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Abstract

In the growing field of metabolic engineering, where cells are treated as ‘factories’ that syn-

thesize industrial compounds, it is essential to consider the ability of the cells’ native metab-

olism to accommodate the demands of synthetic pathways, as these pathways will alter the

homeostasis of cellular energy and electron metabolism. From the breakdown of substrate,

microorganisms activate and reduce key co-factors such as ATP and NAD(P)H, which sub-

sequently need to be hydrolysed and oxidized, respectively, in order to restore cellular bal-

ance. A balanced supply and consumption of such co-factors, here termed co-factor

balance, will influence biotechnological performance. To aid the strain selection and design

process, we used stoichiometric modelling (FBA, pFBA, FVA and MOMA) and the Escheri-

chia coli (E.coli) core stoichiometric model to investigate the network-wide effect of butanol

and butanol precursor production pathways differing in energy and electron demand on

product yield. An FBA-based co-factor balance assessment (CBA) algorithm was developed

to track and categorise how ATP and NAD(P)H pools are affected in the presence of a new

pathway. CBA was compared to the balance calculations proposed by Dugar et al. (Nature

Biotechnol. 29 (12), 1074–1078). Predicted solutions were compromised by excessively

underdetermined systems, displaying greater flexibility in the range of reaction fluxes than

experimentally measured by 13C-metabolic flux analysis (MFA) and the appearance of unre-

alistic futile co-factor cycles. With the assumption that futile cycles are tightly regulated in

reality, the FBA models were manually constrained in a step-wise manner. Solutions with

minimal futile cycling diverted surplus energy and electrons towards biomass formation. As

an alternative, the use of loopless FBA or constraining the models with measured flux

ranges were tried but did not prevent futile co-factor cycles. The results highlight the need to

account for co-factor imbalance and confirm that better-balanced pathways with minimal

diversion of surplus towards biomass formation present the highest theoretical yield. The

analysis also suggests that ATP and NAD(P)H balancing cannot be assessed in isolation

from each other, or even from the balance of additional co-factors such as AMP and ADP.

We conclude that, through revealing the source of co-factor imbalance CBA can facilitate

pathway and host selection when designing new biocatalysts for implementation by meta-

bolic engineering.
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Author summary

The chemicals industry is a major contributor to greenhouse gas emissions and desper-

ately requires more sustainable alternatives. Genetically engineered microorganisms can

be used as ‘bio-factories’ to manufacture chemicals, replacing those currently sourced

from fossil fuels or unsustainable tropical plant agriculture. However, due to the complex-

ity of biology, the features that render one bio-factory design more efficient than others

are difficult to identify. Computational modelling of such designs can enable the selection

of optimally performing designs, but it remains challenging as biology is complex and not

fully understood. Microorganisms require energy for their own growth and maintenance,

but also to convert molecules into desired target products. The supply and consumption

of such energy is through co-factors, and the balance of such co-factors influences the per-

formance of the engineered bio-factories. This study developed a computer-aided

approach for quantification of the co-factor balance of bio-factories. Using the chemical

n-butanol as a case study, our study explores the impact of variant bio-factory designs

with differing co-factor balance on the potential efficiency of biomanufacturing. We pro-

vide insights into the relative balance of different designs and provide a computational

framework to select the best-performing designs.

Introduction

Metabolic engineering, also recently termed synthetic metabolism [1], aims to unlock the

potential chemical space available to microorganisms, enabling the production of entirely new

compounds and even the design of pathway variants towards the same target product [2, 3, 4].

Identification of the best choice of target chemicals and biotechnological systems is not trivial,

however. In reality, some bio-catalysts are more efficient than others, even when they have

been designed to produce the same target chemical [5, 6]. An ability to accurately predict the

designs likely to be superior would minimize experimental testing and hence optimize the use

of available resources.

For any complex biological system, it is difficult to determine the most important factors,

and parameters thereof, that influence catalytic performance. It is widely understood, however,

that glucose catabolism inevitably results in the phosphorylation of ADP and AMP to form

ATP, and the reduction of electron carriers (e.g. NAD+ and NADP+). These co-factors are sub-

sequently hydrolysed and oxidized, respectively, when carbon source(s) is converted into bio-

mass and by-products. For the sake of simplicity, we refer to these metabolic events hereinafter

as ’production’ and ’consumption’ of ATP (also called ’energy’) and NAD(P)H (also called

’redox’), respectively. Co-factor recycling is essential to allow central carbon metabolism to

continue, i.e. to enable homeostasis [7]. The metabolic system that results in co-factor balance

and robustness to environmental changes has evolved to facilitate survival of the species, and

not to act as a host for biocatalysis serving human objectives. Hence, it is not surprising that an

organism with an introduced synthetic metabolic pathway does not have optimal co-factor bal-

ance. Such an imbalance in the production and consumption of redox and/or energy by the

engineered target pathway will result in the dissipation of co-factors by native metabolic pro-

cesses such as cell maintenance and waste release, or promotion of growth over bioproduction.

Metabolic waste products are therefore indicators of imbalances in the metabolic network,

compromising the overall efficiency of the biocatalytic conversion of carbon towards the target

[8].
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In fact, even small changes in co-factor pools can have wide effects on metabolic networks

and bio-production [9], and the inability of engineered systems to reach homeostasis can lead

to partial or even full disruption of the cell’s physiological state [5, 8, 9]. In order to maximize

the ability to engineer optimal bio-catalysts, it is therefore essential to identify the constraints

that pathway-specific co-factor imbalances may impose on the wider metabolic network.

Several articles have discussed this topic. For example, de Kok et al. [10] suggested a positive
yield theory whereby optimal biosynthetic pathway flux is more likely when there is small, posi-

tive ATP excess remaining after the target pathway has utilised what it needs, enabling some

but limited biomass production to keep the culture alive. Notably in this case, the authors

referred to ’pathway’ as the entire metabolic network of the cell. To support this argument,

they compared the low ethanol yield from a high-biomass producing Saccharomyces cerevisiae
strain, against the higher ethanol yield in a low-biomass producing Zymomonas mobilis strain.

They argued that the difference was due to excess ATP production by the S.cerevisiae strain

and that ATP surplus caused too much cell growth, burdening metabolism and decreasing

product formation [10].

Albeit with a different terminology and reference point, Dugar and Stephanopoulos

reached a similar conclusion based on a theoretical framework that assessed the imbalance of

metabolic pathways and the effect this has on theoretically optimal product yield [5]. Using

stoichiometric and energetic calculations, they quantified the relative potential of synthetic

pathways, concluding that the most effective equilibrium between substrate and product opti-

mization was found in fully balanced (net zero) or ATP-requiring (negative ATP yield) path-

ways. In this article, ’pathway’ referred to the leading route towards target production from a

central carbon metabolite, not the entire metabolic network of the cell. Their calculations facil-

itated a comparison between different pathway yields after adjusting for any imbalances, pro-

viding insights into where the imbalance in question may be occurring and an adjusted

theoretical yield estimate. This information can then be used to select better performing path-

ways and guide engineering strategies to render the pathway more balanced and thus more

yield-efficient [5]. However, their approach is built on a set of case-specific and not easily gen-

eralizable assumptions, does not consider various experimental conditions or biological set-

tings, nor does the method scale up to larger metabolic networks or address the implications

of pathway imbalance at the genome scale. Given that an understanding of co-factor metabo-

lism is very useful and informative to predict the superiority of biosynthetic pathways, but the

method published by Dugar and Stephanopoulos suffers from a lack of flexibility, we asked

whether it would be possible to integrate both pathway-specific and network-specific balance

assessments and carry out a similar analysis but using a more transferable and easy-to-imple-

ment computational framework?

The principal aim of the present study was therefore to implement a co-factor balance anal-

ysis (CBA) protocol to quantify the co-factor balance of metabolic engineering designs using

well known constraint-based modelling techniques, such as Flux Balance Analysis (FBA) [11,

12], parsimonious FBA [13], and MOMA [14]. Using a stoichiometric model of Escherichia
coli [15] and a series of different butanol production pathways as case studies [16, 17], CBA

was used to evaluate how variations in ATP and redox demands contribute to yield efficiency.

The study highlighted the impact of the underdeterminacy of FBA, demonstrated by consider-

able dissipation of excess ATP and NAD(P)H in high-flux futile cycles. Although some futile

cycling may take place naturally, we assumed that their activation would not turn on and off as

easily due to internal regulation, insufficient enzyme quantities and/or thermodynamic con-

straints imposed by both the chemistry of each reaction and in vivo metabolite concentrations

[18]. Two methods to reduce high flux futile cycles were attempted, resulting in the formation

PLOS COMPUTATIONAL BIOLOGY Co-factor balance estimation using stoichiometric modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008125 August 10, 2020 3 / 32

https://doi.org/10.1371/journal.pcbi.1008125


of biomass with 7 out of 8 engineered models, even when biosynthetic production was set as

the objective function for optimization.

The CBA protocol helped explain why some pathways resulted in higher yields than others.

Furthermore, both FBA and the approach developed by Dugar et al. [5] reached similar theo-

retical yield values and agreed on the highest yielding pathway. However, they differed in the

way co-factor imbalances are adjusted both at the ATP and NAD(P)H level.

Results and discussion

Modified core stoichiometric models of E.coli
Eight synthetic pathways for the production of butanol and butanol precursors were selected

for this study due to their distinct energy and redox requirements (Fig 1A). To enable target

production in silico, we introduced reactions corresponding to the same engineered pathways

as originally proposed and experimentally implemented by Menon et al. [16] and Pasztor et al.
[17] into the E.coli Core stoichiometric model [15], resulting in a total of eight models, which

we will refer to as BuOH-0, BuOH-1, tpcBuOH, BuOH-2, fasBuOH, CROT, BUTYR, BUTAL

(Table 1).

Fig 1B summarizes the theoretical carbon yields and ATP and NAD(P)H coefficients of

each synthetic pathway. For convenience, these stoichiometric coefficients are referred to as

co-factor demand (negative values, indicating that the co-factor is consumed by the intro-

duced pathway) and co-factor surplus (positive values, indicating co-factor production by the

introduced pathway). Whilst all butanol pathways have the same redox demand but vary in

ATP demand, the butanol precursor pathways have no ATP demand but instead vary in redox

demand (Table 1).

Maximal product yield estimates were obtained by selecting the corresponding sink reac-

tion as the objective function and maximizing these using parsimonious FBA (pFBA) [13]. For

the wild type model, growth rate optimization was selected as the objective function. Under

aerobic conditions, carbon yields ranged between 59.94–66.67% (refer to S2 and S3 Tables for

pFBA-calculated fluxes), within the range of reported carbon yields for butanol calculated

using alternative methods [5]. Under anaerobic conditions, the range increased to span 35.14–

66.67%. It became noticeable, however, that the butanol models with highest ATP demands

(tpcBuOH through to fasBuOH) had lower target production efficiencies. We suspected that

these differences may stem from the need to utilise oxidative PPP to supply additional redox

and the recycling of AMP and ADP, since these were not accounted for by the calculations pre-

sented in Dugar et al. [5].

The solution space of all models was investigated by Flux Variability Analysis (FVA) [19]

(S1 Table). Considering only co-factor related reactions, a single solution was found with the

wild type and models tpcBuOH, BuOH-2 and fasBuOH. In contrast, the butanol producing

models BuOH-0 and BuOH-1 had varying flux ranges in 14 out of 85 and 18 out of 87 reac-

tions, respectively. Notably, none of the reactions displaying multiple solutions were directly

in the path towards butanol, and all were involved in futile co-factor cycles (see Fig 4).

Co-factor Balance Assessment (CBA) produces distinct energy and redox

profiles under aerobic and anaerobic conditions

The Co-factor Balance Assessment protocol (CBA) was designed to track co-factor production

across the metabolic network and predict contributions to biomass, waste, target production

and metabolic maintenance in each model. The goal was to use CBA to inform how co-factor

properties of target pathways and the host cell influence yield efficiencies and facilitate an
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Fig 1. Engineered pathways used in this study and their co-factor requirements. Eight pathways that produce butanol (dark blue circle) and butanol precursors (light

blue circles) were selected and introduced into the Escherichia coli Core Model to yield the stoichiometric models used in this study. These pathways are based on

variations of the so called ‘Core Pathway’ (module A, grey), which is redox dependent and ATP neutral. By combining these modules, 8 unique pathways with varying

demands for ATP and redox are possible. (B) Co-factor requirements of all pathways introduced into the E.coli Core model to simulate butanol and butanol precursor

production, and the aerobic (black) and anaerobic (red) carbon yields are shown as a percentage of glucose carbon influx after target production maximization. Co-factor

requirements are calculated as the sum of stoichiometric coefficients in all reactions starting from acetyl-CoA through to the final target molecule. Negative ATP/NAD(P)

H coefficients represent co-factor demand, which refers to the consumption of a particular co-factor by the introduced pathway, indicating ATP/NAD(P)H going into the

PLOS COMPUTATIONAL BIOLOGY Co-factor balance estimation using stoichiometric modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008125 August 10, 2020 5 / 32

https://doi.org/10.1371/journal.pcbi.1008125


understanding why some pathways perform better than others, from a co-factor usage per-

spective. CBA is a COBRApy-compatible Python protocol that sums the energy and redox syn-

thesis fluxes of all reactions involving each of the two co-factors, and divides it into four

categories: (1) biomass production, (2) product production, (3) waste release and (4) cellular

maintenance (Fig 2). For example, a strain of E.coli engineered to produce butanol diverts a

particular amount of energy and redox to produce the chemical target, whilst the rest is distrib-

uted across reactions that lead to biomass formation, metabolic maintenance and waste

release. Upon linear optimization, the CBA protocol determines the net flux through each cat-

egory, and this information can be used to understand how effective an engineered system is

at producing a chemical target, with respect to the resources being dissipated to achieve the

optimal objective.

The CBA calculation was applied to all eight models with introduced butanol or butanol

precursor product pathways (hereafter ‘engineered’ models) under both aerobic (Fig 3A) and

anaerobic (Fig 3B) conditions with target product excretion set as the objective function.

These models were compared to the equivalent ATP and redox profiles of the wild type model

(WT) when optimized for maximal biomass yield. Under aerobic conditions, solutions for the

engineered models displayed smaller magnitude fluxes for ATP synthesis and consumption

than WT (Fig 3A), in line with a lower requirement for ATP by the product pathways given

that the backbone route towards butanol production is ATP neutral. In the absence of O2,

however, the ATP production levels were similar for all models apart from BuOH-2 and fas-

BuOH, which also presented the lowest yields (Fig 3A). Under both aerobic and anaerobic

conditions, solutions for the engineered models showed no biomass accumulation. For

BuOH-0, one of the highest yielding butanol models, more than half of the generated ATP

went into the waste category, specifically being burned via the ATPM reaction (S4 and S5

Tables). All butanol models relied on the glyceraldehyde-3-phosphate dehydrogenase and

pyruvate dehydrogenase reaction (PDH) for the supply of redox. The PDH reaction is known

to provide the extra redox needed for butanol production [20]. As illustrated in Fig 2, PDH is

labelled as ‘waste’, because NADH formation contributes to the loss of carbon through CO2

release (hence the positive value observed for NAD(P)H waste under aerobic conditions,

reaction. Co-factor surplus, alternatively, is used to describe any co-factor being produced or released by a pathway. NAD(P)H surplus is indicated as positive NAD(P)H

released by the pathway (subsequently from NAD(P) going into the reaction). CP–Core Pathway; ACP–acyl carrier protein; AtoB–acetyl-CoA acetyltransferase; AdhE2 –

aldehyde alcohol dehydrogenase; NphT7 –acetoacetyl-CoA synthase; TPC–acyl-ACP thioesterase; CAR–carboxylic acid reductase.

https://doi.org/10.1371/journal.pcbi.1008125.g001

Table 1. Summary of key features of the modified E.coli models used in this study. We have indicated model names, alongside their introduced reactions, target chem-

ical, corresponding objective function (as per reaction ID), total number of model reactions and metabolites, and also the ATP and NAD(P)H pathway coefficients, calcu-

lated as the sum of reaction stoichiometry coefficients of all introduced reactions from acetyl-CoA to the final target. CP—Core Pathway.

Model name Introduced pathway Target Objective Function Metabolites Reactions Degrees of freedom ATP NAD(P)H

WT biomass biomass 63 77 14

BuOH-0 AtoB + CP + AdhE2 butanol BTOH_sink 70 85 15 0 -4

BuOH-1 NphT7 + CP + AdhE2 butanol BTOH_sink 72 87 15 -1 -4

tpcBuOH AtoB + CP + TPC7 butanol BTOH_sink 71 86 15 -1 -4

BuOH-2 NphT7 + CP + TPC7 butanol BTOH_sink 73 88 15 -2 -4

fasBuOH Butyryl-ACP route (FAS) butanol BTOH_sink 77 91 14 -2 -4

CROT AtoB + CP crotonic acid CROAC_sink 68 83 15 0 -1

BUTYR AtoB + CP butyrate BTAC_sink 69 84 15 0 -2

BUTAL AtoB + CP butyraldehyde BTAL_sink 69 84 15 0 -3

https://doi.org/10.1371/journal.pcbi.1008125.t001
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Fig 3A, yellow). However, it simultaneously supplies the target pathway a key limiting factor,

NADH, which is essential to optimize flux towards butanol production.

All metabolic pathways with the same end-product will have the same net redox require-

ments unless there is a change in non-target products (e.g. fermentation products, biomass).

However, we observed considerable variation in NAD(P)H categories between models, both

under aerobic and anaerobic conditions. Examining individual reactions (S2 and S3 Tables

and S1 Fig), we noticed that the TPC route in models tpcBuOH, BuOH-2 and fasBuOH

included a carboxylic acid reductase reaction that consumes 1 mol NADPH and produces 1

mol AMP from ATP, causing the coupling of electron metabolism with energy metabolism. As

a result, we observed (1) 18.8%, 18.2% and 23.3% of total NAD(P)H was produced by the PPP

resulting in a higher yield of NADPH per glucose and (2) activation of the ADK1 reaction to

recycle AMP.. Even though the butanol pathways all have the same demand for electrons, they

have differing requirements for ATP. Homeostatic adjustments to the different ATP require-

ments resulted in changes in metabolism influencing also NAD(P)H. Moreover, although the

flux through PPP was lower under anaerobic conditions relative to aerobic for models BuOH-

2 and fasBuOH, flux through PPP surprisingly increased for tpcBuOH under anaerobic condi-

tions. Further differences in the CBA redox profiles may arise from the fact that flux may or

may not be directed via co-factor-dependent routes (e.g. PFL (electrons channelled into H2 or

excreted formate under anaerobic conditions) vs. PDH (electrons channelled back into NAD+

as per S2 and S3 Tables), a concept known as ‘degeneracy’ or ‘genetic buffering’, brought by

identical reactions coded by different genes that constitute alternative yet functionally overlap-

ping pathways [21].

More generally, it was also observed that in order to cater to the increasing demands for

ATP across the butanol pathways, the systems simply produced more net ATP, as depicted by

the steady increase in ATP production along the x-axis (e.g. compare BuOH-2 with BuOH-0

on Fig 3B, blue). In contrast to these observations, the butanol precursor models (CROT,

BUTYR and BUTAL), which did not demand ATP and only partly involved the Core Pathway,

simply produced less ATP and also less NAD(P)H. We asked ourselves, is bacterial metabolism

really this flexible? I.e. is the range of flux solutions predicted by stoichiometry-based model-

ling greater than what is possible in reality?

Fig 2. Toy illustration of ATP and NAD(P)H reactions and reaction categories accounted for by the CBA protocol.

(A) All reactions in the E.coli Core Model that directly contribute to the intracellular levels of ATP and NAD(P)H pools

(blue or yellow circle, accordingly). Arrows pointing inwards on the left display reactions leading to ATP or NAD(P)H

build-up (i.e. co-factor production), while arrows pointing outwards on the right show reactions that drain the co-factor

pools (i.e. co-factor consumption). The thickness of the arrows represent the varying fluxes of these reactions. The CBA

protocol identifies all co-factor related reactions producing and/or consuming ATP or NAD(P)H, it records their fluxes

and distributes them across five core categories: (1) co-factor production, (2) biomass production, (3) waste release, (4)

cellular maintenance and (4) target production (this category is target product specific). (B) Theoretical example of how

the classification of ATP reactions is handled by the CBA protocol. Co-factor fluxes (here illustrated by the varying arrow

thickness) are dependent on the co-factor stoichiometric coefficient and flux calculated by FBA. ATP production

accounts for all reactions that generate a positive ATP flux. The ATP waste category accounts for both ATP produced

during acetate production, but also ATP consumed in ATP-hydrolysing reactions (also known as ‘ATP burning’

reactions), such as ATPM and ADK1. ATP biomass includes the ATP flux consumed during biomass formation. The

ATP target category is pathway-specific, accounts for only those synthetic reactions introduced into the stoichiometric

model, and will lead to a positive or negative flux according to whether the synthetic pathway leads to the formation or

drain of intracellular ATP, respectively. If the synthetic pathway is ATP-neutral, the net value for this category will be zero.

ATP maintenance includes any ATP consumed in additional metabolic activities and not considered in the

aforementioned categories. (C) Theoretical example of how the classification of redox reactions is handled by the CBA

protocol, similarly to (B). The NAD(P)H waste category also accounts for reactions GND, PDH, AKGDH, ICDHyr, which

produce NAD(P)H but simultaneously release CO2, and reactions such as LDH_D and ADHEr that consume NAD(P)H

and release fermentation products. For categories including both positive and negative co-factor fluxes, the net is

calculated for that category. Figure design inspired by [38].

https://doi.org/10.1371/journal.pcbi.1008125.g002
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Fig 3. CBA-derived network co-factor usage profiles. After FBA optimization, the COBRA-based CBA protocol classifies ATP and NAD(P)H-related reactions

according to whether these co-factors were consumed or produced during biomass, waste, target production or cellular maintenance. All models were initially

unconstrained and simulated under both aerobic and anaerobic conditions. (B) ATP and NAD(P)H profiles under aerobic conditions; (C) ATP and NAD(P)H

profiles under anaerobic conditions.

https://doi.org/10.1371/journal.pcbi.1008125.g003
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The CBA pipeline highlights the underdeterminacy of FBA through co-

factor dissipation

The general metabolic cost for non-growth-associated energy requirements, ATPM (Eq 1), is

represented by an artificial reaction that breaks down ATP into ADP and Pi:

ATP! ADP þ Pi ð1Þ

In contrast to the wild type (measured at 7.6 mmol gDW-1hr-1 as per [22]), all models dis-

played a flux increase through either the ATPM or ADK1 reaction of up to 3-fold, ranging

between 7.6–25 mmol gDW-1 hr-1 under aerobic conditions (S2 Table). Up to 71.4% of the

total ATP produced was dissipated through these reactions alone, suggesting surplus energy in

many of the models. The ATP neutrality of the Core Pathway (Fig 1A) could be causing the

net ATP excess in these systems, as ATP is generated by substrate-level phosphorylation dur-

ing glycolysis in order to produce acetyl-CoA, the primary precursor for target production.

This results in an increased need to hydrolyse ATP in models including pathways with low or

no ATP demand. As the ATP demand of the synthetic pathways increased, the fraction of ATP

wasted by ATPM, or other ATP-burning futile cycles (Fig 4A), also gradually dropped (Fig

3A). The observation that artificially enforced ATP-hydrolysis can enhance product yield with

engineered E. coli [23] supports the idea that ATP availability influences the allocation between

biomass and other carbon-products.

Even under anaerobic conditions, where most models produced similar amounts of ATP,

the fraction of ATP wastage ranged between 13% to 66.6% (Fig 3B), indicating that models

with no or low ATP demands still dissipated surplus energy through ATP-burning reactions

or cycles (described further in the following section). We also noticed that any redox imbal-

ances in models tpcBuOH, BuOH-2 and fasBuOH were circumvented by the activity of NAD

(P) transhydrogenase THD2 (Eq 2):

THD2 : NADH þ NADP þ Hþ ! Hþ þ NADþ NADPH ð2Þ

The non-growth-associated dissipation of excess ATP, also referred to as ‘energy spilling’ or

‘ATP burning’, has been proposed as a principle for cells to handle energy surplus [24], but the

extent to which E.coli does so is less understood [25]. The reversible nature of ATP synthase

has also been suggested through the action of the rotational mechanism of the F1 subunit, but

only under stress conditions [26]. In the case of redox balance, transhydrogenase activity is

also known to be one of the various mechanisms to guarantee redox homeostasis [27]. Some

fermentative bacteria can also alter their net ATP production as they change their end prod-

ucts [24]. However, given the limited understanding of E.coli’s capabilities to dissipate surplus

energy [25], and earlier reports suggesting the flexible nature of stoichiometric models includ-

ing synthetic pathways that are co-factor imbalanced [28], these co-factor burning observa-

tions were suggestive of FBA having more flexibility than what would be expected in reality. In

contrast, based on observations from fermentation studies, the analysis by Dugar et al.

assumed that the cell achieves energy and redox homeostasis through biomass and glycerol

formation, respectively [5]. Left to its own devices, FBA did not resort to such solutions with

the core wild-type model.

Manual constraints of co-factor futile cycles leads to yield-efficient and

biomass-viable solutions

During the assessment of our case studies, we asked whether constraining the observed flexi-

bility of FBA would result in more realistic flux distributions. The first option was manual
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correction, with the assumption that non-growth associated maintenance requirements

reported by Varma & Palsson already captured the natural ATP dissipation levels that can

occur in the E.coli metabolic network [22]. Consequently, we constrained the ATPM reaction

of the engineered models to a maximum flux of 7.6 mmol gDW-1 hr-1, the value observed in

the wild type when optimized for biomass formation.

When so doing, we noticed that the updated flux distributions (now ATPM-constrained)

would instead divert the surplus energy through high-flux, co-factor spilling reaction pairs,

also known as ‘futile cycles’. Examples of identified high-flux, futile cycles are shown in Fig 4A.

Futile cycles are pairs of anabolic and catabolic reactions that act in an antagonistic fashion,

consuming either ATP or NAD(P)H through one reaction whilst phosphorylating or reducing

a particular reactant, and a complementary reaction that regenerates the initial metabolite to

close the loop [24]. Reactions like phosphoenolpyruvate carboxylase (PPC) and phosphoenol-

pyruvate carboxykinase (PCK) can combine to form a futile cycle that potentially dissipates

ATP [29, 30, 31], but this is highly likely to be conditional, as observed by Yang and colleagues

when varying the dilution rate [29], or lead to an increase in biomass yield due to higher ATP

production rather than less ATP turnover [32, 33]. Even when over-expressed, the potential

antagonistic activity between pyruvate kinase (PYK) and phosphoenolpyruvate synthase in E.

coli did not result in any significant futile cycle [34]. It has now become apparent that futile

cycles are tightly regulated to prevent energy waste [24, 25].

The in silico cycles that dissipated the cofactor imbalance previously satisfied by upregula-

tion of ATPM also involved the transhydrogenases THD2 and/or NADTRHD, and redox-

driven reactions linking Glycolysis, PPP and the TCA cycles [35]. Like a whack-a-mole, with

each constrained cycle appeared another. In a stepwise manner, new futile cycles were identi-

fied by directly comparing the flux distributions of the engineered models to that of the wild

type (Fig 4B). After cycle detection, the non-cofactor-consuming reaction was capped by limit-

ing its upper or lower bound according to the maximal flux value observed for the same reac-

tion in the wild type (Fig 4C). This also meant that if the corresponding reaction was inactive

in the wild type, the flux of the same reaction in the engineered system would be set to zero.

This iterative, manual curation was repeated, followed by optimization and flux distribution

evaluation until no more futile cycles were observed (Fig 4D). All reactions considered during

manual constraining are included in S6 Table.

Biomass production competes for cellular resources against the biosynthetic pathways. In

addition to energy or redox, biomass production also involves the synthesis of many other

metabolites, so biomass production will reduce the maximum yield of butanol, which would in

principle contradict the assumption of optimal yield under pFBA. However, the manually con-

strained models without any apparent futile cycles (Fig 5), and simulated to optimise target

production, resulted in solutions that channelled excess co-factors through the biomass equa-

tion. Under aerobic conditions (Fig 5A), 7 out of 8 engineered models yielded solutions that

led to both target and biomass accumulation. Under anaerobic conditions (Fig 5B), three of

the models yielded solutions that were fully balanced both in terms of ATP and NAD(P)H

through the use of fermentation product release only, and without any biomass production.

Here, biomass production appears not to be contradicting the optimisation principle, but

Fig 4. Identification and removal of futile cycles. (A) examples of ATP futile cycles identified in this study–pairs of cycling reactions in which ATP is

consumed through one reaction and the original metabolites are recycled through the pair reaction. (B) ATP-burning and high-flux futile cycles were

identified by directly comparing the engineered strain and the wild-type flux distributions. (C) The identified ATP-burning reaction or futile cycle was

constrained by limiting the upper bound to the maximal flux observed for the equivalent reaction in the wild type. (D) After optimization, the flux

distributions of the wild type and engineered system were compared and the next high-flux futile cycle would be detected and constrained accordingly (as

per C). Steps (C) and (D) were repeated until no more futile cycles were detected.

https://doi.org/10.1371/journal.pcbi.1008125.g004
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Fig 5. CBA-derived co-factor usage profiles after manual curation of the models and comparison between CBA-derived estimates and estimates calculated using

the method developed by Dugar et al. The engineered models were manually constrained to minimize high-flux ATP futile cycles as described in the text, and led to

the above (A) curated ATP and NAD(P)H CBA profiles under aerobic conditions and (B) ATP and NAD(P)H CBA profiles under anaerobic conditions. (C)

Comparison of bioproduction carbon yields determined using the calculations developed by Dugar et al and FBA. uDugar–unadjusted Dugar-derived estimates; uFBA–

unconstrained FBA (preliminary FBA results prior to applying any constraints); aDugar–Dugar-derived estimates after adjusting values according to ATP and NAD(P)

H imbalances; cFBA–curated FBA yield estimates, obtained after manually constraining the flux distributions.

https://doi.org/10.1371/journal.pcbi.1008125.g005
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instead placing an upper limit on the maximum yield achievable, which is in line with Dugar

& Stephanopoulos’ suggestion that biomass is used as a sink for energy surplus to achieve met-

abolic balance, at the expense of product yield.

From a biotechnological perspective, an engineered organism having no ATP or redox flux

consumed in a biomass reaction would be considered the most balanced, as all the key

resources (ATP and redox) are utilised by the target biosynthetic pathway. In this respect,

BuOH-1 appears to have the most balanced pathway after applying manual constraints as it

has the highest carbon yield (64.43%) and lowest biomass yield. In reality, some biomass accu-

mulation is clearly essential in all strains in order to synthesise the biocatalyst in the first place.

The tpcBuOH, BuOH-2 and fasBuOH models, which included butanol pathways with the

highest ATP demands (Table 1), displayed an AMP imbalance in the TPC7 pathway, conse-

quently lowering the yield to 56.33%, 61.33% and 51.07%, respectively. In these cases, 21%,

22.6% and 16.6% of the total ATP was used for AMP recycling through ADK1 (S1 and S7

Tables), so the metabolic network flux distribution required further readjustment to produce

enough ATP for target production and maintenance, further altering the redox balance along

the way. These results illustrate that the more intertwined the imbalance of a synthetic pathway

is, the more the host needs to sacrifice a larger proportion of its energy budget to reach balance

at the expense of product yield. This phenomenon was previously suggested by Weusthuis

et al., who coined the concept ‘incomplete oxidation’ [36]. The methodology of Dugar and Ste-

phanopoulos [5], which states that ATP-neutral or requiring pathways are more efficient, is

only confined to pathway potential (i.e. it excludes a network-wide analysis) and does not

account for the adjustment of additional co-factor imbalances. In contrast, the CBA protocol

illustrates that a higher ATP (or redox) demand by the synthetic pathways may not always

translate into higher productivity, because the host network then needs to accommodate the

increased ATP demand by the synthetic pathway, with subsequent knock-on effects. For exam-

ple, an imbalance in ATP homeostasis is typically solved by changes in the flux of pathways

that involve electron transfer [8]. In contrast to previous studies that have studied the behav-

iour of co-factors in isolation [5, 37, 38], the CBA protocol strongly suggests that ATP and

NAD(P)H balancing cannot be assessed in isolation from each other, or even from the balance

of additional cofactors, such as AMP and ADP.

FBA is an effective network-wide alternative to existing single-pathway

cofactor balance assessments

We were interested to investigate whether CBA could provide a more complete balance assess-

ment than existing methods. Using the calculations published by Dugar et al. [5], the biosyn-

thetic capabilities of the butanol and butanol precursor pathways were calculated. These yield

and efficiency metrics were obtained using the pathways’ NAD(P)H demand, product release,

and ATP, NADH and CO2 surplus coefficients between their initial building block (i.e. acetyl-

CoA), and their final target (S11 and S12 Tables). Final estimates are shown on Table 2.

Fig 5C displays a comparison between the above estimates (unadjusted pathway yield esti-

mates, known as YP in [5] but here labelled as uDugar, and adjusted estimates after accounting

for redox, CO2 and ATP imbalances, known as YP,G,X in [5] but here labelled aDugar) and our

CBA estimates (before and after constraining high-flux futile cycles), all normalized to the glu-

cose uptake flux.

The method developed by Dugar et al. accounts for 2 net ATP and 4 NADH produced dur-

ing glycolytic catabolism prior to target biosynthesis. Thus, this was accounted for in our cal-

culations, given that the primary precursor for all pathways was acetyl-CoA. The available

redox can then be directly used to produce 1 mol of butanol, or precursors thereof. Because
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the synthetic pathway introduced into model BuOH-0 has no ATP demand, there is a +2 ATP

imbalance under this framework’s assumptions. BuOH-1 is the most yield efficient solution

both under CBA and Dugar frameworks. In line with their suggestions [5], this solution

includes a synthetic pathway that is both ATP-requiring and diverts the least co-factor surplus

towards biomass production (Fig 5A), yielding the highest butanol production while diverting

the least amount of energy towards waste and/or futile cycles.

We noted a discrepancy in solutions from tpcBuOH, BuOH-2 and fasBuOH. Under the

Dugar framework, these pathways exhibited an NADH surplus of up to 2 mol, so the maximal

theoretical yield is penalized twice: it is first adjusted for any redox and CO2 imbalance, then

adjusted once more to account for any ATP imbalance. With CBA, however, both redox and

ATP imbalances can be systematically addressed, as both co-factors are needed for the biomass

reaction to carry any flux at all. Furthermore, the need for these solutions to recycle AMP and

address NAD(P)H demand are handled by fine tuning the wider metabolic network to render

both the pathway and the entire system at balance, so the impact on the final theoretical yield is

lower. Here, the limitation of Dugar et al. becomes clear: they allow for only one possibility to

address each potential imbalance: excess ATP can only be resolved via biomass production,

whilst excess NADH is consumed by a glycerol sink. Similarly, Dugar et al. penalize models

CROT, BUTYR and BUTAL because they present both ATP and redox surplus. In the case of

fasBuOH, this analytical method cannot account for the pathway’s dependence on fatty acid syn-

thesis (FAS), so these reactions must be manually accounted for if we are to effectively consider

the additional ATP and NAD(P)H requiring pathways ahead of malonyl-ACP production [39].

We conclude that, although both methodologies report similar unadjusted theoretical yields

for all models, and both methodologies agree on the best performing pathway, the CBA proto-

col provides a more complete depiction on the metabolic potential of pathways and the limits

they may pose on a biological network upon implementation. Recycling of co-factor by-prod-

ucts, co-factor maintenance reactions and the tight coordination between different subsections

of metabolism are examples of very interesting observations we can make with the CBA proto-

col that we would otherwise be unable to account for under alternative methods.

Evaluation of alternative methods to reduce futile co-factor cycles

In the present work, single linear optimizations were utilised, however the models were mostly

underdetermined. We assumed that the more constraints from known biochemical principles

that were added to the model, the narrower the range of phenotypes would be. Previously, it

was shown that high-flux futile cycles and biomass limitations could be addressed through

Table 2. Maximum yield (YE and YEa), pathway yield (YP), adjusted pathway yields (YP,G and YP,G,X) and pathway efficiency (η) of all butanol and butanol precur-

sor pathways calculated using the stoichiometric and energetic calculations proposed by Dugar et al. [5]. Maximum yield (YE) is the maximum amount of product

that can be produced from the substrate. YEa indicates the maximum yield in mol product/mol substrate. Pathway yield, YP, is pathway-specific and calculated from path-

way stoichiometry. YP,G is the adjusted pathway yield once any excess redox is depleted using an electron sink (i.e. glycerol). YP,G,X is the adjusted pathway yield after any

excess ATP is diverted towards biomass formation. η is the ratio between YP,G,X and YE.

Pathway YE YEa YP YP,G YP,G,X η

AtoB + AdhEr route 1.000 0.411 1.000 1.000 0.844 0.844

NphT7 + AdhEr route 1.000 0.411 1.000 1.000 0.915 0.915

AtoB + TPC7 route 1.000 0.411 0.923 0.583 0.365 0.365

NphT7 + TPC7 route 1.000 0.411 0.923 0.571 0.379 0.379

FAS + TPC7 route 1.000 0.411 0.857 0.383 0.191 0.191

AtoB route (CROT) 1.333 0.637 1.000 0.395 0.161 0.121

AtoB route (BUTYR) 1.200 0.587 1.000 0.500 0.247 0.206

AtoB route (BUTAL) 1.091 0.437 1.000 0.667 0.415 0.381

https://doi.org/10.1371/journal.pcbi.1008125.t002
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manual curation of carefully selected reactions (Fig 4). In this section, we asked whether a sim-

ilar outcome could be obtained by other approaches, including (1) ’loopless’ FBA [40] (2)

‘Minimization Of Metabolic Adjustments’ (MOMA) method for predicting gene knock-out

phenotypes [14] and by (3) constraining the model with flux data from 13C-MFA [41].

We first implemented the COBRApy ‘loopless_solution’ function, however, this did not

eliminate the futile co-factor cycles (S2 Data File). Alternatively, we asked whether we could

use flux data from Long et al. as lower and upper bound constraints in our models. Long et al.

evaluated flux responses to 20 single-gene perturbations of upper central metabolic carbon

metabolism in Escherichia coli [41]. Given that the stoichiometric model used for fitting their

data is similar to the E.coli core model, and that the study involved direct knockouts of glyco-

lytic reactions, this dataset provided a sound basis for comparison. First, in silico models of

each single knockout evaluated in Long et al. were optimized using MOMA [14] with the wild

type E.coli solution as a reference, capturing the flux of each CCM reaction measured by Long

et al. This resulted in the generation of an in silico flux variability range (hereinafter referred to

as MOMA range, S15 Table) for 15 reactions from CCM. This was compared to the ranges in

flux variability observed for the same reactions in both wild type and knockout strains as deter-

mined by 13C Metabolic Flux Analysis (MFA) [41] (S13 Table) and FBA-based FVA [19] (S14

Table). Ten out of fifteen and twelve out of fifteen reactions displayed a greater variability

range in silico (FVA and MOMA, respectively) compared to that measured with 13C-MFA

(S13–S15 Tables). The MFA data indicated that some reactions were more “plastic” (i.e. more

flexible, able to change flux more widely according to changes in demand), such as PFK,

GAPD and PGK in glycolysis, whilst other reactions were more “rigid” (i.e. showing no or

very little change in flux, such as ME1, ME2 and PPCK (ranges of 1.3)). Interestingly, some of

the reactions that were rigid in reality were predicted to display wide flux ranges using both

FVA (S1 Table) and MOMA (Fig 6A and S15 Table). These rigid reactions were also com-

monly involved in high-flux futile cycling in the unconstrained engineered models, very likely

stemming from the underdeterminacy of the unconstrained models.

The MFA flux ranges were also implemented as upper and lower bound constraints for the

same reactions in the engineered butanol models followed by optimization using the CBA

algorithm (Fig 6B and 6C), in an attempt to evaluate whether this could minimize the need for

manual capping of futile co-factor cycles. The use of MFA flux constraints was not sufficient to

eliminate all co-factor dissipation in the engineered models, and MFA-based constraints did

not result in any biomass formation. ATP burning through ATPM was still present in all solu-

tions, with the exception of BuOH-2 and fasBuOH (S16 Table). If experimental constraints

were also combined with manual capping of the ATPM maintenance reaction and FBP (and in

the case of tpcBuOH also PPCK) following the manual curation procedure outlined earlier

(Fig 4) (S17 Table), the predicted maximum target product yield was markedly reduced and in

most models except for BuOH-0 and BuOH-1 they were similar to that predicted with the

Dugar method (Fig 6B). We concluded that MFA-based constraints is not an ideal replace-

ment for manual whack-a-mole futile cycle capping.

Co-factor demand sensitivity analysis and the identification of “optimal”

co-factor balance

The CBA analysis seemed to suggest that models having the least amount or no flux towards

biomass are the most balanced ATP and redox-wise. For example, the manually curated

BuOH-1 model had the least amount of futile cycling and ATP burning, the highest butanol

yield and lowest biomass yield (Fig 5). Is this the optimum or could the catalytic system be

improved even further? To better understand the effect of co-factor balancing on product
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yield, a sensitivity analysis was carried out in which the demand for ATP and NAD(P)H was arti-

ficially varied. Such an approach could also potentially be used to generate a metric indicative of

the co-factor imbalance in each model. The co-factor sensitivity analysis was applied to the manu-

ally-curated, aerobic, butanol models BuOH-0, BuOH-1, tpcBuOH and fasBuOH, by introducing

an artificial NADH and ATP sink/generator that modifies the pathway’s ATP and NADH stoi-

chiometric coefficients, to simulate pathways with both co-factor surplus (excess ATP/NADH

produced by the target pathway) and co-factor demand (ATP/NADH going into the pathway).

The resulting 3D landscapes describe the impact of changes in co-factor demand on prod-

uct yield under aerobic conditions (Fig 7). Under aerobic conditions, models BuOH-0 and

BuOH-1 could withstand growing pathway ATP demand and redox surplus by forming a pla-

teau at a theoretical carbon yield of 66.67% (Fig 7A and 7B), a behaviour associated with more

robust systems [42]. These two pathways exhibit high glycolytic flux under aerobic conditions

and the increasing demand for ATP is satisfied by higher respiration thanks to the increasing

redox availability. The original synthetic pathways in these two engineered systems reached

carbon yields of 58.53% and 64.47%% (Fig 7), but optimal co-factor ratios boosted the yield by

8.14% and 2.2%, accordingly. The highest biomass rates were recorded in the presence of both

growing ATP and NADH surplus, at the expense of butanol production.

The tpcBuOH and fasBuOH models displayed limited capability to accommodate any

change in co-factor demand, thus forming a cliff and causing a drop in product yield (Fig 7C

and 7D). Both of these CAR-dependent models have high ATP demand, as AMP needs to be

recycled via an ATP-consuming ADK1 reaction. They also have a high requirement for

NADPH, resulting in increased flux through the Pentose Phosphate Pathway. As so referred in

[42], these more unstable models (tpcBuOH and fasBuOH) achieved carbon yields of 56.43%

and 51.1% respectively, without the artificial co-factor variation, but by manipulating their co-

factor demands the maximal carbon yields increased up to 61.3% and 56.67%, accordingly.

These observations suggest that if the sweet spot for optimal balance between the introduced

pathway and host metabolism is small, it reduces the chances that a high-yielding integrated

combination of pathway and host cell metabolic network can materialise. It doesn’t exclude

the possibility of high yield, but it makes it less likely.

These results suggest that it would be possible to determine a stoichiometrically “optimal”

ATP/NAD(P)H ratio for each pathway. Knowing this, pathway engineering can be theoreti-

cally guided both in terms of selecting the optimal host strain background and by indicating

the co-factor robustness of the pathway and likelihood that high yield is achieved. This infor-

mation opens up a new horizon for further metabolic engineering adjustments that can poten-

tially lead to more rapid implementation of high-yielding production strains.

Conclusions

This study presents a stoichiometric-modelling-based Co-factor Balance Assessment (CBA)

protocol to monitor co-factor usage and its system-wide impact on cell behaviour and the

Fig 6. MOMA compared to MFA-derived estimates, carbon yield efficiencies and CBA co-factor profile comparison across unconstrained,

manually curated and experimentally constrained solutions. (A) Flux ranges calculated with MOMA (green) and Metabolic Flux Analysis

(orange stripes). MOMA ranges were estimated using the wild type solution as a reference and sequentially implementing the single-gene

knockouts studied by Long et al. (2019) [46], with biomass formation as the objective function. MFA ranges were extracted from a pre-existing

dataset (Long et al., 2019), using a Python algorithm to select the minimal and maximal flux ranges.(B) Carbon yields of butanol and butanol

precursor models, compared across all approaches evaluated in this study: unconstrained pFBA (labelled ‘FBA’); manually curated pFBA

solutions with minimized high-flux futile cycling (labelled ‘cFBA’); experimentally-constrained solutions using MFA-derived flux data (labelled

‘mFBA’); experimentally-constrained solutions using MFA-derived flux data with further capping in co-factor cycling reactions (labelled

‘cmCBA’) (C) ATP (blue) and NAD(P)H (yellow) CBA-derived cofactor usage profiles compared across all approaches evaluated in this study

(labels identical as previously).

https://doi.org/10.1371/journal.pcbi.1008125.g006
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design of optimal catalysts. With this, metabolic engineering designs can be selected based not

only on the highest yield achievable but on knowledge of the stress imposed by co-factor

metabolism. Our CBA protocol describes co-factor (im)balance as the fraction of co-factor

diverted to biomass, maintenance or waste, instead of target production, and captures how

organisms may be limited by pre-existing redox and energy constraints.

Our results suggest that introducing cofactor-balanced pathways reduces the burden placed

on the rest of the metabolic network. They also indicate that ATP and NAD(P)H balance can-

not be assessed in isolation from each other, or from the balance of additional cofactors, such

as AMP and ADP. We evaluated two means whereby FBA models could be constrained to

reduce their flexibility. Even though manually constrained solutions had no apparent futile

cycles, it is vital that we remain prudent and do not forget FBA’s flexible nature and optimistic

estimates when using this in silico approach.

We also provide insights into the yield and co-factor profiles of optimally balanced strains

through a co-factor sensitivity analysis. Identifying the optimal balance is especially relevant

when narrowing down pathway variants, as identification of the most efficient and robust

pathway for target production becomes an essential step in the design approach. Our results

indicate that we can substantially increase target production if we modify the ATP and redox

demands of our introduced pathways. This information opens up a new horizon for further

metabolic engineering adjustments that can lead to better yields, whereby a synthetic build-up

of NAD(P)H/ATP, or alternatively a synthetic sink for NAD(P)H/ATP could be introduced

into the system to cater to the network-wide co-factor profile.

While our analysis uses butanol and butanol precursors as proof-of-concept, our CBA pipe-

line thrives on its ability to evaluate different stoichiometric models, target products, pathway

routes, strains, carbon sources and environmental and genetic conditions. It becomes a power-

ful way to inform engineers how to achieve optimal strain designs, as having knowledge of the

extent of co-factor imbalance can more accurately discriminate engineered systems that are

more balanced (and thus more productive) and indicate potential genetic manipulations that

will lead to the design of more efficient strains.

Materials and methods

All work described in this study was done using the Constraint-Based Reconstruction and

Analysis toolbox for Python (COBRApy version 0.13.3) [43] and Gurobi solver (version 5.5.0)

[44]. All scripts and functions extensively used in our analysis were run in the Python 3 envi-

ronment (version 3.7.4) [45].

Target catalysts

All simulations employed an Escherichia coli Core Model [15]. In order to enable butanol or

butanol precursor production in Escherichia coli, the following synthetic pathways were imple-

mented into separate copies of the E.coli Core Model, to yield stoichiometric models iDAG85,

iDAG87, iDAG86, iDAG88, iDAG91, iDAG83, iDAG84_butyr and iDAG84_butal. We assem-

bled 8 synthetic models and analysed a total of 9 models: (1) iDAG85 (referred to as BuOH-0

in this study), a butanol producer, includes the combination of reactions AtoB and AdhE2

Fig 7. butanol carbon yield (%) and biomass production rates (mmol gDW-1hr-1) of engineered E.coli strains in

response to changes in ATP and NADH demands. Each model represents a unique pathway variant for butanol

production, which has been manually curated and optimized for the selected objective under aerobic conditions. (A)

BuOH-0, comprised of route AtoB + AdhE2; (B) BuOH-1, including reactions NphT7 + AdhE2; (C) tpcBuOH, made up

of AtoB + TPC7; (D) fasBuOH, comprising reactions NphT7 + TPC7.

https://doi.org/10.1371/journal.pcbi.1008125.g007
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along with the so-called Core Pathway (CP) shown in Fig 1. It comprises a total of 85 reactions

and 70 metabolites and is ATP neutral; (2) iDAG87 (referred to as BuOH-1) produces butanol

via the ATP consuming reaction NphT7 [46]. BuOH-1 includes 87 reactions and 72 metabo-

lites; (3) iDAG86 (referred to as tpcBuOH), a butanol-producing pathway that integrates

enzymes AtoB and converts butyryl-CoA into butyraldehyde via a thioesterase and an ATP-

dependent carboxylic acid reductase reaction (referred to as TPC7 in Menon et al. [16]). This

model is made up of 86 reactions and 71 metabolites; (4) iDAG88, hereinafter known as

BuOH-2, which incorporates reactions NphT7 and TPC7 and includes 88 reactions and 73

metabolites; (5) iDAG91 (referred to as fasBuOH), an ACP-dependent butanol pathway that

relies on Fatty Acid Synthesis (FAS), a thioesterase to release butyric acid and an ATP-depen-

dent carboxylic acid reductase to generate the aldehyde. It is comprised of 91 reactions and 77

metabolites; (6) iDAG83 (labelled CROT in this study), which produces crotonic acid and is

made up of 83 reactions and 68 metabolites; (7) iDAG84_butyr (known as BUTYR), a butyrate

producer including 84 reactions and 69 metabolites; (8) iDAG84_butal (labelled as BUTAL),
which yields butyraldehyde and is made up of 84 reactions and 69 metabolites; and finally (9)

Wild Type, or WT, the version of the E.coli Core Model that excludes all reactions required for

butanol production and fatty acid biosynthesis, containing a total of 77 reactions and 63

metabolites.

All reactions were added as per COBRApy standards and have been detailed in S19 Table.

All engineered models included target-specific production, transport and sink reactions (reac-

tions that drain the final product out of the metabolic network) [8]. Models have been pro-

vided in SBML format and may also be replicated by running the file S1 Code in the specified

python environment.

Flux Balance Analysis (FBA)

All models were simulated using Parsimonious FBA (pFBA) for computing optimal pheno-

types [13]. pFBA is a bi-level optimization method that minimizes the total sum of flux whilst

optimizing for the selected objective using FBA. Net flux is minimised subject to optimal bio-

mass as follows:

min
Xm

j¼1

virrev;j

s:t:max vobjective ¼ vobjective;lb

s:t:Sirrev � virrev ¼ 0

0 � virrev;j � vmax

Where m = number of irreversible reactions in the network; Sirrev = stroichiometric matrix;

virrev = non-negative, steady-state flux; vobjective = approximates the theoretical objective; and

vobjective,lb = lower bound of the objective rate. This is followed by the maximization of target

per unit flux, by optimizing the ratio of the objective to the square of the total network flux:

max
vobjective
Pn

i¼1
v2
i

s:t:Sxv ¼ 0
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vmin < vi < vmax

Modified models were optimized for the drain of butanol or butanol precursor, whilst the

wild type had maximal growth rate selected as the optimization principle.

All models were initially unconstrained. Prior to optimization, the model was pre-processed

to set the primary carbon source, glucose, constrained to a maximum intake rate of -10 mmol

gDW-1 hr-1. Constraints necessary for computational minimal media conditions were set as

default [47]. The presence or absence of oxygen was also modulated to run our simulations

under both aerobic and anaerobic conditions. In aerobic simulations, the oxygen uptake rate

was set to a maximum of 10 mmol gDW-1hr-1. Alternatively, oxygen uptake was constrained

to zero under anaerobic conditions.

Co-factor Balance Assessment (CBA) pipeline construction

The algorithm developed for co-factor balance assessment (CBA) was written as a Python func-

tion, using the COBRApy package. It was built as a single function, found in file S2 Code, and

can be called out to calculate the sum of all energy and redox synthesis fluxes and divides it

into four categories:

• Biomass production: energy and redox consumed during biomass formation

• Target production: total energy and/or redox consumed or produced during target optimi-

zation (this is target-specific)

• Waste release: total energy burned to produce ADP/AMP, or energy and redox consumed

during the release of CO2 or fermentation of by-products.

• Cellular maintenance: energy and redox consuming reactions which are not accounted for

in the previous categories

Our CBA protocol relies on the following inputs: a stoichiometric model, a matching flux

distribution and a list of target reactions needed for target optimization. After FBA (or pFBA)

optimization, CBA uses the stoichiometric model as a source of co-factor stoichiometry infor-

mation. It matches the identified reactions to their corresponding flux estimate to determine

whether ATP or NAD(P)H is being either produced or consumed, by calculating a co-factor

flux score (CFS):

CFSi;j ¼ Si;j x vj

where; Si,j i = stoichiometry of co-factor i (ATP or NAD(P)H) in reaction j; vj = reaction flux

For net ATP and NAD(P)H production (Net ATP or NAD(P)H produced within CCM), all

positive CBSs are summed up. Then, the co-factor fluxes corresponding to each category are

calculated and adjusted as per Fig 8. The final scores consist of summed flux values that

describe the overall “weight” of each category.

The CBA protocol relies on the following assumptions. CBA solely tracks ATP and NAD

(P)H metabolism, while all other co-factors are excluded from the analysis. For modelling pur-

poses, it assumes that NADH and NADPH are interchangeable, even though in reality NADH

and NADPH are not biologically equivalent. We assume in this work that the above categories

are the main categories classifying co-factor metabolism, whilst other co-factor assisted biolog-

ical functions such as intracellular and extracellular transport, cell motility, cell division, stress,

gene and protein ex- pression, are excluded from analysis (or believed to be considered within

the maintenance category, if at all).
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CBA simulations reported in this study may be replicated by running S3 Code.

Flux Variability Analysis (FVA)

Flux variability analysis was used to calculate the minimum and maximum allowable flux val-

ues for each reaction involving ATP and/or NAD(P)H within the Core stoichiometric model

of E.coli [19]. The feasible range of reaction fluxes by maximization and minimization of each

reaction flux was calculated at 99% of the maximal value of the objective function. The mathe-

matical formulations for minimization and maximization problems are show below:

Maximization:

maxvj

Subject to Sij�vj ¼ 0

cTv ¼ Zobjective

vmin
j � vj � vmax

j

Minimization:

minvj

Subject to Sij � vj ¼ 0

cTv ¼ Zobjective

vmin
j � vj � vmax

j

Where Zobjective is the value of the objective function. If n is the number of fluxes, then 2n

LP problems are solved under FVA.

Implementation of constraints derived from 13-C labelling experiments

Fluxomic data derived from C13-labelling experiments by Long et al. was used [41].

Experimental data pre-processing

Prior to use, their original dataset was formatted as follows: First, (i) only those reactions pres-

ent in the Core stoichiometric model of E.coli were kept, and families of reactions (e.g. pfka

and pfkb, which are represented by a single PFK reaction in the stoichiometric model) were

averaged to provide for a single reaction estimate; and (ii) the reference data (WT data) was

averaged to include a single flux value per reaction and. A total of 15 reactions remained in the

set. Finally, (iii) the data was normalized according to the recorded glucose uptake rates.

Fig 8. Components of Cofactor Balance Assessment (CBA) pipeline and summarised workflow. A stoichiometric model, flux distribution and a

list of target reactions are required to call the CBA function in the python environment. Stoichiometric models contain reaction information, such

as whether they consume or produce ATP and NAD(P). We used the E.coli Core stoichiometric model and the COBRApy package, and selected

reactions were implemented to build the path to novel products. CBA classifies reactions in the model according to whether they are involved in the

consumption or production of NAD(P)/ATP, assigns them a cofactor balance score, and groups them into categories as represented above. Finally,

the total balance per category is calculated the total sum of flux and adjusted to provide a final value for each category. The result is a profile

displaying the fraction of the total cofactor produced involved in maintenance, biomass, target and waste production.

https://doi.org/10.1371/journal.pcbi.1008125.g008
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Constraint implementations derived from experimental datasets

The formatted Long dataset (S1 Data File) was used as an input to generate upper and lower

bound constraints. This dataset includes fluxes measured for selected central carbon metabo-

lism reactions (shown as rows), in a series of knockout strains, where the knocked-out reac-

tions are shown as columns. We assumed that for each reaction measured in this study, their

corresponding fluxes in each strain represented the catalytic range for that particular reaction.

Using a python script algorithm to extract the maximal and minimal flux values recorded for

each reaction, we built a database (a python dictionary) of minimal and maximal values, which

were then implemented as upper and lower bound constraints for the respective reaction in

the metabolic network. Implementation of constraints may be replicated by running S4 Code

in the specified python environment.

Development of MOMA ranges

To compare the MFA data, we simulated each knockout strain in Long et al. using Minimiza-

tion of Metabolic Adjustment (MOMA) [14], using the wild type solution as reference.

MOMA searches for a vector x that presents minimal distance from a given flux vector L so

that the Euclidean distance is minimized as:

min f ðxÞ ¼ LðxÞ þ
1

2
xTQx

Where L = vector of length N; Q = NxN matrix defining the linear and quadratic part of the

objective function; xT = transpose of x; x = vector with minimal Euclidean distance from L

For each simulated knockout strain, the reactions corresponding to the same reactions esti-

mated in Long et al. were recorded. This produced a reaction flux range equivalent to that

derived using the experimental data.

Results may be replicated by running S4 Code in the specified python environment.

Cofactor ratio analysis

To improve the intracellular redox and energy status for butanol production (by increasing

and decreasing the availability of NAD(P)H and ATP), we created a landscape analysis that

assessed the system’s behaviour under pathway-specific (i) NAD(P)H and ATP overproduc-

tion, (ii) NAD(P)H and ATP consumption, and (iii) no redox or energy generation.

This was achieved y including an artificial ATP production step (Eq 4) into the existing stoi-

chiometry of the aldehyde reductase reaction (Eq 3), the final step in the butanol production

chain. Next, we looped through the reaction’s A(X)P and NAD(P) stoichiometries in a loop

that was followed by pFBA optimization, to produce a landscape recreating metabolic scenar-

ios from cofactor surplus (Eq 5), to no cofactor usage (Eq 6), through to cofactor demand (Eq

7). This method can be replicated by running the “cofactor_ratio_analysis.py” file in the speci-

fied python environment.

butyraldehydeþ NADH þHþ ! n � butanolþ NAD ð3Þ

butyraldehydeþ NADH þHþ þ ADPþ Pi! n � butanolþ ATPþ NAD ð4Þ

butyraldehydeþ X NADH þ X Hþ þ Y ADPþ Y Pi! n � butanol þ X NADþ Y ATP ð5Þ

butyraldehydeþ 0 NADH þ 0 Hþ þ 0 ADPþ 0 Pi! n � butanol þ 0 ATPþ 0 NAD ð6Þ
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butyraldehydeþ X NADþ Y ATP! n � butanolþ Y ADPþ Y Piþ X NADH þ X Hþ ð7Þ

For our purposes, we evaluated a range of -10 to 10 (consumption of -10 ATP/NAD(P) to a

co-factor surplus of +10). Every time the stoichiometry changed, we optimized for the selected

objective (butanol production).

Results may be replicated by running S5 Code in the specified python environment.

Implementation of Dugar & Stephanopoulos’ method

The calculations published by Dugar and Stephanopoulos [5] were applied to the synthetic

pathways under study (Fig 1), assuming a carbon feedstock of glucose and a glycolytic fermen-

tative process. Briefly, first, an energetic calculation of maximum yield (YE) was used to assess

the maximum amount of product that can be produced from the substrate, measured in moles

of product per mol of substrate (Eq 8). Next, a system of linear equations (Eqs 9–13), where

stoichiometric coefficients a, b, c, d and e (NADPH release, product yield, ATP release, NADH

release and CO2 release) were estimated for each catalyst and normalized per glucose carbon

atom, were used to then calculate pathway yield (YP, Eqs 14 and 15). YP was later adjusted to

account for pathway inefficiencies. Firstly, assuming that cells thrive to be redox-neutral, any

excess NAD(P)H is balanced using an electron sink (glycerol production) via Eq 16, to yield

YP,G. Finally, excess ATP is diverted towards biomass formation, using Eq 17. After these

adjustments, the final yield value, YP,G,X represents the highest possible yield, assuming there

are no competing pathways (Eq 18).

Ultimately, Pathway efficiency (η) is calculated by doing the ratio of YP,G,X and YE (Eq

19). Our target catalysts comprise more than one chemical reaction, so the Dugar method was

applied by calculating the net balance of ATP, redox agent and CO2 release for all carbon-car-

rying reactions from the original carbon source (glucose) to the end product.

YE ¼
YS

YP
ð8Þ

v1 ¼ � CH2O � aNADPH þ bProduct þ cATPþ dNADH þ CO2 ð9Þ

v2 ¼ � CH2Oþ 2NADPH þ CO2 ð10Þ

v3 ¼ � CH2Oþ 4:82ATPþ CO2 ð11Þ

v4 ¼ � CH2O �
1

3
ATP �

1

3
NADH þ CH8

3
O glycerolð Þ ð12Þ

v5 ¼ � CH2O �
a

1þ ε
ATPþ

1

1þ ε
CH1:83O0:56N0:17 Biomassð Þ þ

x
1þ ε

NADH þ
a

1þ ε
NADH

þ CO2ð13Þ

YP ¼ Y
v1

v1 þ v2 þ v3

ð14Þ
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YP ¼ Y
1

1þ a=2 � c=4:82ð Þjif c<0;elsec¼0

ð15Þ

YP;G ¼ Y
v1

v1 þ v2 þ v3 þ v4

¼ Y
1

1þ a=2þ d � c=4:82ð Þjif d� c<0;elsed� c¼0

� �
þ 3d

ð16Þ

x ¼
4ð1þ ε � kÞ

2
where k ¼ 4:2 ¼ degree of biomass reductanceð Þ ð17Þ

YP;G;X ¼ Y
v1

v1 þ v2 þ v3 þ v4 þ v5

¼ Y
ðaþ xÞ

ð1þ a=2Þðaþ xÞ þ cð3xþ 1þ εÞ þ dÞ3a � ð1þ εÞ
ð18Þ

Z ¼ YP;G;X=YE ð19Þ
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