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ABSTRACT
Purpose: Many phase II clinical trials evaluate unique experimental drugs/

combinations through multi-arm design to expedite the screening process (early 
termination of ineffective drugs) and to identify the most effective drug (pick the 
winner) to warrant a phase III trial. Various statistical approaches have been 
developed for the pick-the-winner design but have been criticized for lack of objective 
comparison among the drug agents. 

Methods: We developed a Bayesian pick-the-winner design by integrating a 
Bayesian posterior probability with Simon two-stage design in a randomized two-
arm clinical trial. The Bayesian posterior probability, as the rule to pick the winner, 
is defined as probability of the response rate in one arm higher than in the other 
arm. The posterior probability aims to determine the winner when both arms pass 
the second stage of the Simon two-stage design. 

Results: When both arms are competitive (i.e., both passing the second stage), 
the Bayesian posterior probability performs better to correctly identify the winner 
compared with the Fisher exact test in the simulation study. In comparison to a 
standard two-arm randomized design, the Bayesian pick-the-winner design has a 
higher power to determine a clear winner. In application to two studies, the approach 
is able to perform statistical comparison of two treatment arms and provides a winner 
probability (Bayesian posterior probability) to statistically justify the winning arm. 

Conclusion: We developed an integrated design that utilizes Bayesian posterior 
probability, Simon two-stage design, and randomization into a unique setting. It gives 
objective comparisons between the arms to determine the winner.

INTRODUCTION

The purpose of an early-phase II clinical trial is to 
determine if a new drug has sufficient anti-tumor activity 
for further development. This is often implemented using 
Simon two-stage design [1] in a single arm setting. As 
modern biomedical research advances, numerous potential 
experimental agents have and continue to be developed. 
Thus, many phase II clinical trials include multiple arms 

with experimental drugs to expedite the screening process 
(early termination of ineffective drugs) and to identify the 
most effective drug (pick the winner) to warrant a phase 
III trial [2-8]. Various statistical approaches have been 
developed for the pick-the-winner design [5, 6, 9-16]. Yao 
et al. and Strauss and Simon used a sequential approach to 
screen treatments by a series of single-arm [15, 16] or two-
arm [14] trials over a time domain. These approaches have 
some limitations, such as requiring intensive resources and 
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the uncertainty of prior distribution of response rate [13]. 
Rubinstein et al. considered a standard randomized two-
arm design with a large type I and II error [9]. However, 
the sample size remains relatively large (most with n > 
100) even with a 20% type I error, a 20% type II error, 
and a 20% difference of response rate. The most common 
pick-the-winner design is a ranking and selection approach 
by Simon et al. [11]. This approach provides an attractive 
feature of requiring a small sample size and has various 
applications in clinical trial design and execution [5, 6]. 
However, the winner decision is not based on formal 
statistical comparisons but on the highest response rate, 
raising an issue of a high false-positive rate of this design 
[17]. 

In this study, we propose a pick-the-winner design 
by integrating Bayesian posterior probability with a Simon 
two-stage design in phase II randomized trial to determine 
the winner arm.

RESULTS

Study design (details in method section)

The design (Figure 1) considers two treatment arms, 
A and B, with patients randomized into one of the two 

treatment arm. Each treatment arm uses a Simon two-
stage design [1] to evaluate the efficacy of the treatment. 
A treatment arm passing the second stage is considered as 
a “competitive” arm. The Bayesian posterior probability, 
Pr(B > A), defined as probability of a response rate in arm 
B higher than in arm A, is used to determine the winner 
arm when both treatment arms become competitive. 
With a beta prior for response rate, this probability, Pr(B 
> A), could be calculated by comparing posterior beta 
distributions between the two treatment arms. Arm B will 
be claimed as the winner if Pr(B > A) > δ. 

Simulation study

Simulation is used to evaluate (1) the impact of the 
prior distribution on Pr(B > A), (2) the relationship of Pr(B 
> A) and response rate difference, and (3) the effect of δ on 
local power and type I error. The simulation setting uses a 
Simon optimal two-stage design to compare 40% versus 
20% response rate. The type I and II errors are controlled 
at 10%. With this design, each arm has a sample size of 
17 patients in the first stage. If 4 or more patients show a 
response, the arm will continue to the second stage with 
20 additional patients. An arm with a total number of 
responders greater than 10 is considered as competitive 
(i.e., passing the second stage). This simulation setting is 
labeled as “simulation setting A” for the following use. 

Figure 1: Flow chart of study design for the Bayesian pick-the-winner design in a randomized phase II trial.
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Effect of prior distribution

A series of prior distributions are evaluated: (i) non-
informative prior, with beta(c,c) in both arms for c = 0 
(Haldane prior), 0.5 (Jeffreys prior), and 1 (Bayes prior); 
(ii) unfavorable arm B’s prior, with beta(c,0) in arm A and 
beta(0,c) in arm B for c = 0.1, 1, and 10; (iii) favorable arm 
B’s prior, with beta(0,c) in arm A and beta(c,0) in arm B 
for c = 0.1, 1, and 10; and (iv) prior beta distribution based 
on hypothesized or observed response rate with standard 
deviation (SD) of 0.1 (e.g., for a comparison of 40% in 
arm B versus 20% in arm A, the prior beta distribution 
based on the hypothesized response rate will have a mean 
of 40% and 20% for arm B and A, respectively, with SD 
= 0.1). 

With the simulation setting A and assumption of a 
response rate of 20% and 40% in arm A and B, respectively, 
several findings are generated (Supplementary Simulation 
Study 1): (a) a one-to-one relationship between one-sided 
Fisher exact test (odds ratio [OR] < 1) and the unfavorable 
arm B’s prior (c = 1) (Supplementary Figures S1 and S2). 
This relationship has also been previously reported by 
Altham (1969) and Agresti and Hitchcock (2005) [18, 
19]. (b) The three non-informative priors show a higher 

Pr(B > A) than the unfavorable arm B’s prior (c = 1) 
(Supplementary Figures S3 and S4). In terms of p value 
language, the three non-informative priors yield a smaller 
p value than the one-sided Fisher exact test. Also, the three 
non-informative priors have a similar Pr(B > A) (largest 
difference < 0.02; Supplementary Figures S5 and S6). (c) 
The Pr(B > A) decreases in the unfavorable arm B’s prior 
(Supplementary Figure S7), but increases in the favorable 
arm B’s prior (Supplementary Figure S8) as c increases 
from 0.1, 1, to 10. (d) Like the favorable arm B’s priors, 
the prior using the hypothesized or observed response rate 
yields a higher Pr(B > A) than the unfavorable arm B’s 
prior (c = 1) in most cases (Supplementary Figures S9 and 
S10). 

In summary, prior distribution affects Pr(B > A)
(Figure 2). Strong unfavorable or favorable treatment arm 
priors will give a large increase or decrease in Pr(B > A) 
while the non-informative priors give a small increase (i.e., 
a slight advantage favoring arm B). Thus, if preliminary 
data are limited or not available, the non-informative 
priors are preferable. Because the non-informative priors 
have a very similar Pr(B > A), the non-informative prior, 
beta(1,1), is used in both arms to calculate Pr(B > A) for 
determining the winner.

Figure 2: Comparison of various prior distributions regarding their impact on Bayesian posterior probability.
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Relation of Pr(B > A) and response rate difference

With the simulation setting A and the non-
informative prior, beta(1,1), in both arms, results show 
an increasing pattern of Pr(B > A) as the difference of 
response rate increases (Supplementary Figure S11, A and 
B, and Supplementary Simulation Study 2). However, it is 
not a complete one-to-one relation. There is a small range 
of Pr(B > A) in each distinct response rate difference. One 
explanation is that there may be multiple ways to yield 
a same difference of response rate, thus changing the 
posterior beta distribution, beta(1+k,1+n-k), in each arm. 
As a result, Pr(B > A) is altered accordingly. Nevertheless, 
the difference is quite small ( < 0.02; Supplementary 
Figure S11B). Therefore, Pr(B > A) could be approximated 
to the response rate difference. In the simulation example, 
a Bayesian posterior probability of 80% is about 10% 
response rate difference.

Delta effect (δ)

Delta (δ) is activated only when both arms are 
competitive. Thus, it affects power and type I error locally 
(i.e., in the case of both arms passing the second stage). 
Sensitivity analysis is performed under various conditions 
using the simulation setting A and the non-informative 
prior, beta(1,1), in both arms to select an acceptable 
threshold of δ to balance local power and type I error 
(Supplementary Simulation Study 3). For the impact on 
the local type I error, the proportion of both arms being 
competitive is 0.93% using the null hypothesis (20% 
response rate in both arms). Half of the 0.93% probability 
(0.47%) misclassify arm B as winner at δ = 0.5 (i.e., 
local type I error = 0.47%; Supplementary Table S1). 
As δ increases to 0.8 and 0.9, 0.01% or less are claiming 
arm B as winner (i.e., local type I error ≤0.01%). For the 
effect on local power, the probability of both arms being 
competitive is 9% under the alternative hypothesis (40% 
in arm B and 20% in arm A, a 20% difference of response 
rate). The local power to claim arm B as winner is 8%, 
4%, and 2%, for δ = 0.5, 0.8, and 0.9, respectively (a 
2-fold reduction of power from δ = 0.5 to 0.8, and a 2-fold 
reduction of power from δ = 0.8 to 0.9; Supplementary 

Table S1). In the 15% difference of response rate, 
power reduction is 2- to 3-fold from δ = 0.5 to 0.8. Two 
additional analyses (45% vs. 30% in Supplementary Table 
S2 and 15% vs. 5% in Supplementary Table S3) show a 
similar pattern of (1) 50% misclassification rate at δ = 0.5 
and (2) 3- to 5-fold in power reduction from δ = 0.5 to 
0.8 for 10% to 15% difference of response rate. In short, 
when both arms are competitive, a δ of 0.5 will cause a 
randomly selected winner (misclassification rate = 50%). 
For δ increasing to 0.8 or higher, the local type I error (at 
least 10 folds) will be decreased significantly, but the local 
power will be reduced moderately (2- to 5-fold) to detect 
a 10% to 20% difference of response rate. Although there 
is no a clear cutoff for δ, a δ of 0.8 is a reasonable choice 
to determine the winner. 

Our data example

In advanced non-small cell lung cancer (NSCLC), 
immunotherapy (e.g., anti-PD-L1 or anti-PD-1 agents) 
has shown a promising response rate of about 20% in 
recent phase I clinical trials [20-24]. However, about 80% 
of patients do not respond. To improve the efficacy, we 
designed a phase II trial at our institute to evaluate the 
efficacy of the combination of anti-PD-1 plus a histone 
deacetylase inhibitor (HDACi) [25-30] and compared 
single agent, anti-PD-1, in this targeted population. 
The trial has been registered in ClinicalTrials.gov (ID: 
NCT02638090). This study presents several statistical 
challenges: (1) the anti-PD-1 and the combination are 
experimental regimens in this population, (2) early 
termination of ineffective drug combination(s) is preferred 
to minimize unnecessary exposure to toxicity, and (3) 
randomization is favored to reduce selection bias.

Trial design

With these considerations, we employed this 
Bayesian pick-the-winner design in a randomized phase 
II clinical trial. Both treatment arms were labeled as arm 
A for anti-PD-1 only and arm B for combination of anti-
PD-1 and HDACi. From historical data in an unselected 
NSCLC population, we considered a 20% response rate 

Table 1: Rules to pick the winner

Pr(B>A): posterior probability of the response rate in arm B higher than in arm A
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or below as ineffective. We used 40% response rate as a 
promising result to further pursue future study. For each 
arm, using a Simon optimal two-stage design with initial 

10% type I and II error rate, 17 patients will be enrolled 
in the first stage of the trial. If 3 or fewer patients respond, 
that treatment will be stopped. If 4 or more patients show 

Table 2: Operating characteristics
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a response, 20 additional patients (a total of 37 patients 
per group) will be enrolled in that arm. If the total number 
responding is 10 or less, we will conclude that the 
treatment is not effective. 

If both arms fail at the first or second stage, the trial 
will be stopped. No winner will be claimed. The sample 
size will be 34 if both arms fail at the first stage and 54 if 
only one arm fails at the first stage. If only one arm passes 
the second stage, the arm will be the winner. If both arms 
pass the second stage, we will use Pr(B > A) to select the 
winner. The non-informative prior of beta distribution, 
beta(1,1), is used to calculate the posterior probability. 
Arm B will be claimed as the winner if Pr(B > A) > δ = 
80% (about a 10% difference of response rate).

Operating characteristics of the trial design by 
simulation

We were interested in the probability of correctly 
selecting an arm as superior to the other arm if it is truly 
superior (power) and, conversely, the probability of 
incorrectly selecting an arm that is no better than the other 
arm (type I error). 

Power

Assuming that the true probabilities of response in 
arms B and A are 40% and 20%, respectively (scenario 1: 
20% difference of response rate), the overall probability 
(power) of correctly choosing arm B as superior is 86% on 
the basis of superiority shown at the end of the trial (Table 
2). The probability of stopping arm A early and declaring 
arm B superior at the end of the trial is 82%. There is 
a 9% probability of both arms passing the second stage 
with 4% claiming arm B as the winner by the Bayesian 
posterior probability. In a 15% difference of response rate, 
the overall power is 71% and 75% for the comparison 
of arms B and A with 35% versus 20% (scenario 2) and 
40% versus 25% (scenario 3), respectively (Table 2). The 
proportion of both arms passing the second stage is 7% in 
scenario 2 (scenario 3: 26%), with 2% (scenario 3: 11%) 
claiming arm B as the winner by the Bayesian posterior 
probability. 

Type I error

In the null hypothesis of a 20% response rate 
in both arms, the overall probability (type I error) of 
incorrectly choosing arm B as superior is 9% (scenario 
4, Table 2). There is only a 1% probability of both arms 
passing the second stage and less than 0.01% probability 
misclassifying arm B as the winner.
Summary

With δ = 0.8, the design has an 86% power to 
detect a 20% difference of response rate. The power 
slightly decreases but remains above 70% (71%-75%) to 
differentiate a 15% difference of response rate. The type 
I error is controlled at 9% when both arms have a 20% 
response rate. 

Comparison of bayesian posterior probability to 
fisher exact test

For this comparison, local power and type I error are 
evaluated between the Bayesian posterior probability and 
Fisher exact test in terms of winner determination when 
both arms pass the second stage. The decision rule is (i) 
δ = 0.8 with the non-informative prior, beta(1,1), in both 
arms for the Bayesian posterior probability, and (ii) a one-
sided p < 0.05 for the Fisher exact test. Simulation results 
in Table 3 show that the added local power in claiming 
arm B as the winner is higher by the Bayesian posterior 
probability (2%-11%) than by the Fisher exact test (0.2%-
2%). However, the local type I error is also higher in the 
Bayesian posterior probability (0.01%) compared with 
Fisher exact test ( < 0.01%). 

Comparison to a standard controlled randomized 
trial (CRT)

We compared the standard two-arm CRT without 
interim analysis with our approach in terms of overall 
power and type I error. With the same hypothesis testing 
of 40% versus 20% response rate and a sample size of 37 
patients per arm, the CRT design gives a power of 62% for 
a one-sided type I error of 9% using the Fisher exact test. 
In comparison, the proposed Bayesian design achieves a 
higher power, 86%, detecting a 20% difference of response 

Table 3: Comparison of Bayesian posterior probability and Fisher exact test regarding local power and type I error
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rate with a type I error of 9%. 

Applications in gonzalez-martin et al. and dark et 
al. studies [5, 6]

Pick-the-winner

Both studies have completed their two treatment 
arms. However, the winners were determined by the 
highest response rate and without formal statistical 
comparison. In the Gonzalez-Martinet al. study [6], the 
arm with combination of paclitaxel and carboplatin, 
labeled as arm B, was claimed as winner because of a 
higher response rate (31/38 = 81.5%) compared with 
the arm with carboplatin only, labeled as arm A (20/40 
= 50%). With our approach and δ = 0.8, the posterior 
beta distribution will be beta(1+31,1+7) for arm B and 
beta(1+20,1+20) for arm A based on the non-informative 
prior, beta(1,1). Accordingly, there is a 99.8% chance of 
arm B having a higher response rate than arm A (i.e., Pr(B 
> A) = 99.8% > δ); therefore, arm B is the winner. In the 
study of Dark et al., the arm with 1.8 mg OSI-211 was the 
winner because of a higher response rate (6/39 = 15%) 
compared with the arm with 2.4 mg OSI-211 (2/41 = 5%). 
With our approach, the corresponding Bayesian posterior 
probability of higher response rate in the arm with 1.8 mg 
OSI-211 than in the arm with 2.4 mg OSI-211 was 93% 
(i.e., Pr(B > A) = 93% > δ). Thus, our method shows the 
arm with 1.8 mg OSI-211 as the winner. In comparison, 
the Fisher exact test gives a p value of 0.003 and 0.12 
(one-sided test) for Gonzalez-Martinet al. and Dark et al. 
studies, respectively. 

Power

Gonzalez-Martinet al. [6] compared a 45% versus 
30% response rate (15% difference), whereas Dark et 
al. [5] compared response rates of 15% versus 5% (10% 
difference). Samples sizes for both studies were 38-
41 patients per group. With the same hypotheses, the 
Bayesian pick-the-winner design requires 38 patients per 
arm and provides a 72% power to detect a 15% difference 
of response rate with a type I error of 12% for the 
Gonzalez-Martinet al. study (Supplementary Simulation 
Study 4). For the study of Dark et al., our approach needs 
36 patients per arm and gives a 75% power to detect the 
10% difference with a type I error of 9% (Supplementary 
Simulation Study 5). 

DISCUSSION

In this study, we developed an integrative design 
by incorporating Bayesian posterior probability with 
Simon two-stage design in a randomized phase II clinical 
trial. This approach makes the best use of the Bayesian 

method, Simon two-stage design, and randomization to 
identify an effective drug as the winner and to warrant 
a phase III trial for final evaluation. As a result, it has 
applied to two randomized phase II clinical trials with 
immunotherapy (NCT03071406 for Merkel cell skin 
cancer and NCT02638090 for lung cancer registered 
in ClinicalTrials.gov). Historically, a Simon two-stage 
design is widely used in a single arm setting. Here, we 
have taken advantage of its uniqueness of small sample 
size and early termination of ineffective drug(s) in a 
randomized trial design. The randomization strategy 
serves to balance unknown confounding factors, therefore 
reducing selection bias and creating a higher degree of 
comparability for objective comparison. Most importantly, 
utilization of Bayesian posterior probability provides a 
rigorously statistical mean to select the winner, in contrast 
to an arbitrary decision based on the highest response rate. 

For clinical investigators, the Bayesian pick-the-
winner design holds unique advantages when both arms 
successfully pass the second stage. It guarantees that a 
winner will be decided not just based solely on the highest 
response rate but also based on a sound formal statistical 
method. In an era of randomized phase III oncology 
clinical trials where numerous agents and combination 
therapies have failed to accomplish both statistically 
and clinically significant outcomes, having an additional 
safeguard to correctly move arms forward to larger trials 
is highly needed. This holds significance not only for 
clinicians but also for patients. By using a small sample 
size with early termination control of ineffective drugs, 
the Bayesian pick-the-winner method reduces the burden 
of trial costs and undue exposure to toxicity for our 
cancer patients. As key stakeholder in patient treatment 
algorithms, we have an obligation to continue to enrich 
and evolve the field of clinical research in a right direction.

Two types of power comparisons were performed 
in our data example. One used local power for the 
comparison between Bayesian posterior probability and 
one-sided Fisher exact test only when both arms passed 
the second stage. Simulation results showed that the 
Bayesian posterior probability contributed a larger local 
power, but also induced a higher local type I error. The 
other one used overall power for comparison to a standard 
CRT without interim analyses. Because a CRT is a one-
stage design, direct comparison to the Bayesian posterior 
probability is not feasible. Therefore, overall power is 
used for comparison. Results indicated that the Bayesian 
pick-the-winner design gives a higher power to determine 
the winner given the same sample size and the type I error.

We showed two important points in regard to 
application of our design to the Gonzalez-Martinet al. 
and Dark et al. studies [5, 6]. One was the ability of the 
Bayesian pick-the-winner design to provide a reasonable 
power even with a small sample size of around 40 subjects 
per arm for a randomized trial. The other one was the 
utility of the Bayesian posterior probability to pick the 
winner among the competitive treatment arms.
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Although the Bayesian posterior probability is 
a useful tool to pick the winner, two parameters are 
required: prior distribution and δ effect. Both factors 
need to be considered simultaneously in order to properly 
calculate power and type I error. For the prior distribution, 
the use of unfavorable treatment arm prior with c = 1 
is equivalent to the classic one-sided Fisher exact test. 
Our evaluation in beta prior distribution indicates strong 
favorable or unfavorable treatment arm priors would have 
a high likelihood to accept or reject the treatment arm 
as the winner. The non-informative priors give a slight 
advantage in treatment arm and are preferred for use to 
avoid bias if preliminary data are limited. In addition, the 
Bayesian posterior probability could be approximated 
into the response rate difference and make its clinical 
interpretation more meaningful. For the δ effect, it affects 
local power and type I error. Sensitivity analysis showed 
that a δ of 0.5 will lead to a random choice of winner 
selection. When δ increases to 0.8 or higher, the local type 
I error will be substantially reduced, but a decrease in the 
local power is moderately controlled. The δ function is 
similar to the parameter d (a threshold parameter of 
response rate difference) in the approach of Sargent and 
Goldberg [31] (Supplementary Comparison 1). 

The current Bayesian pick-the-winner design 
focuses on a two-arm setting using a Simon two-stage 
method. A R package, ‘BayesianPickWinner’, with 
graphical user interface is provided for clinicians to easily 
generate a statistical plan for their clinical trial protocols 
(Supplementary R package and https://github.com/
dungtsa/BayesianPickWinner). The design has flexibility 
to (i) allow each arm using different parameters in Simon 
two-stage design or (ii) use different designs (e.g., Fleming 
single stage design [32] in Supplementary Simulation 
Study 6). However, we suggest the same parameters 
within the same design to simplify the trial procedure 
and make the implementation easier. The Bayesian 
pick-the-winner design could be extended to 3 or more 
treatments. If multiple arms pass the second stage, the 
Bayesian posterior probability can be easily calculated by 
comparing their posterior beta distributions using Monte 
Carlo simulation.

In summary, our integrative design pulls together 
Bayesian posterior probability, Simon two-stage design, 
and randomization into a unique setting. This design 
allows objective comparisons between treatment arms to 
determine the winner. 

MATERIALS AND METHODS

A pick-the-winner design developed for a two-arm 
randomized phase II clinical trial integrates three key 
components: Bayesian posterior probability, Simon two-
stage design, and randomization. The goal is to objectively 
identify an effective treatment to warrant a future large 
phase III trial.

A two-arm randomized simon two-stage design

Assume there are two treatment arms, A and B. They 
may be separate treatments placed to compete against each 
other, or treatment B is the combination of treatment A 
plus an additional drug. To balance unknown confounding 
factors, randomization is implemented to assign patients to 
the two treatment arms. For each treatment arm, a Simon 
two-stage design [1] is used to evaluate the efficacy of 
the treatment. In this design, when an arm passes the 
second stage, we consider this as a “competitive” arm. 
The winner could be easily determined if only one arm is 
competitive. However, when both arms are competitive, it 
becomes a challenging issue to objectively determine the 
winner. Although some arbitrary criteria could be used, 
such as difference of response rate or cost, these do not 
have statistical justification and could risk a false positive 
finding.

Bayesian posterior probability

To address the issue of statistical comparisons when 
both arms are competitive, we integrated a Bayesian 
posterior probability into the two-arm randomized Simon 
two-stage design. The Bayesian posterior probability, Pr(B 
> A), is defined as probability of a response rate in arm 
B higher than in arm A. For arm A with a total sample 
size of nA at the end of the second stage, the number of 
responses, kA, does not follow a binominal distribution, but 
its likelihood function has a form of  θ kA(1- θ) nA-kA where 
θ represents the response rate (Supplementary Method 
1). Thus, given a beta prior distribution assumption with 
two parameters, a and b, (i.e., beta(a,b)), the posterior 
distribution of response rate becomes another beta 
distribution, beta(a+kA,b+nA-kA). Similarly, the posterior 
distribution for arm B will be beta(a+kB,b+nB-kB). Pr(B 
> A) therefore becomes a probability of beta(a+kB,b+nB-
kB) > beta(a+kA,b+nA-kA), meaning the chance of response 
rate higher in arm B than in arm A (A R function code 
in Supplementary Method 2). This posterior probability 
is utilized when both arms are competitive. Arm B will 
be claimed as the winner if  Pr(B > A) > δ and arm A will 
be claimed as the winner if  Pr(B > A) < (1-δ). Because 
specification of prior distribution will affect  Pr(B > A) and 
δ will influence the corresponding power and type I error, 
both issues are evaluated in the simulation study.

Algorithm of the bayesian pick-the-winner design

For each arm, a Simon two-stage design (optimal 
or min-max) with an initial type I error of α and a type 
II error of β is used to calculate sample size as follows: 
There will be n1 patients enrolled in the first stage of the 
trial. If  r1 or fewer patients respond, the treatment will 
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be stopped. If r1+1 or more patients show a response, n2 
additional patients (a total of n1+ n2 patients per arm) will 
be enrolled. If the total number of responders is r or less, 
we can conclude that the treatment is ineffective. If both 
arms fail at the first or second stage, the trial is stopped 
(Table 1). No winner will be claimed. If there is only one 
competitive arm, the competitive arm will be the winner. 
If both arms are competitive, we can use Pr(B > A) to 
select the winner. Arm B will be claimed as the winner if 
Pr(B > A) > δ. The power and type I error for the treatment 
comparison are determined by simulation in alternative 
and null hypotheses. A flow chart of the algorithm is 
shown in Figure 1. 
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