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Abstract: Acoustic data are often used to describe bat activity, including habitat use within the
summer reproductive period. These data inform management activities that potentially impact bats,
currently a taxa of high conservation concern. To understand the relationship between acoustic and
reproductive timing, we sampled big brown bats (Eptesicus fuscus) and eastern red bats (Lasiurus
borealis) on 482 mist-netting and 35,410 passive acoustic sampling nights within the District of
Columbia, Maryland, Pennsylvania, Virginia, and West Virginia, 2015–2018. We documented the
proportion of female, pregnant, lactating, and juvenile big brown and eastern red bats within each
mist-net sampling event and calculated locally estimated non-parametric scatterplot smoothing
(LOESS) lines for each reproductive and acoustic dataset. We compared the peak in acoustic activity
with the peaks of each reproductive condition. We determined that the highest levels of acoustic
activity within the maternity season were most associated with the period wherein we captured the
highest proportions of lactating bats, not juvenile bats, as often assumed.

Keywords: acoustic sampling; bats; big brown bats; eastern red bats; Eptesicus fuscus; Lasiurus borealis;
mid-Atlantic; migration; reproduction

1. Introduction

Many North American bat species migrate from overwintering sites to summer habitat
in the spring, where females give birth to offspring. They then begin returning to overwin-
tering sites in late summer and early fall [1,2]. Big brown bats (Eptesicus fuscus) hibernate
in caves or anthropogenic structures, and in the summer, groups of <100 females form
maternity colonies usually in tree cavities or anthropogenic structures [3–5]. Eastern red
bats (Lasiurus borealis) typically migrate from southern overwintering areas within or south
of the Potomac and Ohio river valleys to summer habitat throughout the eastern United
States [6–8]. During the maternity season, eastern red bats normally day-roost in deciduous
tree foliage singly or in small numbers [6,8]. Early summer parturition allows juveniles
sufficient development time before engaging in migration and hibernation [9]. Species of
the Family Vespertilionidae typically become volant within 3–4 weeks of birth, though the
range is between 2 weeks and 2 months [10]. The timing of female’s hibernation emergence,
pre-volancy weather conditions, food resources, and maternity roost conditions impact
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the timing of juvenile volancy: warmer roosts reduce thermoregulatory constraints on
mothers and offspring, thus leading to shorter gestation periods and expedited juvenile
development [9].

Acoustic monitoring is able to record commuting, foraging, and social bat echolocation
call sequences, and these calls are often used as indirect measures of bat population
size. Passive acoustic monitoring is often used in lieu of mist-netting, as it has a higher
probability of detecting rare bat species than mist-netting surveys, which generally have
low capture rates relative to bat activity [11,12]. Acoustic monitoring has been used to
document bat species’ distributions and habitat associations, as well as within-night activity
patterns relative to weather and white-nose syndrome (WNS) impacts [13–18]. However,
the relationship between summer acoustic data and the timing of reproductive phases has
not been well studied.

Because of the current importance of using acoustics to monitor bats, our objectives
were to document bat reproductive timing in our mid-Atlantic study area and evaluate how
reproductive condition data were related to acoustically recorded echolocation call data.
We focused our study on big brown and eastern red bats, which are both prevalent within
the region, providing sufficient capture and acoustic data to make this comparison. We
predicted that peaks in acoustic activity would coincide with juvenile captures, reflecting
population increases within the sampled area.

2. Materials and Methods
2.1. Study Area

Our study area included federal (National Park Service, U.S. Forest Service, National
Aeronautics and Space Administration and Department of Defense) and state (Virginia De-
partment of Wildlife Resources, Virginia Department of Forestry and Virginia Department
of Conservation and Recreation) lands within the Coastal Plain, Piedmont, Blue Ridge, and
Ridge and Valley physiographic regions across the District of Columbia (D.C.), Maryland,
Pennsylvania, Virginia, and West Virginia (Figure 1). Mean growing degree days (days over
10 ◦C) for 1980–2010 ranged between <67 in south-central Pennsylvania and western-most
portions of Maryland, Virginia, and West Virginia, 67–100 for most of the study area, and
100–133 within a small southeastern portion of Virginia [19]. In general, temperatures were
negatively related to increasing elevation and/or distance from the Atlantic Ocean. The
western portions of the study area included large contiguous forests in mountainous areas
with karst geology, and the northern and eastern areas contained more developed land and
fragmented forest stands than did our more southern sites.

2.2. Methods

To collect reproductive condition data, we mist-netted between 2 May and 15 August
2015–2018 (Julian day 122–227; Figure 1). Because sampling occurred relative to the
particular needs of several independent studies [20–26], sample location selection, the
distribution of repeated surveys, and net effort varied greatly across the study area both
within and between years. Regardless of study, we placed 38 mm low-bag single-, double-,
and triple-high mist nets (Avinet Inc., Portland, ME, USA; Any use of trade, firm, or
product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government) along possible flight corridors or near water and avoided netting in
heavy rain or temperatures below 10 ◦C [14]. We captured and handled bats in accordance
with Virginia Tech Institutional Animal Care and Use protocol 14-014 and 16-240. For
each capture event (sample), we documented the species, age class (juvenile or adult),
reproductive condition, and sex of each bat [27], and we calculated the proportion of
pregnant, lactating, and juvenile big brown and eastern red bats captured per sampling
event [28]. We determined age class through inspection of epiphyseal ossification and
reproductive condition of females through palpation of the abdomen and condition of
mammary glands [29,30]. Proportion of pregnant and lactating bats was calculated when
adult female bats were captured, and proportion of juveniles was calculated when either
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adult or juvenile bats were captured. Nights with no captures of the species of interest were
excluded from analyses of that species’ reproduction. We reviewed the spatial distribution
of reproduction using simple plotting of dates with both geographic location and regression,
and we determined that reproductive timing was likely not related to summer capture
location (Supplemental Figure S1) [31].

Figure 1. Mid-Atlantic sampling sites where (A) reproduction and (B) call data were collected
between 2015 and 2018.

We collected passive acoustic data from 10 April to 8 September (Julian days 100–250)
in 2016–2018 (Figure 1). We used zero-crossing SongMeter (ZC, 2+, 3, and 4) and full-
spectrum SongMeter 4 acoustic recorders (Wildlife Acoustics, Inc., Concord, MA, USA)
to record echolocation calls from sunset to sunrise. Although most acoustic sampling
sites were within forested (n = 555), edge (n = 81), and wetland (n = 176) habitat, we also
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surveyed open and developed sites (n = 82). Where possible, we placed the passive detector
microphones at 3.66 m height on telescoping poles > 3 m from the bole of a tree (Loeb et al.,
2015). To identify echolocation pulses to species, we used the Kaleidoscope Pro Bats of
North America 4.2.0 classifier (Wildlife Acoustics, Inc., Concord, MA, USA) with U.S. Fish
and Wildlife Service-sanctioned settings for acoustical monitoring and estimated file-level
correct identification of 70% for both species [32,33]. Similar to the mist-netting capture
data, acoustic sample site selection and sampling duration at each site within and between
years were based on individual project criteria and, therefore, did not occur proportionally
with net effort in all areas (Figure 1).

Similar to Francl et al. [28], we used Program R to calculate a locally estimated scat-
terplot smoothing (LOESS) line for the proportion of pregnant, lactating, and juvenile big
brown and eastern red bats captured each Julian day [34]. We calculated the mean number
of echolocation calls per Julian day for big brown and eastern red bats, and calculated the
LOESS curve for both datasets. To determine peak maternity season activity, we identified
the inflection point, or the Julian day, where the trend curve reached the highest asymptote,
for each regression line. We used Julian day for our calculations, but report findings as
calendar day in text.

3. Results

We captured bats between 30 April and 15 August (2015 = 7 May–7 August,
2016 = 8 May–12 August, 2017 = 30 April–10 August, 2018 = 5 May–15 August). We docu-
mented 1849 big brown bats and 824 eastern red bats. We documented adult female big
brown bats on 219 nights (pregnant = 80 nights, lactating = 70 nights), and 340 adult female
eastern red bats on 184 nights (pregnant = 51, lactating = 54 nights). We captured juvenile
big brown bats on 82 nights and juvenile eastern red bats on 56 nights.

The sex ratio among captures appeared to be relatively stable throughout the sampling
period; although, the small increase in the proportion of female big brown bats captured
later in the season may reflect an earlier departure by some males. We captured lactating
big brown bats between 23 May and 22 July and lactating eastern red bats between 28 May
and 23 July. We captured lactating big brown and eastern red bats in conjunction with
pregnant and juvenile bats of both species; although, pregnant eastern red bat captures
were rare after juvenile volancy (Figure 2). We documented the first big brown bat juvenile
on 22 May (2015 = 28 June, 2016 = 5 July, 2017 = 7 July, 2018= 22 May), and the last pregnant
female on 7 August. After the capture of a juvenile big brown bat on both 22 and 23 May
within Maryland (Ft. George G. Meade), the next juvenile capture did not occur until
28 June. Starting 6 July, we documented juvenile big brown bats almost daily. We captured
the first juvenile red bat on 7 July (2015 = 7 July, 2016 = 7 July, 2017 = 9 July, 2018 = 12 July),
and the last pregnant female on 6 August, 13 nights after the previous capture of a pregnant
bat. There were only two pregnant bats captured after 20 June.

We gathered acoustic data from 35,410 site-nights between 2016 and 2018
(Supplemental Figure S2). Individual detector sites were sampled between 1 and 232 nights
(mean = 39.70 ± 45.93). Over the entire study, we identified 814,908 big brown and
194,994 eastern red bat call files on 20,885 and 12,983 nights, respectively. We noted rela-
tively higher big brown bat activity (calls and captures) within the D.C. area and eastern
red bat activity in the Blue Ridge and Ridge and Valley provinces. We observed lower
levels of acoustic call activity during late-summer than in the spring.
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Figure 2. The samples (circles) and locally estimated scatterplot smoothing lines for the proportion of
juvenile, pregnant, and lactating (A) big brown bats (Eptesicus fuscus; EPFU) and (B) eastern red bats
(Lasiurus borealis; LABO). Mist-net sampling was conducted within the mid-Atlantic region between
2015 and 2018. Circles reflect each sample where the proportion of lactating female or juvenile bats
was calculated.

The LOESS lines indicated that call declines began after 24 June for big brown bats
with means dropping below 28 calls per night after 3 July (Figure 3). Though year and
spatial distribution impacted observed patterns (Supplemental Figure S3) [31], the rela-
tive relationships of the asymptotes to reproduction were similar. Eastern red bat calls
exhibited a summer asymptote on 23 June, and declined below a mean six calls per night
on 17 July. Mean calls for both species plateaued mid-summer, and steep declines in
mean calls per night corresponded with a decrease in the proportion of pregnant bats,
an increase in the proportion of lactating bats, and before the emergence of most juve-
nile bats (Figures 2 and 3). After eliminating two outlier juvenile big brown bat captures
(22–23 May), the first juvenile capture did not occur until after the summer acoustic inflec-
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tion point, and we did not routinely capture juveniles until 12 nights after the acoustic
inflection point. The difference between the acoustic inflection point and the first juvenile
eastern red bat capture was 14 nights. The big brown and eastern red bat capture inflection
points were similar (pregnant = 30 and 31 May, respectively; lactating = 2 July and 29 June,
respectively; juveniles = 31 July and 7 August, respectively; and acoustic activity = 24 and
23 June, respectively). The acoustic inflection point for the entire study area was closest to
the lactation inflection point (8-night difference for big brown bats and 6-night difference
for eastern red bats) and furthest from the juvenile inflection points (37-night difference for
big brown bats; 45-night difference for eastern red bats).

Figure 3. Proportion of juveniles and lactating females (black diamonds, right axis) within each
sample and locally estimated scatterplot smoothing lines based on mean calls by Julian day (line, left
axis) for (A) big brown bats (Eptesicus fuscus; EPFU) and (B) eastern red bats (Lasiurus borealis; LABO)
within the mid-Atlantic region from 2015 to 2018. Black diamonds reflect each sample where the
proportion of lactating female or juvenile bats was calculated.

4. Discussion

The differences between lactation and juvenile inflection points (big brown bats = 29 days,
eastern red bats = 38 days) were comparable to periods between parturition and volancy
documented previously for both species [4,8]. The lactation inflection point for big brown
bats was similar to that observed by Francl et al. [28] in West Virginia, and the juvenile
inflection point was 8 nights earlier. In southwestern Virginia, Timpone et al. [35] docu-
mented juvenile big brown bats slightly earlier than our observations. Our eastern red
bat reproduction inflection points were very close to those found post-WNS in West Vir-
ginia [28]. We captured a pregnant eastern red bat 26 nights and a juvenile eastern red
bat 13 nights later than Timpone et al. [35], respectively. The timing of initial captures of
lactating eastern red bats was similar to those reported by Timpone et al. [35]; although, our
captures continued beyond their reported time frame. Some differences in the earliest and
latest captures between studies are attributable to sample size and sampling extent. The
likelihood of catching bats at a particular reproductive condition is related to the proportion
of bats currently in that condition. Therefore, greater netting efforts may be needed to fully
document reproductive ranges outside of peaks in the cycles [31].

Colder temperatures can increase gestation length due to a decrease in prey availability
and/or an increase in thermoregulatory energy requirements [9,36]. Therefore, results
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from a small number of colonies in similar environmental conditions will likely yield
a smaller range of parturition and volancy dates than results from a greater number of
colonies and/or colonies with more diverse habitat and roosting conditions. In contrast,
solitary-roosting bats, such as eastern red bats, may experience highly-variable individual
roosting conditions within a similar area.

The large temporal range of big brown bat pregnancies indicates high plasticity in big
brown bat reproduction regardless of location. The two earliest juveniles captured were in
a suburban portion of Maryland; however, these early captures were not representative
of the reproductive timing of other urban big brown bats. These juveniles may have been
attributable to the previous year, as has been rarely observed [37].

Our results indicate that for big brown bats, and to a lesser extent eastern red bats, there
is a period of overlap in which pregnant, lactating, and some juvenile bats are concurrently
volant, thus potentially contributing to acoustic activity peaks. However, our data indicate
that peak acoustic activity occurred before most juvenile captures. The LOESS line peaks
in acoustic activity corresponded more with the highest capture rates of pregnant and
lactating females in both species.

These results indicate a contradiction of assumptions of past research that has at-
tributed peaks in acoustic activity to juvenile volancy, i.e., a greater abundance of bats
flying, and indicative of successful reproduction [13,17]. The highest activity may be due
to energetic demands, as females approaching parturition or currently lactating engage
in longer and/or more frequent foraging bouts [9,38–43]. In Manitoba, Canada, female
hoary bats (Lasiurus cinereus) had longer foraging bouts when they had two offspring
versus one [38], and both eastern red bats and big brown bats often have more than
one offspring [4,8]. Maternity activity and/or colonies begin to disaggregate with juvenile
volancy, beginning migration or mating activities before hibernation [9]. Correspondingly,
we observed exponential decreases in acoustic activity as the proportions of lactating bats
decreased. These decreases occurred within periods that both the North American Bat
Monitoring Program and USFWS Indiana bat survey guidance suggest as appropriate
for listed eastern bats’ maternity-season surveys [14,18]. For a balanced spatial–temporal
sampling approach, we suggest that researchers review previous acoustic and reproduction
studies in their study area to determine when fall migration may occur. If no such data exist,
collecting data from multiple periods within the maternity season and evaluating post hoc
the beginning of call declines might indicate the onset of fall migration. The precipitous
declines in both adult captures and acoustic recordings likely indicate the beginning of
migration from big brown and eastern red bats commencing shortly after juvenile volancy.
This conclusion is supported by Walters et al. [44], who observed adult red bats in Indiana
vacating summer habitat prior to juveniles.

We observed some of the highest big brown acoustic activity in the spring (prior
to 20 April), which we attribute to a combination of migration, exploratory movements,
and increased foraging activity of prenatal females [45]. Muthersbaugh et al. [46] also
observed acoustic activity decreasing at a consistent rate between early March and late
April in the Virginia Appalachian Mountains, supporting our interpretation that declining
activity in May was related to spring migration. Additionally, our acoustic sampling
likely included fall migration given sharp declines in mean calls. This result is similar
to Muthersbaugh et al. [46], where Julian day did not predict eastern red bat acoustic
activity from September through mid-November, perhaps because bats had largely ceased
migration by that period. Our call asymptote and late-summer declines are similar to those
patterns observed in eastern red bats in areas with viable roosting habitats along the nearby
Delmarva Peninsula [47]. Further analysis to determine large-scale patterns and habitat
use of eastern red and big brown bats during these migration periods is needed.

5. Conclusions

Acoustic sampling provides a valuable method of indirectly measuring bat activity, but
it has not been reliably associated with population demographics. Our documentation of
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the relationship between peak maternity season acoustic activity, pregnancy, and lactation,
rather than juvenile volancy, provides managers with new information on how to interpret
bat acoustic results and assess temporal sampling biases. Because acoustic activity appears
related to reproduction and migration patterns, summer-long acoustic recordings could
be used to identify reproductive patterns within a discrete area. Nonetheless, additional
research would be an aid in interpreting acoustic data from different short-term sampling
periods, or comparing acoustic data collected over a broad spatial and temporal scale may
result in community, habitat association, or reproduction timing mischaracterizations. If
our observed relationships between acoustic and capture data for these common species
are similar to those for federally listed bats, then the current federal sampling guidelines
probably encompass migration periods within the mid-Atlantic. As a result, sampling
during these periods potentially could be misleading with higher false absences due to
migration away from a maternity area or false indications of maternity colony presence
based on migration through an area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d14050319/s1, Figure S1:The Julian days on which juvenile (A) big brown bats (Eptesicus fuscus)
and (B) eastern red bats (Lasiurus borealis) were captured by site latitude and longitude, Figure S2:
Histogram with the number of acoustic samples collected between Julian day 100 and 250 within the
mid-Atlantic region from 2015 – 2018, Figure S3: Locally estimated scatterplot smoothing lines based
on mean calls by Julian day for big brown bats (Eptesicus fuscus; EPFU) and eastern red bats (Lasiurus
borealis; LABO) within the mid-Atlantic region for each year 2016 – 2018 and for the entire period.
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