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HCV Kinetic Models and Their Implications in Drug
Development
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Chronic infection with hepatitis C virus (HCV) affects about 170 million people worldwide and is a major cause of liver
complications. Mathematical modeling of viral kinetics under treatment has provided insight into the viral life cycle, treatment
effectiveness, and drugs’ mechanisms of action. Here we review the implications of viral kinetic models at the different stages
of development of anti-HCV agents.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 231–242; doi:10.1002/psp4.28; published online on 17 April 2015.

Chronic infection with hepatitis C virus (HCV) affects about
170 million people worldwide and is a major cause of liver
complications such as cirrhosis, liver cancer, and transplan-
tation.1 The goal of anti-HCV therapy is to achieve a sus-
tained virologic response (SVR), defined as undetectable
viral load (viral load) 12–24 weeks after treatment cessa-
tion.2,3 The chance of SVR depends on many host and viral
factors, such as the presence of cirrhosis or HCV genotype
(GT).4 Until 2011, the standard treatment was based on a
combination of weekly injections of pegylated interferon
(peg-IFN) and daily oral ribavirin (RBV), but this treatment
only yielded an SVR rate of about 30–50% in patients
infected with HCV GT-1 after a 48-week treatment and of
75–85% in GT-2/3 patients after a 24-week treatment.5,6

In 2011, two direct antiviral agents (DAAs), the protease
inhibitors telaprevir and boceprevir, were approved to be
used in combination with peg-IFN/RBV for GT-1 infected
patients, allowing the SVR rate to rise to about 70% in
treatment na€ıve noncirrhotic patients.7,8 In recent clinical tri-
als, combinations of two or more DAAs (e.g., polymerase
inhibitor, protease inhibitor, or NS5A inhibitor) targeting dif-
ferent viral proteins yielded SVR rates of more than 90%
after 8–12-week treatments.9–13 Currently, dozens of DAA
combinations are being tested, holding the promise that
universal IFN-free treatments will be available in the coming
years.14

Viral kinetic modeling aims to characterize the mecha-
nisms governing the virologic response during treatment.
Initiated in the mid-1990s to understand the effects of HIV
protease inhibitors initiation on the HIV RNA, it has rapidly
been applied to other viruses. In 1998, a seminal paper
that characterized the so-called “biphasic” virologic
response during IFN-based treatment was published.15

With the burst of DAA, viral kinetic modeling has expanded
in the last decade to embrace a large number of objectives,

such as elucidating drugs’ mechanisms of action, charac-
terizing the dose/response effect, and optimizing treatment
duration. Here we review the role of modeling in the revolu-
tion of HCV treatment and how it has contributed at various
stages of drug development.

BASIS OF VIRAL KINETIC MODELING
Standard viral kinetic model
Neumann et al., inspired from previous models for viral
infection in HIV, proposed the following mathematical model
to describe the viral kinetics in HCV patients during IFN-a
treatment (Eq. 1)15

dT
dt
¼ s2dT2ð12gÞbVT

dI
dt
¼ ð12gÞbVT2 dI

dV
dt
¼ ð12EÞpI2cV

(Eq. 1)

The model considers two populations of hepatocytes, the
target cells, T, and the infected cells, I (Figure 1). The tar-
get cells are produced at a rate s, are eliminated with a
rate d, and become de novo infected by circulating virions,
V, with a rate b. Once infected, the hepatocytes are cleared
with a rate d. The free virions are released from the
infected cells at a rate p per cell per day and are cleared
from the circulation with a rate c. In this model IFN is
assumed to act by blocking new infection with an effective-
ness g, or by blocking viral production with an effectiveness
E. These treatment effect parameters are comprised
between 0, meaning no drug effect, and 1, meaning total
suppression.
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Biphasic model
If one assumes that all parameters (including those related
to treatment effect) are constant and that the number of tar-
get cells after treatment initiation is equal to their pretreat-
ment value, the model has an explicit solution given by the
following biexponential function15:

V ¼
V0; t � t0

V0½Ae2k1ðt2t0Þ1ð12AÞe2k2ðt2t0Þ�; t > t0

(
(Eq. 2)
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(Eq. 3)

In this model, HCV RNA initially declines with rate k1� Ec,
and if the treatment is potent (E � 1), viral load declines
with a rate equal to c. This declining phase continues until
the viral load reaches a value V1 that reflects the new equi-
librium between the viral production and clearance under
treatment given by V1 5 (1-E)V0. Thus, for instance, if E 5

0.99, there will be a rapid decline of 2 log10 of viral load in
the first 2 days.

The pretreatment steady-state implies that not only the
virus but also the infected cells are in equilibrium, i.e., the
infected cells that are naturally eliminated with rate d are
compensated by the newly infected cells. With a lower level
of viral production, there are fewer viruses in serum and
hence, less de novo infection. As the number of newly
infected cells declines, viral production is further reduced.
Therefore, the treatment effect, even if modest, triggers a
fatal circle of events for the infection that will lead to a con-
tinuous decline of virus as long as treatment is maintained.
The rate of this second phase decline, noted k2, is approxi-
mately equal to d[E1 g(1-E)]. Thus, if E�1 and d>0, the
second phase is approximately given by Ed�d. Of note, an
additional treatment effect in blocking cell infection will
result in only a minor enhancement of viral decline as long

as E is high. For instance, if E 5 0.99, an additional effect
of g 5 0.99, will enhance the second phase by only 1%.

If the treatment reduces only cell infection (g>0, E 5 0),
either directly by blocking the new infection or indirectly by
rendering the virus noninfectious, only the second phase
will be observed and the viral load will decline linearly with
a rate k2 approximately equal to gd. Thus, for an entry
inhibitor or a drug that yields noninfectious virus, modeling
predicts that no rapid first phase decline due to blocking of
viral production would be observed.

Extended viral kinetic model
The standard viral kinetic model assumes that new hepato-
cytes are due to migration or differentiation of hepatocyte
precursors with a rate s, but ignores the fact that the liver is
an organ capable of natural regeneration controlled by
homeostatic mechanisms. This feature can be captured in
an extended model which considers the proliferation of both
uninfected and infected hepatocytes (Figure 2).16

Under some specific parameter regimes the model can
generate a triphasic viral decline, where a transient
shoulder phase takes place between the initial and final
phase of the viral decline, as observed in some patients
treated with peg-IFN.16,17 Because the observation of this
triphasic response requires frequent sampling measure-
ments, both the prevalence and the duration of the shoulder
phase (3 days to 1 month) are not known. A statistical com-
parison between the standard and the extended model on
a large population of patients has never been performed
and therefore the need for an extended model remains to
be determined. Further, the origin of the triphasic decline
could also be explained by other mechanisms than cell pro-
liferation, such as pharmacokinetics or a progressive resto-
ration of the immune system.17

Viral rebound and the notion of critical effectiveness
An important prediction of both the standard and the
extended viral kinetic models is that a low level of antiviral
effectiveness may lead to a rebound to a new steady-state
level in spite of continuous therapy. This rebound is due to
the fact that with less infection, more target cells become
available, which increases the chance for virus to infect a
cell and, therefore, to rekindle infection. This can be mathe-
matically characterized by a threshold called the critical

Figure 1 Standard viral kinetic model. Target cells (T) are pro-
duced at rate s, die with death rate d, and become infected cells
(I) with infection rate b by free virus (V). Infected hepatocytes die
with rate constant d. V are released from infected cells at a rate
of p and are cleared with a rate c. Treatment is assumed to act
by blocking new infection with an effectiveness g, or by blocking
virion production with an effectiveness e.

Figure 2 Extended model accounting for hepatocyte prolifera-
tion. Both infected and uninfected hepatocytes proliferate logisti-
cally with maximum rates rT and rI, respectively, until the total
number of hepatocytes reaches Tmax.

HCV Kinetic Models and Their Implications
Nguyen and Guedj

232

CPT: Pharmacometrics & Systems Pharmacology



effectiveness, Ec.
18 If E<Ec, enough new infections continue

to occur so that the viral load eventually stops declining
and rebounds to a new set-point steady state. This critical
effectiveness is related to the basic reproductive number,
R0, defined as the number of newly infected hepatocytes
that arise from one infected cell, and Ec ¼ 12 1

R0
. The

expression of Ec for both the standard and the extended
models can be found in the article of Dahari et al.18 By defi-
nition, in a patient with chronic infection R0 is higher than 1.
The goal of treatment is to achieve a sufficiently high effec-
tiveness such that E > Ec , or, in other words, that the basic
reproductive ratio under treatment, RT 5 R0(1-E) is lower
than 1. In that case the viral load declines as long as the
treatment is administered. Of course, treatment cessation
in a chronically infected patient immediately leads to a viro-
logical relapse. In order to predict a viral eradication or
cure, the model needs to incorporate a so-called “cure
boundary” (discussed below).

It is important to understand that this rebound caused by
a suboptimal drug effectiveness can occur only in models
with a nonconstant number of target cells. In the biphasic
models, where the number of target cells is supposed to be
constant, the viral load is assumed to decline continuously
during treatment regardless of the value of E.

Hepatocyte kinetics
A major limitation in using the viral kinetic models is that only
the viral load data are available, making the parameters
related to hepatocyte kinetics hardly identifiable (s, d, b in the
standard model and parameters concerning hepatocytes
proliferation in the extended model).19 Information on these
parameters could be gained from other contexts, such as
acute infection (where the rate of viral expansion is related to
the viral infectivity, b), liver regeneration after resection. How-
ever, both the parameter values and their variability in the
population may be very different from those in chronic infec-
tion. Because the value of these parameters are involved in
the calculation of R0

18 and hence the value of the critical
effectiveness, sensitivity analysis on these parameters may
be needed to assess the robustness of model predictions.
Recent efforts in modeling imagery data obtained after
biopsy of chronic HCV patients may shed new light on the
kinetics of uninfected and infected hepatocytes.20,21

Ribavirin modes of action
Ribavirin (RBV) monotherapy has only little impact on viral
kinetics22–24 but its association with IFN is critical to
achieve SVR.5,6 However its mechanism of action, its effect
on viral kinetics, and the way to model it remain largely
unclear.

For instance, by analyzing HCV-RNA levels from 34
patients receiving either peg-IFN alone, peg-IFN/RBV, or
IFN/RBV, Herrmann et al. found that RBV was not associ-
ated with overall treatment effectiveness, E, but increased
the loss rate of infected cells, d, by two-fold.17 In contrast,
Layden-Almer et al. observed no significant effect of RBV
on d in patients receiving high daily doses of IFN.25 Impor-
tantly, the effectiveness of IFN was higher in the study of
Layden-Almer et al. (mean E 5 0.89 and 0.98 in African-
American and Caucasian-American patients, respectively)

than in Herrmann et al. (mean E < 0.7). Further, Layden-
Almer et al. observed that d was higher in African-
American patients receiving IFN/RBV than in patients
receiving IFN alone, but this difference did not reach statis-
tical significance. In another study, Pawlotsky et al. showed
that RBV did not impact viral kinetics in patients who
received IFN daily dose (i.e., high E) but reduced the
relapse rate at the end of each IFN dose and was associ-
ated with an increased d in patients who received IFN
thrice a week (lower E).22 Although these studies were
done on a small number of patients with different combina-
tion regimens and/or baseline characteristics, they tended
to support that RBV does not impact the first phase and
may enhance the second phase decline, especially in
patients where IFN had a modest antiviral effectiveness
(i.e., low E). Dixit et al. explained this feature by assuming
that RBV exerts its effect through increased lethal mutagen-
esis, and thus renders a fraction of newly produced virions
noninfectious, with effectiveness q.26 The authors found
that q 5 0.5 provided a reasonable description of the clini-
cal trial outcome rate. This result was later corroborated by
Snoeck et al. on a large population of patients treated with
peg-IFN/RBV.27 However RBV’s effectiveness is poorly
identifiable19 and this estimate remains to be taken with
caution. Besides the value of RBV antiviral effectiveness, it
is still unclear whether the prediction of this model is cor-
rect. For instance, Feld et al. found that a higher second
phase was found only in patients having an adequate first
phase decline (�0.5 log10) but not in those with slow first
phase decline (<0.5 log10 IU/mL).28 Because RBV will con-
tinue to be part of several future drug combinations against
HCV,29–31 it is critical to have a better understanding about
RBV’s mechanisms of action. Future models will probably
need to consider its various mechanisms of action, such as
enhancing IFN activity,23,28,32 reducing liver inflammation,23

or acting against mutant virus.

PARAMETER ESTIMATION IN VIRAL KINETIC
MODELING

Viral kinetic data can be analyzed using nonlinear regression
on each individual. However, this approach may lead to an
overestimation of interindividual variability, risk of parameter
nonidentifiability, and lack of statistical power to identify cova-
riate effect, especially when the data are sparse.33 These
limitations can be in part overcome by fitting data of all indi-
viduals together using nonlinear mixed effect models
(NLMEM), also called the population approach. In this
approach, each individual parameter hi is comprised of a
fixed effect l, representing the mean value of population and
a random effect gi with gi�N(0,x2). Usually, constraints of
positivity lead to assume a log-normal distribution for hi, i.e.,
hi 5 l 3exp(gi), or a logit-normal distribution for parameters
comprised between 0 and 1, such as treatment effective-
ness. Lastly, an additive independent error eij on log10 of viral
load in patient i, time j is usually assumed, with eij�N(0,r2).
Parameters can be estimated using a maximum likelihood or
Bayesian approach. Several estimation methods have been
developed to handle data below the quantification/detection
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limit (BQL/BDL) in parameter estimation in NLMEM and cor-
rect for the bias obtained by na€ıve approaches that omit or
censor BQL/BDL data.34–36

CONSTANT EFFECTIVENESS, VARYING
EFFECTIVENESS, AND PHARMACOKINETIC-RELATED
EFFECTIVENESS
Pharmacokinetic-viral kinetic (PK-VK) model
The HCV kinetic models presented above were used with
the assumption of a constant drug effectiveness (CE). How-
ever, the variation of drug concentration over time can lead
to fluctuations/rebound in the virologic response. In such
conditions, a model including available pharmacokinetic
information may be more appropriate to describe the viral
kinetics. The relation between the drug concentration and
the antiviral effectiveness can be described by an Emax

model (Eq. 4):

EðtÞ ¼ Emax CðtÞc

ECc
501CðtÞc (Eq. 4)

where C(t) is the drug concentrations predicted at time t,
EC50 is the drug concentration needed to achieve an effec-
tiveness of 50% of the maximum effect, Emax, and c is the
Hill coefficient, a parameter that determines the steepness
of the drug concentration–effect curve. Theoretically, Emax

can be estimated with a good sampling design and a suffi-
cient range of drug concentrations. However, it is usually
set at 1, which is a reasonable assumption, as a complete
suppression of HCV RNA can be obtained at high concen-
trations in in vitro studies.37

It was shown by simulation that PK-VK models lead to
more precise estimates of model parameters and provide
better description of the viral kinetics during peg-IFN ther-
apy.38,39 Likewise, Nguyen et al. analyzed the viral kinetics
during treatments with alisporivir and/or peg-IFN40 and
found that using the PK-VK model improved the fitting crite-
rion (BIC) and reduced the residual errors by nearly 20%,
compared to the CE model (unpublished result). Even
when the pharmacokinetic data are sparse and cannot be
used to fully characterize the drug exposure profile, the
inclusion of only predose concentrations could capture a
significant part of the interindividual variability.41

From a statistical point of view, the gold-standard esti-
mation method for a PK-VK model is to simultaneously
estimate pharmacokinetic and viral kinetic parameters.
However, this approach may be time-consuming and can
lead to numerical issues, such as a lack of convergence of
estimation algorithms.42,43 These difficulties can be allevi-
ated with a sequential approach that consists of fitting the
pharmacokinetic model first to obtain individual pharmaco-
kinetic predictions, which are then injected into the viral
kinetic model to estimate the viral kinetic parameters. How-
ever, this approach is subject to biased estimates, espe-
cially with sparse pharmacokinetic sampling, where the
individual predictions are susceptible to the problems of
shrinkage.42,43 To avoid this issue, another sequential
approach has been suggested, in which the second step
consists of simultaneously estimating the individual phar-

macokinetic parameters and the viral kinetic parameters
with the population pharmacokinetic parameters fixed at
values obtained in the first step.42,43

K-VK model
If no pharmacokinetic data are available the dose–effect
relationship can be characterized using a K-VK model
(absence of the letter P means absence of pharmacokinetic
data).27,44 In this model, drug effectiveness is described
using an Emax equation, where drug concentration is
replaced by the given dose (Eq. 4). Unlike the PK-VK
model, the K-VK model assumes that drug effectiveness is
constant over time for a given dose.

Varying effectiveness (VE) model
The change in drug effectiveness over time can also be
described using an empirical model such as the exponential
model45:

EðtÞ ¼ E11ðE22E1Þð12e2k t Þ (Eq. 5)

This model represents the variation (increase or decrease)
of the treatment effectiveness from an initial level, E1, to a
final level, E2, with k representing the changing rate of
effectiveness. Other models, such as some variations of
this exponential model or a sigmoidal function, have also
been proposed.38,46,47 These models, called varying effec-
tiveness (VE) models in the following, have been notably
used to account for the decrease in drug effectiveness after
injection of peg-IFN or treatment cessation38,46 or for the
increase due to drug accumulation over the first intakes of
an oral drug.46,47 For instance, a VE model has been used
to explain the slow viral load decline observed with merici-
tabine monotherapy (a nucleoside analog) as a result of the
time needed to build up high levels of active triphos-
phates.47 Interestingly, the build-up rate was higher in
patients who received twice daily doses compared to four
times a day, suggesting that the VE model can capture
some pharmacokinetic information included in the viral
kinetic data. In a subsequent study, another VE model was
also found to perform better than the CE model to fit the
viral kinetics under treatment with GS-0938 and sofosbuvir,
two nucleotide analogs. The first phase observed with GS-
0938 and sofosbuvir was much faster than with mericita-
bine, consistent with the fact that mericitabine needs three
phosphate groups to be added, while GS-0938 and sofos-
buvir only need two in order to have an antiviral effect and
that adding the first phosphate group is a rate-limiting step
among the three steps of tri-phosphorylation process.48

When to use PK-VK, VE, K-VK, or CE?
When it is possible, the best approach is to include all infor-
mation available and therefore to use a PK-VK model. How-
ever, a PK-VK model may not add much value in some
contexts, such as when the viral kinetics shows a consist-
ent decline in viral load levels during treatment (indicating
that there is no significant effect of drug fluctuation) or
when plasma concentration is not a good proxy of active
drug’s concentration at the site of action. In these cases
the use of a CE, K-VK, or VE may be sufficient to estimate
the treatment effectiveness.38,49 Of note, the interpretation
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of the VE model’s parameters may be complicated by the
correlation between parameters related to the drug effec-
tiveness and viruses.45 Therefore, to verify that a VE model
is needed and that the parameters obtained are biologically
reasonable, one can be recommended to systematically fit
the data using both CE and VE models and to compare the
viral kinetic parameters obtained with these two models.
Because the VE model is a simple extension of the CE
model, the need for a varying effectiveness can also be
assessed using standard statistical tools such as F-test in
individual data fitting or likelihood ratio test in mixed-effect
models.

IN VITRO VIRAL KINETIC MODEL
A tool to characterize viral lifecycle and define
potential targets for new drugs
With the development of subgenomic HCV replicons and
quantitative analysis of intracellular RNA and proteins, sev-
eral models have been developed to characterize HCV
kinetics in replicon cell culture and to understand drugs’
mechanisms of action. Dahari et al. developed the first
mathematical model to characterize the different steps in
HCV replication, in particular the translation of HCV poly-
proteins in cytoplasm and the RNA synthesis in the vesicu-
lar membrane structure.50 Binder et al. extended this model
to describe HCV kinetics in the early hours after infection.
The model identified the polyprotein translation and RNA
polymerization of NS5B as the most influential steps of viral
replication, i.e., the potentially most sensitive/effective tar-
gets of DAA.51

A tool to understand drugs’ modes of action
A direct application of these models is to characterize more
precisely the mode of action and the effectiveness of antivi-
ral treatment. The use of in vitro data is indeed particularly
appealing, as one can directly measure the drugs’ effect on
the site of action, i.e., intracellularly. This approach was
successfully used for the first time by Dahari et al. to
describe the kinetics of intracellular HCV RNA suppression
under treatment with IFN-a52:

dR
dt
¼ að12EIFNÞ2 lR (Eq. 6)

R is the intracellular positive single-strand RNA (replicon), a
is the replicon production rate, l is the replicon loss rate.
IFN was supposed to block RNA production with an effec-
tiveness EIFN. Fitting this model to the early replicon kinetics
in response to different doses of IFN, Dahari et al. showed
that blocking viral RNA (vRNA) production, and not enhanc-
ing RNA elimination, was the main effect of IFN-a, consist-
ent with the prediction of the standard model. Although the
experimental setting makes it more difficult to interpret
long-term data (absence of infectious virus and immune
response), a trend towards a continuous viral decline over
time was observed at higher doses, which may be
explained by the elimination of replication complexes over
time. This was modeled by refining the previous model.52

dR
dt
¼ að12EIFNÞe2ct 2 lR (Eq. 7)

where c is the elimination rate of the replication units.
Another model accounting for the complex processes of
viral replication and resistant strains was also developed to
investigate the intracellular HCV RNA kinetics under treat-
ment with several potent antivirals.53 The increasing avail-
ability of an infectious system holds the promise that more
comprehensive models integrating the treatment effect on
both intracellular and extracellular viruses will be
developed.

IN VIVO VIRAL KINETIC MODEL IN DRUG
DEVELOPMENT
A tool to predict in vivo drug’s antiviral effectiveness
In vitro data can also be used to anticipate in a quantitative
manner the effect of drugs in vivo. Using the data of 10
nonnucleoside polymerase inhibitors and 14 protease inhib-
itors, Reddy et al. showed that combining the in vitro EC50

of antivirals and their minimum plasma concentration in a
viral kinetic model could provide good prediction for short-
term (3-day) virologic response.54 However, depending on
drugs’ properties, such as drug distribution in the liver (site
of action), several adjustments (e.g., using protein-shifted
EC50 to account for plasma protein binding, correction of
drug concentration at site of action using liver-to-plasma
ratio) are required. In spite of these limitations this
approach is a first step towards using in vitro effectiveness
(EC50) obtained in animals and pharmacokinetic data in
healthy volunteers to predict the early virological response
in HCV-infected patients.

A tool to understand the emergence of resistance with
DAA treatment
As DAAs target specific HCV proteins, they are more prone
to mutations conferring resistance than IFN-based therapy.
In fact, viral breakthrough due to resistance can occur as
early as 2 days after initiation of some agents, such as
telaprevir monotherapy.55 The rapid emergence of mutation
is indeed favored by the high production rate of HCV,15 the
high error rate during replication (l 5 10-5 to 10-4 per cop-
ied nucleotide per replication cycle),56,57 and the large size
of the genome (9,600 nucleotides). In fact, with four types
of nucleotides, the number of possible strains containing
one or two substituted nucleotides are 2.9 3 104 and
4.1 3 108, respectively. If l 5 10-5, the mutation rate per
genome is 0.096 per replication. Hence, according to Pois-
son approximation, the probability for a new virion to con-
tain none, one, or two mutant nucleotides are 91%, 8.7%,
and 0.42%, respectively. As a consequence, there are
about 8.7 3 1010 and 4.2 3 109 viruses with one or two
mutant nucleotides among about 1012 newly produced
viruses each day. These numbers are much higher than
the number of possible mutant strains that can be gener-
ated, indicating that all the single and double mutant resist-
ant viruses may exist before treatment and rapidly compete
with the wildtype virus during therapy.55 This explains why
only treatment with a high genetic barrier to resistance, typ-
ically requiring four or more mutations, can lead to SVR.58
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Mathematical models can be used to explain the early
emergence of resistance and its rapid amplification. The
standard viral kinetic model was extended to consider two
viral strains: drug-sensitive and drug-resistant virus
(Figure 3).58 This two-strain model was able to provide
good fits for the viral kinetics observed during 2-week treat-
ment with telaprevir monotherapy or telaprevir/peg-IFN (by
assuming the same peg-IFN effectiveness on the mutant
and wildtype virus). The rapid increase in the mutant fre-
quency under therapy was shown to be a consequence of
the rapid and profound decline of the wildtype virus, which
reveals the preexisting mutant virus.58 Both forward and
backward mutations during treatment were shown to have
only a minor impact on the kinetics of drug-resistant
virus.58

Adiwijaya et al. extended the two-strain model to account
for multiple resistant strains.59 The model fitted well both
on-treatment and post-treatment viral kinetics in patients
receiving telaprevir monotherapy as well as the variant
prevalence observed after treatment. Later, Adiwijaya et al.
analyzed the viral load and pharmacokinetic data obtained
in various early clinical studies of telaprevir monotherapy or
in combination with peg-IFN/RBV using the multistrain
model and population approach. The model could provide
good prediction for the SVR rates of several clinical studies
of telaprevir.60

An important assumption of these models is that the
rapid amplification of the mutant virus is supported by the
rapid infection of newly produced hepatocytes. As explained
above, this assumption remains to be validated, as no data

are available on the hepatocyte kinetics. The origin of the
viral expansion, also called the “replication space,” could be
supported by other mechanisms, such as reinfection of
cells previously infected with wildtype virus or the loss of an
antiviral state due to lower levels of viral replication.58

A tool to predict treatment outcome and optimize
treatment duration
Achieving a rapid virologic response (RVR, undetectable
viral load at week 4 of treatment) has long been identified
as one of the best early predictive markers of SVR.61,62

Stimulated by model prediction, several authors have
reported an association between the magnitude and the
rapidity of the phases of viral decline and the treatment out-
come,63,64 suggesting that viral kinetic models could pro-
vide even earlier predictors of treatment outcome than
RVR.

Because viral kinetic models are based on continuous
ordinary differential equations (ODEs), they predict that
HCV RNA will systematically relapse after treatment cessa-
tion. This is why Dixit et al. introduced a theoretical thresh-
old, called here the cure boundary, under which viral
eradication is considered as achieved and relapse cannot
occur afterwards. This cure boundary is defined as having
less than one viral particle in the whole extravascular fluid,
i.e., 15L, and therefore corresponds to a theoretical con-
centration of 10-4.22 IU/mL.26 Alternatively, one can define
the cure boundary as having less than one infected cell,
which is a slightly more conservative assumption and
delays the predicted time to eradication by 2–3 weeks with
standard parameter values.65

When using the biphasic model, a nice advantage of
the cure boundary is that the treatment duration can eas-
ily be predicted by extrapolating the second slope of the
viral decline. This approach was used in 2010 by Gane
et al. to predict that between 8 and 12 weeks of treatment
should be sufficient to cure patients treated with danopre-
vir (a protease inhibitor) and mericitabine.66 Similar results
were made using a telaprevir VE-model.65 Although the
predictions that in theory SVR could be achieved in a
majority of patients in less than 12 weeks of treatment
turned out to be correct,9–11 they were made by assuming
that no resistance emerged and that the viral decline
would continue at the same pace over time. This assump-
tion, however, depends on many factors, in particular the
genetic barrier to resistance. In fact SVR rates obtained
after 12 or 24 weeks of treatment with danoprevir and
mericitabine were low, and virologic breakthrough or
relapse were associated with danoprevir-resistant virus in
most cases.67

The combination of the cure boundary and a complex
model could also be used to predict SVR rates retrospec-
tively. Snoeck et al. developed a model from the extended
viral kinetic model by incorporating this cure boundary and
fitted this model to on- and post-treatment data in a large
population of patients treated with peg-IFN with or without
RBV.27 The model was able to reproduce all the observed
patterns of virologic response such as nonresponse,
relapse, or SVR and provided good prediction for SVR
rates in other clinical studies.

Figure 3 Two-strain model accounting for drug-sensitive (wild-
type) and drug-resistant virus. Iwt, Ires are the two populations of
hepatocytes infected with wildtype virus Vwt and drug-resistant
virus Vres, respectively. The model assumes that Vres is gener-
ated from Vwt, with rate l but no backward mutation. Mutant
strain is produced with a lower production rate pres compared to
wildtype virus (pwt) due to its lower relative fitness (fi 5 pres/pwt).
Each viral strain has different sensitivity to treatment, ewt and
eres. The model predicts that resistant virus should already exist
before treatment at frequency l/(1 2 pres/pwt).
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Using a population viral kinetic model built from only on-
treatment data in a large number of patients receiving
telaprevir monotherapy or in combination with peg-IFN, Adi-
wijaya et al. predicted the SVR rates for several phase 2–3
clinical trials of telaprevir.60 Although telaprevir dosing regi-
men, treatment duration, and patient characteristics were
different from the studied data, the prediction made with
the cure boundary matched very well the observed SVR
rates. Recently, Nguyen et al. showed that this approach
could also be used using short-term data. For that purpose,
they fitted the viral kinetics observed in patients treated for
4 weeks with alisporivir (a cyclophylin inhibitor) or alisporvir/
peg-IFN using a PK-VK model and they used the model to
accurately predict the SVR rate of a subsequent clinical
study (VITAL-1) with long treatment duration (24 weeks)
and a complex response-guided design.40 Although the
results of the VITAL-1 study were known when the model-
ing was done, the data of this study were not used to
construct the model, thereby showing that modeling of
short-term data can be used to anticipate the outcome of a
complex clinical trial.

New models to explore new modes of action of DAA
New characteristics of the viral kinetics in response to
DAA-based treatment, compared to IFN-based treatment,
have been repeatedly observed. In particular, protease
inhibitors such as telaprevir, ciluprevir, and TMC-435 were
shown to enhance the second phase, which, in some
cases, was correlated with treatment effectiveness.65,68,69

Another remarkable observation was that NS5A inhibitors
such as dataclasvir, ledipasvir, and, to a lesser extent,
some protease inhibitors such as danoprevir, telaprevir,
yield a much steeper first-phase decline.70–72 These obser-
vations cannot be explained with the standard model.

To explain the profound second phase in protease inhibi-
tor therapy, Guedj and Neumann extended the standard
model, which only focuses on the cellular infection (CI)
level, to incorporate intracellular (IC) kinetics of vRNA.73

This ICCI model considers two additional populations: 1)
the positive-strand RNA (R) available for transcription and
translation, R, 2) the replication units (U), which are the
negative-strand and double-stranded RNA available for
vRNA synthesis. U are translated from R with a production
rate p, limited by the number of U, and are lost with a rate
c. R are produced from U with a rate a and are lost, either
by being released as free virus or cleared from the infected
cells, with a rate r:73

dU
dt
¼ pR 12

U
Umax

� �
2cU

dR
dt
¼ aU2rR

(Eq. 8)

In the ICCI model, the production rate p of free virus in the
CI model is replaced by a second-order rate, q, depending
on R and I. If the treatment blocks the synthesis of intracel-
lular vRNA, with an effectiveness Ea, the model defines two
critical effectiveness, EICCI and EIC with EICCI<EIC: i) if
EICCI<Ea< EIC, vRNA reaches a new lower steady state
and, consistent with the standard model, HCV RNA is

cleared due to a lower level of viral production and a pro-
gressive loss of infected cells; ii) if Ea>EIC, vRNA is cleared
from the infected cells and as a consequence, from the
whole body. In that case, long-term viral load decline is a
combined effect of the loss rate of infected cells and intra-
cellular vRNA, i.e., d1c, as predicted by the in vitro model
discussed above.52 Therefore, the model predicts that the
more rapid second phase obtained with protease inhibitors
could be due to the progressive eradication of intracellular
viral content within infected cells. However, the correlation
between the second phase and the treatment effectiveness
predicted by the model remains to be validated.

Although this model provides a theoretical framework for
the rapid second phase, several parameters cannot be
identified if only HCV RNA are available, which limits its
use in the clinical setting. Moreover, this model makes the
mean-field approximation that all infected cells have the
same (mean) intracellular kinetics, which clearly is not
physiological. To overcome these limitations, another multi-
scale model with fewer parameters that introduces a rela-
tionship between vRNA and time since cell infection was
developed:70,71

d
dt

T ðtÞ ¼ s2bV ðtÞT ðtÞ2dT ðtÞ

@
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d
dt

V ðtÞ ¼ ð12EsÞ

ð1
0

qðaÞRða; tÞIða; tÞda2cVðtÞ

(Eq. 9)

where a is the infection age and a, q, l are age-dependent
rates of vRNA production, assembly/secretion, and

Figure 4 Multiscale model. The intracellular viral RNA is pro-
duced with a rate a, is assembled/released with rate q, and is
degraded with rate l. In this model, antiviral effect can be distin-
guished into the effect of blocking viral RNA production, ea, the
effect of blocking viral assembly/secretion, es, and the effect that
enhances the degradation of intracellular viral RNA, j.
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degradation, respectively. The term e-ct represents the loss
of the replication units over time due to highly effective
treatment. �I ðaÞ, �RðaÞ are the pretreatment steady-state dis-
tribution of the infected cells and intracellular vRNA,
respectively. In this model, drugs can have an antiviral
effect via: a) blocking vRNA production with an effective-
ness Ea, b) blocking viral assembly/secretion with Es, c)
enhancing intracellular vRNA degradation by j-fold (Figure
4).

By making the assumptions of constant effectiveness
and by neglecting the number of new infection occurring
after treatment initiation, an analytical approximation for the
multiscale model can be obtained:

VL ¼ V0 e2ct 1ð12Esð Þ cq
N
ð A
ðB2cÞdðd1c2cÞ

�
e2ct 2e2ðd1cÞt

�

1
1

B1d2c
N
q

2
A

ðB2cÞd

� �
ðe2ct2e2ðB1dÞtÞÞÞ

(Eq. 10)

where A ¼ ð12EaÞa, B ¼ ð12EsÞq1jl and N ¼ qða1dÞ
dðq1l1dÞ

This analytical solution makes the interpretation of
parameters easier. The model predicts that the viral load
declines in three phases whose amplitude and duration
depend on the values of parameters. If Es 5 1 and Ea� 1,
the viral load initially declines with the viral clearance rate
c, as predicted by the standard model. The second phase
represents the loss of intracellular vRNA by secretion and
degradation (with rate q1j 3 l1d), and eventually the ter-
minal phase is due to the deficit in viral production by loss
of infected cells and progressive eradication of replication
units within remaining infected cells (with total rate d1c)
(see figure 3 in Rong et al.71).

Using this model to fit the very rapid viral decline follow-
ing one dose of daclatasvir, a NS5A inhibitor, Guedj et al.
showed that daclatasvir had a dual mode of action and effi-
ciently blocked not only vRNA production (like many drugs
such as IFN) but also virus assembly/secretion. Further,
the effectiveness in blocking assembly/secretion Es was
higher than its effectiveness in blocking vRNA production Ea

(0.999 vs. 0.99).70 These predictions were consistent with
in vitro experiments reported subsequently that NS5A inhib-
itors have a rapid and potent activity in blocking viral
assembly but a slower build-up and lower activity on blocking
vRNA production.37 In the framework of this model, the first
phase of the viral decline is close to the viral clearance rate in
serum, c, if and only if the drug efficiently blocks assembly/
secretion. If the drug has a modest effectiveness in blocking
viral assembly/secretion, then a large quantity of viruses con-
tinues to be secreted after treatment initiation and the first
phase with rate c is not observed. Based on this new para-
digm, the estimate of free virus clearance was reestimated to
22.3 day-1, corresponding to a half-life of 45 minutes,70 i.e.,
approximately four times shorter than previous estimates
obtained during IFN-based therapy (�2.7 hours).

Of note, an effect, though smaller, of protease inhibitors
(telaprevir and danoprevir) was also found on blocking
assembly/secretion.71 These predictions are consistent with
in vitro findings that protease inhibitors are also involved in
the assembly of virus but their blockage activity is lower

compared to NS5A inhibitors.37 Finally, the multiscale
model also predicted that both protease inhibitors enhanced
intracellular vRNA degradation by a factor of j � 4. One
possible explanation is that protease inhibitors can restore
the cellular antiviral capabilities. However, the mechanism
for this mode of action remains unclear.

Although the multiscale model is more physiological, the
assumptions needed to arrive at an analytical solution, i.e.,
constant drug effectiveness and no cell infection, may limit
its use in the context where drug effectiveness may vary
due to pharmacokinetics or emergence of resistance.
Because only the extracellular viral loads are measured,
the parameters of intracellular kinetics are nonidentifiable
and have to be fixed at certain values to estimate other
parameters. The choice of values for these nonidentifiables
may influence the estimation of other parameters, for exam-
ple, Es depends on the value of l. With the growing knowl-
edge from in vitro models for intracellular vRNA kinetics,51

more information about viral intracellular kinetic parameters
is now available to refine this multiscale model. Further
development can also be made to this model such as
including several host proteins to account for the nonlinear-
ity of the replication process and to better understand
DAAs’ new modes of action.

FUTURE CHALLENGES AND APPLICATIONS OF HCV
MODELING
Cell–cell infection
All the HCV kinetic models presented above assume a
well-mixed system where virus has the same chance to
infect any cell. However, it has been recently shown that
infected cells tend to be found in clusters20,21 and that cell-
to-cell spreading is one of the routes for HCV transmis-
sion.74 Therefore, to better describe the infection step, HCV
kinetic models should be extended to account for the spa-
tial localization of infection and the two ways of virus
spreading (virus-to-cell and cell-to-cell transmission).

Partial differential equation (PDE) and stochastic
modeling
The HCV kinetic models described by ODEs make the
mean-field approximation that all the uninfected cells have
the same chance of being infected and that all the infected
cells produce the same, constant amount of virus. These
assumptions are not realistic and can be relaxed by using
more physiological partial differential equations (PDEs) that
can account for the heterogeneity in kinetics due to differ-
ences in infection age (time) and/or in distance to infection
foci (space). However, the solution of PDEs requires com-
putationally expensive and time-consuming processes.
Thus, the development of efficient and fast PDE solving
techniques for individual fitting and population approach will
be needed to broaden the use of more complex models in
HCV kinetic modeling.75

Although deterministic models are reasonable at the pre-
treatment steady state, as a large number of virus and
infected cells are present they become less realistic when
the number of virus and infected cells is small, such as a
few days after infection or several weeks after efficient
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treatment. In these situations stochastic models might be
needed to account for the stochastic nature of the infection,
e.g., the randomness of events of cell infection, mutation,
and apoptosis.76

Can we use models for individualized HCV treatment?
One appealing application of viral kinetic models is to use
real-time data to predict treatment outcome and optimize
treatment duration at the individual level. Using the first 3
weeks data of an experienced patient treated with silibinin/
RBV, Dahari et al. successfully predicted that 34-week
treatment would be sufficient to achieve SVR in this
patient.77 However, this result has to be confirmed in a
larger population before concluding about the usefulness of
this approach, as it relies on several assumptions. First, the
treatment outcome is predicted by extrapolating the second
phase of viral load decline, i.e., by assuming that the slope
of viral decline continues at the same pace. However, the
rate of viral load decline could be affected by several mech-
anisms such as the emergence of drug-resistant viruses or
the presence of reservoirs; on the other hand, recovery of
immune system capabilities could also accelerate the final
phase of viral decline (Figure 5).78 Second, the capability
to predict individual parameters can be hampered by
sparse sampling designs and/or poorly identifiable parame-
ters. Individual parameter identifiability can be improved by
using a Bayesian estimation of individual parameters, as
long as BQL data are properly accounted for and correct a
priori information is used for nonidentifiable parameters such
as de novo infection rate b.79 Lastly, it is important to under-
line that the good match between the model prediction and
SVR rate for a population in previous studies27,40,60 are not
sufficient to prove either the existence or the value of the

proposed cure boundary. In fact, the cure boundary may be
too conservative and one could argue that the goal of treat-
ment is not necessarily to totally eradicate the infection, but
rather to bring it down to a sufficiently low level such that it
can be handled by the immune system on its own (Figure
5). This functional cure can be reproduced using the
extended model, however it requires using very specific and
sometimes not realistic parameter values.80 If such a func-
tional cure boundary exists, it may strongly depend on the
immune response and thus be subject to a large interpatient
variability. More discussion on the limits of this approach can
be found in a recent editorial.78

Modeling combination therapy
We have essentially focused above on the modeling when
only one drug was given. In order to assess the effect of
drug combinations,81,82 two main models are used, the
Bliss independence and the Loewe additivity.

The Bliss independence model assumes that the two
drugs have independent mechanisms. Therefore, the frac-
tion of virus production that escapes the action of one drug
is then subject to the action of the other and the combined
effect is given by:

E ¼ 12ð12E1Þð12E2Þ (Eq. 11)

This model has been used to describe the combined effect
between peg-IFN and other antivirals.41,60,83 However, the
underlying assumption about the independence of two
drugs is a strong assumption in a highly integrated system
such as an infected cell and is difficult to verify in vivo,
even when the two drugs target different viral proteins.

On the other hand, if one assumes that two agents have
similar modes of action, the Loewe additivity model can be

Figure 5 Illustration of the cure boundary (viral eradication). Viral eradication is considered as achieved once the predicted total HCV
RNA is lower than one copy in the entire extracellular fluid volume, assumed to be 15L, which corresponds to a viral concentration of
6.7 x 10-5 HCV RNA/mL. Once the viral load is predicted to cross this boundary, HCV is considered eradicated. The cure boundary
can be based on the last infected cell instead of last virion. The cure boundary makes the assumption that the HCV RNA decline rate
is the same before and after it crosses the assay limit of detection (orange dotted line). This may not be correct, for instance, when
resistance or reservoirs lead to a slowing of the viral decline (red dotted line), or, on the other hand, if there are mechanisms leading
to an acceleration of the viral decline (due, for instance, to restored immune capabilities).
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employed, as was done for modeling the combination of
two nucleotide analogs47:

E ¼
E1

12E1
1 E2

12E2

11 E1
12E1

1 E2
12E2

(Eq. 12)

Of note, the combined effect obtained with the Loewe addi-
tivity model is systematically lower than that obtained with
the Bliss independence model. For instance, if two drugs
have separated effectiveness of E1 5 E2 5 0.9, the com-
bined effect will be 0.99 with the Bliss independence model
and 0.947 with the Loewe additivity model. An interesting
property of the Loewe additivity model is the fact that it can
be easily expanded to account for a synergistic or antago-
nistic effect:

E ¼
E1

12E1
1 E2

12E2

a1 E1
12E1

1 E2
12E2

(Eq. 13)

where a is called the “combination index,” with a<1 indica-
tive of synergism, a>1 indicative of antagonism. To our
knowledge, this model has never been used in vivo to eval-
uate drug interaction in HCV therapy and the information
needed to precisely estimate a (number of different doses
of monotherapies, combinations, etc.) needs to be
evaluated.

Of note, the interaction of drug effects can also be a
reflection of pharmacokinetic interaction. For this reason,
PK-VK modeling is useful to separate pharmacokinetic and
pharmacodynamic interaction. Lastly, drug interaction can
also increase the risk of toxicity. In that context, mathemati-
cal modeling can also be used to optimize the balance
between safety and efficacy. This approach may encom-
pass the retrospective analysis on large populations using
appropriate statistical tools, such as the generalized addi-
tive logistic model proposed by Snoeck et al. to evaluate
the optimal dose of RBV in peg-IFN/RBV-treated patients.84

It can also encompass a more physiological model to
dynamically adapt dosing regimens at the individual level,
such as proposed by Laouenan et al., who used individual
predose concentrations of ribavirin and peg-IFN to predict
the evolution of hemoglobin and platelet levels, respectively,
in patients treated with peg-IFN/RBV and telaprevir or
boceprevir.85

Towards new modeling paradigms to understand
treatment outcome with new therapies
Recent results of short and extremely efficient therapies
brought new questions about the reliability of HCV RNA to
predict treatment outcome. In the SYNERGY trial, patients
received 12 weeks of sofosbuvir and ledipasvir (an NS5A
inhibitor) or 6 weeks of sofosbuvir, ledipasvir, and GS-9669
or GS-9451. Interestingly at the end of treatment N 5 6/60
patients had quantifiable viral load and N 5 29/60 patients
had detectable viral load with the Abbott assay (LOD of 10
IU/mL) but only one of them failed to achieve SVR.86 Using
the existing models, one would fail to predict SVR for
these patients. To our knowledge, few isolated cases of

detectable viremia at the end of treatment have been
reported in patients having SVR after peg-IFN/RBV therapy
with a highly sensitive assay.87–89 However, unlike in the
SYNERGY trial, all detectable values at the end of treat-
ment were preceded by undetectable measurements,87–89

which made them appear to be due to measurement
errors. Whether this observation is specific to SYNERGY
or will be observed elsewhere is unclear; in any case, it
may reveal the importance of important features largely
ignored until now, such as a high proportion of noninfec-
tious virus or a strong restoration of the immune response,
is not known.

CONCLUSION

HCV kinetic models have played an important role in deci-
phering the origin of viral decline, leading the US Food and
Drug Administration (FDA) to recommend its use during
drug development.90 In the new era of short and extremely
effective treatment, modeling efforts will be particularly
needed to anticipate and optimize drug combinations, both
in terms of efficacy and safety, and to optimize individual
treatment. These new developments will probably be
focused on specific hard-to-treat populations, such as cir-
rhotic or patients who failed previous treatments. The devel-
opment of more complex models will require the use of
other biomarkers which, in complement to HCV RNA, will
allow integrating important mechanisms involved in treat-
ment outcome with new HCV therapies.

Acknowledgments. We thank the Advanced Quantitative Sciences
Department of Novartis for financial support for the PhD of THT Nguyen,
during which this work was done.

Conflict of Interest. The authors declare no conflicts of interest.

1. Mohd Hanafiah, K., Groeger, J., Flaxman, A.D. & Wiersma, S.T. Global epidemiology
of hepatitis C virus infection: new estimates of age-specific antibody to HCV seropre-
valence. Hepatology 57, 1333–1342 (2013).

2. Lawitz, E. et al. High concordance of SVR4, SVR12, and SVR24 in patients with
HCV infection who have received treatment with sofosbuvir. J. Hepatol. 58, S348
(2013).

3. Carrion, A.F., Gutierrez, J. & Martin, P. New antiviral agents for the treatment of hep-
atitis C: ABT-450. Expert Opin. Pharmacother. 15, 711–716 (2014).

4. Zhu, Y. & Chen, S. Antiviral treatment of hepatitis C virus infection and factors affect-
ing efficacy. World J. Gastroenterol. WJG 19, 8963–8973 (2013).

5. Manns, M.P. et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-
2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet
358, 958–965 (2001).

6. Fried, M.W. et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus
infection. N. Engl. J. Med. 347, 975–982 (2002).

7. Jacobson, I.M. et al. Telaprevir for previously untreated chronic hepatitis C virus
infection. N. Engl. J. Med. 364, 2405–2416 (2011).

8. Poordad, F. et al. Boceprevir for untreated chronic HCV genotype 1 infection. N.
Engl. J. Med. 364, 1195–1206 (2011).

9. Kowdley, K.V. et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV
without cirrhosis. N. Engl. J. Med. 370, 1879–1888 (2014).

10. Everson, G.T. et al. Efficacy of an interferon- and ribavirin-free regimen of daclatasvir,
asunaprevir, and BMS-791325 in treatment-naive patients with HCV genotype 1 infec-
tion. Gastroenterology 146, 420–429 (2014).

11. Kohli, A. et al. Combination oral, hepatitis C antiviral therapy for 6 or 12 weeks:
Results of the SYNERGY Trial. 21st CROI Abstr 27LB (2014).

12. Gane, E.J. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis
C. N. Engl. J. Med. 368, 34–44 (2013).

HCV Kinetic Models and Their Implications
Nguyen and Guedj

240

CPT: Pharmacometrics & Systems Pharmacology



13. Afdhal, N. et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N.
Engl. J. Med. 370, 1889–1898 (2014).

14. Gentile, I. et al. Efficacy and safety of sofosbuvir in treatment of chronic hepatitis C:
The dawn of the a new era. Rev. Recent Clin. Trials 9, 1–7 (2014).

15. Neumann, A.U. et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of
interferon-alpha therapy. Science 282, 103–107 (1998).

16. Dahari, H., Ribeiro, R.M. & Perelson, A.S. Triphasic decline of hepatitis C virus RNA
during antiviral therapy. Hepatology 46, 16–21 (2007).

17. Herrmann, E., Lee, J.-H., Marinos, G., Modi, M. & Zeuzem, S. Effect of ribavirin on
hepatitis C viral kinetics in patients treated with pegylated interferon. Hepatology 37,
1351–1358 (2003).

18. Dahari, H., Lo, A., Ribeiro, R.M. & Perelson, A.S. Modeling hepatitis C virus dynam-
ics: liver regeneration and critical drug efficacy. J. Theor. Biol. 247, 371–381 (2007).

19. Guedj, J., Bazzoli, C., Neumann, A.U. & Mentr�e, F. Design evaluation and optimiza-
tion for models of hepatitis C viral dynamics. Stat. Med. 30, 1045–1056 (2011).

20. Graw, F. et al. Inferring viral dynamics in chronically HCV infected patients from the
spatial distribution of infected hepatocytes. PLoS Comput. Biol. 10, e1003934 (2014).

21. Kandathil, A.J. et al. Use of laser capture microdissection to map hepatitis C
virus–positive hepatocytes in human liver. Gastroenterology 145, 1404–1413.e10
(2013).

22. Pawlotsky, J.-M. et al. Antiviral action of ribavirin in chronic hepatitis C. Gastroenterol-
ogy 126, 703–714 (2004).

23. Rotman, Y. et al. Effect of ribavirin on viral kinetics and liver gene expression in
chronic hepatitis C. Gut 63, 161–169 (2014).

24. Mihm, U. et al. Impact of ribavirin priming on viral kinetics and treatment response in
chronic hepatitis C genotype 1 infection. J. Viral Hepat. 21, 42–52 (2014).

25. Layden-Almer, J.E., Ribeiro, R.M., Wiley, T., Perelson, A.S. & Layden, T.J. Viral
dynamics and response differences in HCV-infected African American and white
patients treated with IFN and ribavirin. Hepatology 37, 1343–1350 (2003).

26. Dixit, N.M., Layden-Almer, J.E., Layden, T.J. & Perelson, A.S. Modelling how ribavirin
improves interferon response rates in hepatitis C virus infection. Nature 432, 922–924
(2004).

27. Snoeck, E. et al. A comprehensive hepatitis C viral kinetic model explaining cure.
Clin. Pharmacol. Ther. 87, 706–713 (2010).

28. Feld, J.J. et al. Ribavirin improves early responses to peginterferon through improved
interferon signaling. Gastroenterology 139, 154–162.e4 (2010).

29. H�ezode, C. et al. Telaprevir and peginterferon with or without ribavirin for chronic
HCV infection. N. Engl. J. Med. 360, 1839–1850 (2009).

30. McHutchison, J.G. et al. Telaprevir for previously treated chronic HCV infection. N.
Engl. J. Med. 362, 1292–1303 (2010).

31. Ferenci, P. et al. ABT-450/r-ombitasvir and dasabuvir with or without ribavirin for
HCV. N. Engl. J. Med. 370, 1983–1992 (2014).

32. Thomas, E. et al. Ribavirin potentiates interferon action by augmenting interferon-
stimulated gene induction in hepatitis C virus cell culture models. Hepatology 53,
32–41 (2011).

33. Steimer, J.L., Mallet, A., Golmard, J.L. & Boisvieux, J.F. Alternative approaches to
estimation of population pharmacokinetic parameters: comparison with the nonlinear
mixed-effect model. Drug Metab. Rev. 15, 265–292 (1984).

34. Samson, A., Lavielle, M. & Mentr�e, F. Extension of the SAEM algorithm to left-
censored data in nonlinear mixed-effects model: application to HIV dynamics model.
Comput. Stat. Data Anal. 51, 1562–1574 (2006).

35. Beal, S.L. Ways to fit a PK model with some data below the quantification limit. J.
Pharmacokinet. Pharmacodyn. 28, 481–504 (2001).

36. Yang, S. & Roger, J. Evaluations of Bayesian and maximum likelihood methods in
PK models with below-quantification-limit data. Pharm. Stat. 9, 313–330 (2010).

37. McGivern, D.R. et al. Kinetic analyses reveal potent and early blockade of hepatitis C
virus assembly by NS5A inhibitors. Gastroenterology 147, 453–462.e7 (2014).

38. Shudo, E., Ribeiro, R.M. & Perelson, A.S. Modeling hepatitis C virus kinetics under
therapy using pharmacokinetic and pharmacodynamic information. Expert Opin. Drug
Metab. Toxicol. 5, 321–332 (2009).

39. Sypsa, V. & Hatzakis, A. Modelling of viral dynamics in hepatitis B and hepatitis C
clinical trials. Stat. Med. 27, 6505–6521 (2008).

40. Nguyen, T.H.T., Mentr�e, F., Yu, J., Levi, M. & Guedj, J. A pharmacokinetic–viral
kinetic model describes the effect of alisporivir monotherapy or in combination with
peg-IFN on hepatitis C virologic response. Clin. Pharmacol. Ther. (in press).

41. Laou�enan, C. et al. Using pharmacokinetic and viral kinetic modeling to estimate the
antiviral effectiveness of telaprevir, boceprevir and Peg-IFN during triple therapy in
treatment-experienced HCV infected cirrhotic patients (ANRS CO20-CUPIC). Antimi-
crob. Agents Chemother. (2014). doi:10.1128/AAC.02611-14

42. Zhang, L., Beal, S.L. & Sheiner, L.B. Simultaneous vs. sequential analysis for popula-
tion PK/PD data I: best-case performance. J. Pharmacokinet. Pharmacodyn. 30,
387–404 (2003).

43. Lacroix, B.D., Friberg, L.E. & Karlsson, M.O. Evaluation of IPPSE, an alternative
method for sequential population PKPD analysis. J. Pharmacokinet. Pharmacodyn.
39, 177–193 (2012).

44. Tod, M. Evaluation of drugs in pediatrics using K-PD models: perspectives. Fundam.
Clin. Pharmacol. 22, 589–594 (2008).

45. Conway, J.M. & Perelson, A.S. A hepatitis C virus infection model with time-varying
drug effectiveness: solution and analysis. PLoS Comput. Biol. 10, e1003769 (2014).

46. Guedj, J., Dahari, H., Shudo, E., Smith, P. & Perelson, A.S. Hepatitis C viral kinetics
with the nucleoside polymerase inhibitor mericitabine (RG7128). Hepatology 55,
1030–1037 (2012).

47. Guedj, J. et al. Analysis of the hepatitis C viral kinetics during administration of two
nucleotide analogues: sofosbuvir (GS-7977) and GS-0938. Antivir. Ther. 19, 211–220
(2014).

48. Ma, H. et al. Characterization of the metabolic activation of hepatitis C virus nucleo-
side inhibitor b-d-20-deoxy-20-fluoro-20-C-methylcytidine (psi-6130) and identification of
a novel active 50-triphosphate species. J. Biol. Chem. 282, 29812–29820 (2007).

49. Guedj, J., Dahari, H., Pohl, R.T., Ferenci, P. & Perelson, A.S. Understanding silibi-
nin’s modes of action against HCV using viral kinetic modeling. J. Hepatol. 56,
1019–1024 (2012).

50. Dahari, H., Ribeiro, R.M., Rice, C.M. & Perelson, A.S. Mathematical modeling of sub-
genomic hepatitis C virus replication in Huh-7 cells. J. Virol. 81, 750–760 (2007).

51. Binder, M. et al. Replication vesicles are load- and choke-points in the hepatitis C
virus lifecycle. PLoS Pathog. 9, e1003561 (2013).

52. Dahari, H., Sainz, B. Jr., Perelson, A.S. & Uprichard, S.L. Modeling subgenomic hep-
atitis C virus RNA kinetics during treatment with alpha interferon. J. Virol. 83,
6383–6390 (2009).

53. Ivanisenko, N.V. et al. A new stochastic model for subgenomic hepatitis C virus repli-
cation considers drug resistant mutants. PloS One 9, e91502 (2014).

54. Reddy, M.B. et al. Pharmacokinetic/Pharmacodynamic predictors of clinical potency
for hepatitis C virus nonnucleoside polymerase and protease inhibitors. Antimicrob.
Agents Chemother. 56, 3144–3156 (2012).

55. Kieffer, T.L. et al. Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and
resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46, 631–639
(2007).

56. Ribeiro, R.M. et al. Quantifying the diversification of hepatitis C virus (HCV) during
primary infection: estimates of the in vivo mutation rate. PLoS Pathog. 8, e1002881
(2012).

57. Cuevas, J.M., Gonz�alez-Candelas, F., Moya, A. & Sanju�an, R. Effect of ribavirin on
the mutation rate and spectrum of hepatitis C virus in vivo. J. Virol. 83, 5760–5764
(2009).

58. Rong, L., Dahari, H., Ribeiro, R.M. & Perelson, A.S. Rapid emergence of protease
inhibitor resistance in hepatitis C virus. Sci. Transl. Med. 2, 30ra32 (2010).

59. Adiwijaya, B.S. et al. A multi-variant, viral dynamic model of genotype 1 HCV to
assess the in vivo evolution of protease-inhibitor resistant variants. PLoS Comput.
Biol. 6, e1000745 (2010).

60. Adiwijaya, B.S. et al. A viral dynamic model for treatment regimens with direct-acting
antivirals for chronic hepatitis C infection. PLoS Comput. Biol. 8, e1002339 (2012).

61. Ferenci, P. et al. Peginterferon alfa-2a and ribavirin for 24 weeks in hepatitis C type
1 and 4 patients with rapid virological response. Gastroenterology 135, 451–458
(2008).

62. Mangia, A. et al. Individualized treatment with combination of Peg-interferon alpha 2b
and ribavirin in patients infected with HCV genotype 3. J. Hepatol. 53, 1000–1005
(2010).

63. Lindh, M. et al. Response prediction and treatment tailoring for chronic hepatitis C
virus genotype 1 infection. J. Clin. Microbiol. 45, 2439–2445 (2007).

64. Neumann, A.U. et al. Early prediction of sustained virological response at day 3 of
treatment with albinterferon-alpha-2b in patients with genotype 2/3 chronic hepatitis
C. Liver Int. 29, 1350–1355 (2009).

65. Guedj, J. & Perelson, A.S. Second-phase hepatitis C virus RNA decline during
telaprevir-based therapy increases with drug effectiveness: implications for treatment
duration. Hepatology 53, 1801–1808 (2011).

66. Gane, E.J. et al. Oral combination therapy with a nucleoside polymerase inhibitor
(RG7128) and danoprevir for chronic hepatitis C genotype 1 infection (INFORM-1): a
randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet 376,
1467–1475 (2010).

67. Gane, E.J. et al. Mericitabine and ritonavir-boosted danoprevir with or without ribavirin
in treatment-naive HCV genotype 1 patients: INFORM-SVR study. Liver Int. Off. J.
Int. Assoc. Study Liver (2014). doi:10.1111/liv.12588

68. Herrmann, E. et al. Viral kinetics in patients with chronic hepatitis C treated with the
serine protease inhibitor BILN 2061. Antivir. Ther. 11, 371–376 (2006).

69. Reesink, H.W. et al. Rapid HCV-RNA decline with once daily TMC435: a phase I
study in healthy volunteers and hepatitis C patients. Gastroenterology 138, 913–921
(2010).

70. Guedj, J. et al. Modeling shows that the NS5A inhibitor daclatasvir has two modes of
action and yields a shorter estimate of the hepatitis C virus half-life. Proc. Natl. Acad.
Sci. U. S. A. 110, 3991–3996 (2013).

71. Rong, L. et al. Analysis of hepatitis C virus decline during treatment with the protease
inhibitor danoprevir using a multiscale model. PLoS Comput. Biol. 9, e1002959
(2013).

72. Lawitz, E.J. et al. A phase 1, randomized, placebo-controlled, 3-day, dose-ranging
study of GS-5885, an NS5A inhibitor, in patients with genotype 1 hepatitis C. J. Hep-
atol. 57, 24–31 (2012).

HCV Kinetic Models and Their Implications
Nguyen and Guedj

241

www.wileyonlinelibrary/psp4

info:doi/10.1128/AAC.02611-14
info:doi/10.1111/liv.12588


73. Guedj, J. & Neumann, A.U. Understanding hepatitis C viral dynamics with direct-
acting antiviral agents due to the interplay between intracellular replication and cellu-
lar infection dynamics. J. Theor. Biol. 267, 330–340 (2010).

74. Carloni, G., Crema, A., Valli, M.B., Ponzetto, A. & Clementi, M. HCV infection by
cell-to-cell transmission: Choice or necessity? Curr. Mol. Med. 12, 83–95 (2012).

75. Vigneaux, P. Extending monolix to use models with partial differential equations Paul
Vigneaux (1), Violaine Louvet (2), Emmanuel Grenier (1)(1) ENS de LYON & INRIA
Numed;(2) Universit�e de LYON & INRIA Numed.

76. Pearson, J.E., Krapivsky, P. & Perelson, A.S. Stochastic theory of early viral infection:
continuous versus burst production of virions. PLoS Comput. Biol. 7, e1001058 (2011).

77. Dahari, H. et al. Sustained virological response with intravenous silibinin: individual-
ized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int. (2014) doi:
10.1111/liv.12692.

78. Guedj, J. & Nguyen, T.H.T. Can we use viral kinetic models to individualize treat-
ment? Liver Int. (2014) doi:10.1111/liv.12736.

79. Nguyen, T.H.T., Guedj, J., Yu, J., Levi, M. & Mentr�e, F. Influence of a priori information,
designs, and undetectable data on individual parameters estimation and prediction of
hepatitis C treatment outcome. CPT Pharmacomet. Syst. Pharmacol. 2, e56 (2013).

80. DeBroy, S., Bolker, B.M. & Martcheva, M. Bistability and long-term cure in a within-
host model of hepatitis C. J. Biol. Syst. 19, 533–550 (2011).

81. Greco, W.R., Bravo, G. & Parsons, J.C. The search for synergy: a critical review
from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

82. Lee, J.J., Kong, M., Ayers, G. & Lotan, R. Interaction index and different methods for
determining drug interaction in combination therapy. J. Biopharm. Stat. 17, 461–480
(2007).

83. Rong, L., Ribeiro, R.M. & Perelson, A.S. Modeling quasispecies and drug resistance
in hepatitis C patients treated with a protease inhibitor. Bull. Math. Biol. 74,
1789–1817 (2012).

84. Snoeck, E., Wade, J.R., Duff, F., Lamb, M. & Jorga, K. Predicting sustained virologi-
cal response and anaemia in chronic hepatitis C patients treated with peginterferon
alfa-2a (40KD) plus ribavirin. Br. J. Clin. Pharmacol. 62, 699–709 (2006).

85. Laou�enan, C. et al. A model-based illustrative exploratory approach to optimize the
dosing of Peg-IFN and ribavirin in cirrhotic hepatitis C infected patients treated with
triple therapy (ANRS CO20-CUPIC). CPT Pharmacomet. Syst. Pharmacol. (in press).

86. Sidharthan, S. et al. Predicting response to all-oral directly acting antiviral therapy for
hepatitis C using results of Roche and Abbott HCV viral load assays. 23rd APASL 8,
Abstr 865, S227–228 (2014).

87. Matsuura, K. et al. Abbott RealTime hepatitis C virus (HCV) and Roche Cobas Ampli-
Prep/Cobas TaqMan HCV assays for prediction of sustained virological response to
pegylated interferon and ribavirin in chronic hepatitis C patients. J. Clin. Microbiol. 47,
385–389 (2009).

88. Morishima, C. et al. HCV RNA detection by TMA during the hepatitis C antiviral long-
term treatment against cirrhosis (Halt-C) trial. Hepatology 44, 360–367 (2006).

89. Bortoletto, G. et al. Comparable performance of TMA and real-time PCR in detecting
minimal residual hepatitis C viraemia at the end of antiviral therapy. J. Clin. Virol. Off.
Publ. Pan Am. Soc. Clin. Virol. 50, 217–220 (2011).

90. Food and Drug Administration Center for Drug Evaluation and Research. Guidance
for Industry Chronic Hepatitis C Virus Infection: Developing Direct-Acting Antiviral
Drugs for Treatment (Draft). Revision 1, (2013).

VC 2015 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-NonCommer-
cial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly
cited, the use is non-commercial and no modifications or
adaptations are made.

HCV Kinetic Models and Their Implications
Nguyen and Guedj

242

CPT: Pharmacometrics & Systems Pharmacology

info:doi/10.1111/liv.12692
info:doi/10.1111/liv.12736

	l
	l
	l
	l
	l
	l
	l
	l

