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ABSTRACT

CyBase is a curated database and information source
for backbone-cyclized proteins. The database incor-
porates naturally occurring cyclic proteins as well as
synthetic derivatives, grafted analogues and acyclic
permutants. The database provides a centralized
repository of information on all aspects of cyclic pro-
tein biology and addresses issues pertaining to the
management and searching of topologically circular
sequences. The database is freely available at http://
research.imb.uq.edu.au/cybase.

INTRODUCTION AND MOTIVATION

In recent years a number of proteins have been discovered that
contain a macrocyclic backbone consisting of a continuous
cycle of peptide bonds. Such macrocyclic proteins were
unknown a decade ago but have now been discovered in bac-
teria, plants and animals (1). Unlike bacterial polyketides and
small cyclic peptides such as cyclosporin that are constructed
by peptide synthetases (2), these new cyclic proteins are ribo-
somally produced gene products, with backbone cyclization
occurring as a post-translational modification. This new class
of protein has excited interest because circular proteins have a
range of advantages over conventional proteins (3,4). At least
one class of cyclic proteins, the cyclotides, has been shown to
be resistant to proteolysis and to a wide variety of adverse
thermal and chemical conditions (5,6). Furthermore, since the
termini of conventional proteins are often flexible, and as the
degree of flexibility can be reduced by cyclization, entropic
factors can lead to improved receptor binding affinities of
circular proteins over corresponding acyclic proteins (7,8).
Five classes of naturally occurring proteins contain cyclic
examples. These include the cyclic sex-pilin (9) and three
bacteriocins (10-12) from bacterial sources, trypsin inhibitors
from sunflower seeds (SFTI-1) (7,8) and the squash plant
Momordica cochinchinensis (MCoTI-II) (13), the 6-defensins
from macaque monkeys (14) and the cyclotides from plants of
the Violaceae and Rubiaceae (15-17). The cyclotides are by

far the largest family of circular proteins and ~60 cyclotide
sequences have been reported thus far. Screening programs
suggest that the number of sequences may soon number in the
thousands (18,19). In addition to this natural diversity, a large
number of synthetic mutants, grafted analogues and acyclic
permutants of cyclic proteins have been reported, and several
proteins of biological interest have been artificially cyclized
(20-22). This growth in information necessitates a collation of
sequence/structure/function data and the development of a
uniform nomenclature to prevent duplication of research
and multiple naming schemes. Furthermore, sequence search-
ing of cyclic proteins adds an extra layer of complexity, with
most sequence searching tools assuming a linear sequence of
amino acids. Because backbone cyclization is a ‘seamless’
post-translational modification, the location of the N- and
C-termini cannot be determined from the mature sequence
alone. Consequently, when searching cyclic sequences, the
point at which the sequence begins and ends in the database
is often arbitrary and may confound traditional searching tech-
niques. The special considerations needed for dealing with
cyclic sequences and the rapidly expanding data on their struc-
ture and function has led us to develop a curated database
and web-based information source for cyclic proteins called
CyBase.

APPLICATION AND DISCUSSION

CyBase incorporates a MySQL database that contains a repos-
itory of information on the amino acid and nucleic acid
sequence, structure and activity of cyclic proteins. The layout
of the database is shown in Figure 1. At the core of the data-
base is the protein table, which contains information on each
cyclic protein characterized. Related to each protein table entry
are tables containing information on nucleic acid sequences,
structure, activity and literature references. A web-based inter-
face provides access to the information and allows for text-
based searching on all data fields and filtering of results by
class, source, activity or other attributes. To account for the
cyclic nature of the sequences any sequence search uses a
concatenation of two copies of the linear representation of
the sequence to simulate a cyclic protein. Each protein has
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Figure 1. Schematic of the relational database underlying CyBase.

a dynamically produced sequence card, which provides cross-
links to activity, nucleic acid sequence and structural informa-
tion contained in the database. As the database is intended
to supplement existing biological databases, links to UniProt
Knowledgebase, Genbank and PDB are available for each
entry and linkage with the KNOTTIN website (23) is planned.
A number of other tools are provided, including coloured
alignments and calculation of amino acid frequencies of
selected sequences.

In general, naturally occurring cyclic proteins are small,
with the largest possessing 78 amino acids. This small size
makes the combination of mass spectrometry, to obtain
sequence information, and NMR, to determine 3D structures,
ideal for characterizing these proteins. Accordingly, to facil-
itate the rapid characterization of newly discovered proteins
the database can be queried on molar mass, and for cyclotides,
the capability exists for searching on the mass of fragments
corresponding to particular inter-cysteine loops, facilitating
sequence determination when utilizing reduction/alkylation
of cysteine residues and tandem mass spectrometry (24,25).

Analysis of NMR-derived data such as chemical shifts and
patterns of NOE connectivity can provide an early indication
of the structure of a protein. To facilitate rapid structural

secondary_type

characterization of newly discovered cyclic proteins chemical
shift and restraint data from NMR-derived structures are
included in the database, along with dihedral angle informa-
tion. From these data, distances and regions containing defined
secondary structure are calculated and stored in the database.
These data can be presented visually for the analysis of short-
and long-range NOE patterns, the backbone dihedral angles
and chemical shift patterns. Although NMR is the most com-
mon technique for analysing these proteins, X-ray structures
are also incorporated into the database and sets of inter-atom
distances calculated for comparative purposes. As with the
protein and nucleic acid entries, each structure possesses an
information card, which contains cross-links to protein and
nucleic acid entries.

Updating of the database is facilitated by a range of PERL
and PHP scripts. These provide for the automated searching of
sequence databases, using BLAST, to provide examples of
novel cyclic proteins, and ensure quality control by preventing
duplication of sequence data and renaming of already charac-
terized sequences, a particularly important consideration
for the cyclotide family, which contains potentially many
sequences that may occur in a number of different species.
These scripts also provide for the standardizing of residue
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numbering in new cyclotide structures. Despite these auto-
mations the addition of new entries is performed manually
to ensure maximum quality of database entries.

We plan to extend the database by utilizing the growing
number of cyclotide structures to provide predictions of cyc-
lotide secondary structures based on primary sequence and to
develop methods to search the structures in the database based
on the similarity between selected inter-atomic distances and
NOE connectivities. We also plan to improve the information
content of the database by including hydrogen bond and other
structural information as well as homology models for
cyclotide sequences that have not yet been structurally char-
acterized. CyBase is available at http://research.imb.uq.edu.
au/cybase/ and given the growing interest in backbone
cyclization, it is hoped that CyBase will prove to be a useful
resource in the field of structural biology. Suggestions should
be directed to D.C.
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