and 1-h irradiation time; 2) 69Ga(p,2n)68Ge in 
which 69Ga has natural abundance about 60 % and has been yielded up to 20 μCi/μA h by 23 MeV proton energy [51]. Comparably, 
69Ga(p,2n)68Ge has been here evaluated due to greater yields and chemical separation simplicity. By this approach, only two elements 
need to be separated from each other, while in (α,2n) reaction, a third element of zinc needs to be considered [52]. 

In our study, direct 68Zn(p,n)68Ga reaction and indirect 69Ga(p,2n)68Ge→68Ga reaction were modeled to investigate the production 
yield and induced pollution via sub-models. 

Mechanical, chemical, and thermal characteristics as well as corrosion and radiation resistance must be considered when choosing 
the target, because the target is exposed to high current irradiation and the power dissipated within the targets reaches amounts of 
about 200–1000 W or more. Target materials utilized for the generation of 68Ge comprise Ga metal, GaAg, Ga4Ni, and Ga2O3. The 
encapsulated Ga2O3 usage with high-current proton irradiation is ruled out because the oxide transitions from a hexagonal α-form to a 
monoclinic β-form at around 600 ◦C, accompanied by an increase in volume leading to capsule rupture. While the alloys usage as the 
target material, such as GaAg and Ga4Ni, possesses the superiority in achieving good thermal conductivity, the need for a laborious 
chemical separation process to rid 68Ge of concomitantly generated impurities discourages its usage. The outlook of utilizing Ga2O3 is 
hampered by the complications encountered in dissolving the irradiated target. Accordingly, the proposal of utilizing Ga metal seemed 
very attractive. Since Ga metal is so corrosive to Al, it is imperative that it be encapsulated, e.g. with Nb, because Ga would not react 

Fig. 21. Ibeam impact on process output for useful (Top) and pollution (bottom) materials.  

Fig. 22. Energy impact on process output for useful (Top) and pollution (bottom) materials.  
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with this kind of encapsulation. 
Achieving satisfactory bevy yields requires proton energies greater than 20 MeV energy, high-current accelerators on the order of 

milli-Ampere, and long irradiation times of several days. Therefore, despite high demand, there are very few generator suppliers of 
68Ge. Four chief centers currently producing 68Ge are: Cyclotron Co Ltd (Obninsk, Russia), iThemba Laboratories (South Africa), Los 
Alamos National Laboratory (USA), and Brookhaven National Laboratory (USA) [51]. These centers have been reported their gen-
eration capacities of approximately 18.5–74 GBq (0.5–2 Ci) of 68Ge per bevy. Various separation methods have been executed to 
isolate micro-amounts of no-carried-added 68Ge from macro-amounts of the irradiated target range from solvent extraction [53–55] 
and ion exchange chromatography to the use of organic [56] and inorganic [52,57] materials. 

At BNL, production is done using natGa targets with about 45 MeV proton irradiations. For a distinctive bevy generation, 81 g of 
natGa metal encapsulated in a Nb container has been utilized and irradiation was done over a period of 4 weeks to attain 0.52 MBq/μA. 
h. The 68Ge has been recovered from the target by extraction in 4 N HCl and 30 % H2O2 after cooling for two weeks. Additional 
purification is normally completed via solvent extraction with carbon tetrachloride and back extraction of 68Ge in H2O. It has been 
reported a total production yield around 85 % on a bevy yield of 33.3–51.8 GBq (900–1400 mCi) with radionuclide purity about 99.9 
% and activity levels greater than 3.15 GBq/mL (85 mCi/ml) [58]. Situationally, 100 MeV proton beam have been utilized at Los 
Alamos National Laboratory (LANL) [59]. Ordinarily, a distinctive bevy generation requires about 4 g natGa metal encapsulated in a Nb 
container under period of 16–20 days’ irradiation to reach 1.18 MBq/μA.h. The bevy yield at the end of irradiation (EOI) has been 
achieved about 55–70 GBq. Importantly, the chemical processing has been performed after 2 weeks of cooling by solvent extraction 
with CCl4 and also re-extraction of 68Ge in water, monitored through an ion-exchange purification stage with alumina [60]. A 66 MeV 
proton iraadiation has reported in the iThemba laboratories. For a distinct bevy generation, 5 g target with a generation ratio of 1.18 
MBq (0.032 mCi) per μA.h has been experimentally utilized. The obtained radionuclide purity of the processed 68Ge has been reported 
more than 99.9 % and the concluding product comprised less than 1 μg gallium per 37 MBq (1 mCi) of 68Ge [61]. Meanwhile, a Ga–Ni 
alloy organized on Cu metal substructures has been designed as target material at Cyclotron Co. Ltd. in Obninsk, Russian Federation. 
The proton bombardments have been executed with a high intensity of several hundred micro-amperes of 23 MeV protons. The ob-
tained 68Ge with a high specific activity by more than 74 GBq (2 Ci) per mg of target besides 99.8 % radionuclide purity have been 
reported [62]. 

Fig. 23. Impurity reactions cross-sections for 68Zn(p,n)68Ga: Top: only for competing reactions 68Zn(p,α)65Cu and 68Zn(p,2n)67Ge; Bottom: 
Comparing with main reaction. 
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The gallium ligands such as 68Ga-DOTA-TOC and 68Ga-DOTA-TATE are synthetic somatostatin analogs and bind with high affinity 
to the somatostatin receptor subtype 2, which is found in many cancers predominantly in meningioma, euroendocrine tumors, and 
neural crest tumors like ganglioneuroma, neuroblastoma, and pheochromocytoma. The substance can be crafted from a distinct dose 
kit using gallium collected from a68Ge/68Ga generator. However, 68Ga-DOTA-TOC was represented for somatostatin receptor PET 
imaging and attained greater detection ratios and improved spatial resolution than 111In-pentetreotide scintigraphy [63]. 

Since radio-immunotherapy dosimetry besides nuclear imaging is a sophisticated attempt to compare the absorbed dose in tumors 
and normal tissues [64], up-to-date techniques are required to improve the therapeutic or diagnostic ratio [65–73]. Recently, bom-
barding 68Zn(NO3)2 as 1 M solution in dilute (0.2–0.3 M) HNO3 has been executed by means of GE-PET-trace cyclotron and 68Ga liquid 
targets [74]. The proton beam energy considered 14.3 MeV to diminish the pollutants or co-production of 67Ga by 68Zn(p,2n)67Ga 
reaction without unduly affecting 68Ga production yields. Besides, they appraised the properties of different beam currents 27–40 μA 
and beam times by 50–75 min, and finally measured crude production of 68Ga. The 68GaCl3 extraction was accomplished utilizing a 
2-column solid-phase process on the GE-FAST-Lab-Developer platform. Consequently, they extracted 68GaCl3 to label 68Ga-PSMA-11 
intended for clinical usage. Here in this research, a suitable alternative to diversify the 68Ga supply is the direct generation of 68Ga in a 
cyclotron-based method via the 68Zn(p,n)68Ga reaction. Decisively, there are two procedures to generate 68Ga through this reaction on 
a cyclotron using solid target [75–77] and liquid target [78–80]. The liquid targets facilitate employment of 18FDG-generation for 
different applications and centers as they have an identical workflow to fluoride (18F) generation and are compatible with laboratory 
setups in current PET radiopharmaceutical manufacturing sites. Nonetheless, solid targets normally impose incremental demands on 
substructure and local center expertise, and also it brings about greater level of 68Ga production yield, for instance, several GBq/Ci [76, 
81]. Regardless of whether they choose solid or liquid targets, an effective tool for 68Ga purifying from the bombarded 68Zn is required. 
The limitations of 68Ga generated in the cyclotron are noticeable: 1) a compact cyclotron with proper targets, 2) the simultaneous 
production of 66Ga and 67Ga as contaminants, and 3) the possibility of residual amounts of 68Zn besides additional metal impurities 
that influence the labeling productivity. These issues create extraordinary requests for the proton beam current and energy, the 
designed target material, the quality of the reagents, and lastly for the 68Zn/68Ga separation ways. 

Recently, Naik et al. [24] measured the cross sections for 68Zn(p,n)68Ga reaction for various proton energies from 8.6 MeV to 17.7 
MeV with an overall uncertainty of 7.7 %–9.6 %. Their reported cross sections were 948 mb and 390 mb for incident proton energies of 

Fig. 24. Impurity reactions cross-sections for 69Ga(p,2n)68Ge→68Ga: Top: only for competing reactions 69Ga(p,n)69Ge and 69Ga(p,α)66Zn; Bottom: 
Comparing with main reaction. 
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12.1 MeV and 15.1 MeV, respectively. At these proton energies, the theoretical values from Talys are 844 mb and 296 mb corre-
spondingly. In our study, the relevant cross sections of this reaction were 755 mb and 561 mb, respectively, for incident proton en-
ergies of 10 MeV and 14 MeV with an overall uncertainty of 7.4 %. Among the limitations of the presented work, we can highlight the 
nature of physics card in the collision of protons with the target, the number of incident particles and the problem of irradiation time. 
Also, the history of tracking particles with different absorption interactions and elastic and inelastic scattering can be examined in a 
more detailed estimate. On the other hand, when estimating pollution and competing reactions, using a larger number of sublayers or 
even different neural network training methods can be analyzed to reduce the error. 

The main goal of this research was to use the outputs of Talys code to simulate the nuclear bombardment and reaction process using 
the neural network model. Therefore, a comprehensive database was created by running the Talys code under different conditions 
based on the type of Zn material, totaling six thousand different runs. Finally, the Talys code outputs were automatically read by the 
MATLAB software and the necessary information was extracted. Two feed-forward neural networks were trained with the “back- 
propagation-error” model in a form that can model the chief output of the process and the equivalent outputs of pollution or process 
loss based on the input parameters and their changes. The only assumption made was to create inputs within the practically acceptable 
range given the model, so that the software was able to train this process with reasonable precision through the neural network. It must 
be explained that using a neural network instead of Talys code, in addition to easy modeling, also provides the possibility of high-speed 
process optimization by appropriate software. 

5. Conclusion 

By virtue of short half-life of most radioisotopes derived from generators, the use of distinct kit formulation approaches looks like 
wise as they would diminish reagent procurement, human error, and setup time, as well as it simplifies cleanup and operation and also 
eliminates the possibility of pollution. Another benefit of kits is the facilitation of reagent management. Rather than handling various 
reagents separately, the radiopharmaceutical only requires to accomplish the kit as a distinct entity, significantly facilitating FDA 
regulations approval for manufacturing PET tracers and human injection. Kit design policies are increasingly giving the clinicians and 
scientists who require them the ability to make PET tracers. Utilizing 68Ge/68Ga generators has great demands in PET centers for the 
following reasons:  

1) The 270-day half-life of 68Ge guarantees the possibility of using the generator for extended periods of time, possibly up to 1 year or 
more.  

2) The decay properties of the short-lived daughter 68Ga (t½ = 68 min, 11 % EC, 89 % β+, Eβ+, max = 1.97 MeV) are suitable for PET 
clinics. 

In addition to the radiochemical properties, from a physical point of view, the precise estimation of the proton interaction cross- 
section with the zinc-68 and gallium-69 targets and then the estimation of the production yield is of utmost importance. In this study, 
the computed yields for 68Zn(p,n)68Ga reaction were 2820 and 7600 MBq/μA.h for 10 and 14 MeV proton energy, respectively. 
Meanwhile, the computed yields for 69Ga(p,2n)68Ge reaction were 0.116 and 2.29 MBq/μA.h for 15 and 30 MeV proton energy, 
respectively. According to Karaj cyclotron in Iran, by maximum proton energy of 30 MeV, both reactions had an end-of-irradiation 
yield by 1437 and 5.13 MBq/μA.h, correspondingly. The (p,2n) reaction generated higher saturation activity of positron emitters 
than (p,n) reaction. 

Since the 68Ga has a physical half-life of 68 min and possesses a rapid blood clearance, rapid diffusion, and a proper localization to 
the target, therefore, it counterparts the biological half-life of various peptides utilized for imaging. The ability of 68Ga3+ to produce 
stable complex with different ligands that comprise nitrogen and oxygen as donor atoms represents the prospect of complexation with 
a various chelating agents besides several macromolecules with substantial clinical capability. This study attempted to estimate the 
order of errors in the competing reactions and impurities of the main product by training the neural network, so that a method can be 
chosen to better estimate the main product or even increase it by fundamentally revising the phases of radiopharmaceutical 
production. 
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