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Patients who recovered from the novel coronavirus disease 2019 (COVID-19)

may experience a range of long-term symptoms. Since the lung is the most

common site of the infection, pulmonary sequelae may present persistently in

COVID-19 survivors. To better understand the symptoms associated with

impaired lung function in patients with post-COVID-19, we aimed to build a

deep learning model which conducts two tasks: to differentiate post-COVID-

19 from healthy subjects and to identify post-COVID-19 subtypes, based on the

latent representations of lung computed tomography (CT) scans. CT scans of

140 post-COVID-19 subjects and 105 healthy controls were analyzed. A novel

contrastive learning model was developed by introducing a lung volume

transform to learn latent features of disease phenotypes from CT scans at

inspiration and expiration of the same subjects. The model achieved 90%

accuracy for the differentiation of the post-COVID-19 subjects from the

healthy controls. Two clusters (C1 and C2) with distinct characteristics were

identified among the post-COVID-19 subjects. C1 exhibited increased air-

trapping caused by small airways disease (4.10%, p = 0.008) and diffusing

capacity for carbon monoxide %predicted (DLCO %predicted, 101.95%, p <
0.001), while C2 had decreased lung volume (4.40L, p < 0.001) and increased

ground glass opacity (GGO%, 15.85%, p < 0.001). The contrastive learningmodel

is able to capture the latent features of two post-COVID-19 subtypes

characterized by air-trapping due to small airways disease and airway-

associated interstitial fibrotic-like patterns, respectively. The discovery of

post-COVID-19 subtypes suggests the need for different managements and

treatments of long-term sequelae of patients with post-COVID-19.
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Introduction

As of September 2022 over ninety million cases of

coronavirus disease 2019 (COVID-19) in the United States

have been reported to the Centers for Disease Control and

Prevention (CDC) (Centers for Disease Control and

Prevention, 2022). It has been shown from a meta-analysis

that the patients who recovered from COVID-19 experienced

several long-term physical, cognitive, and mental health

symptoms (Han et al., 2022), given the diagnosis long

COVID, post-acute COVID-19 syndrome (PACS), or post-

acute sequelae of COVID-19 (PASC) (Nalbandian et al., 2021;

Proal and VanElzakker, 2021; Sugiyama et al., 2022; Tran et al.,

2022). Since the lung is the most common site of infection of the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

impaired lung function due to pulmonary fibrosis and airway

injury is frequently observed in patients with post-COVID-19

(Wang et al., 2020; Cho et al., 2022; Jia et al., 2022). Thus,

pulmonary sequelae may manifest persistently in COVID-19

survivors.

Chest X-ray and computed tomography (CT) scans are

widely used to examine patients with COVID-19 (Mukherjee

et al., 2021; Song et al., 2021; Wang et al., 2021; Zou et al., 2021;

Mahbub et al., 2022; Santosh et al., 2022). With medical care

and management of post-COVID-19 subjects being

recognized as a top research priority by professional

societies, follow-up evaluations of COVID-19 survivors

based on chest X-ray or CT scans along with clinical

assessment have been recommended (Zheng et al., 2020).

We hypothesize that post-COVID-19 subtypes exist and

can be differentiated by contrastive self-supervised learning

of 2D lung images.

Contrastive learning has recently gained attention in the

computer vision community because of its success in self-

supervised representation learning. Contrastive learning is

considered as learning by comparing the similarities between

image pairs and the image pairs are generated by data

augmentation techniques. That is, by contrasting between

images of positive and negative pairs, representations of

positive pairs will be attracted together while representations

of negative pairs will be repelled far apart (Le-Khac et al., 2020).

Chen et al. proposed a simple framework for contrastive learning

of visual representations (SimCLR) to learn representations of

the images and use them for downstream tasks, e.g. predictive

tasks and clustering, to achieve state-of-the-art results (Chen

et al., 2020; Li et al., 2021).

CT images acquired at inspiration and expiration reveal

different lung disease phenotypes such as emphysema and air

trapping, respectively. Registration of inspiratory and

expiratory CT images can further identify the extent of

functional small airways disease (Galbán et al., 2012). In

this study, we introduced a new lung volume transform to

the data augmentation techniques in the SimCLR model to

learn from positive pairs of CT images at inspiration and

expiration, so that the extracted representations not only

capture disease phenotypes at various lung volumes but

also are invariant to the lung volume of input image - a

volume-independent feature. Moreover, 3D CT images were

used to construct composite 2D images, mimicking chest

X-rays, as inputs to the model, in hope that the model

might be applicable to chest X-rays via transfer learning in

the future.

The objective of this study is to construct a contrastive

learning model that can differentiate post-COVID-19 subjects

from healthy (no SARS-CoV-2 infected) subjects and to identify

post-COVID-19 subtypes using lung CT scans. The discovery of

post-COVID-19 subtypes may assist with the management and

treatment of long-term sequelae of post-COVID-19 subjects.

Meterial and methods

Human subject data and image processing

In this study, a total of 245 de-identified subjects were

selected for analysis. Among those, 140 subjects, who were

tested positive for SARS-CoV-2 between June and December

2020, visited a post-COVID-19 outpatient clinic at University of

Iowa hospitals and clinics for follow up. The mean time interval

between the diagnosis of COVID-19 and the first visit to the post-

COVID-19 clinic was 112.99 days. The other 105 subjects were

healthy controls who were not infected with SARS-CoV-2. We

retrospectively collected inspiratory and expiratory quantitative

CT image data acquired at breathing stages of total lung capacity

(TLC) and residual volume (RV), demographic data, and

pulmonary function test (PFT) results. The demographic data

and PFT measures for each stratum are shown in Table 1. The

study was approved by Institutional Review Board at the

University of Iowa and written informed consents were

obtained from all the patients included in the study. 205 of

the 245 subjects have been previously reported, and asthma was

the most common coexisting pulmonary disorder (26%) among

the subjects with PASC (Cho et al., 2022). This prior article

analyzed the traditional clinical and imaging metrics of the

subjects, whereas in this study we developed a contrastive

learning model to detect imaging features and then performed

cluster analysis.

CT images were rescaled with a range from a minimum value

of zero (air) to amaximum value of one (tissue) to account for the

scanner difference (Choi et al., 2014; Kim et al., 2014) and then

were masked by the lung masks obtained from the VIDA Vision

software (VIDA Diagnostics, Coralville, Iowa). Subsequently,

average was taken from the slices in the coronal plane to

convert the original 3D CT images to a single 2D image,

mimicking a chest X-ray image. We used SimpleITK (version

2.1) for further image processing.
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Contrastive learning model

There were 490 2D images in the dataset which contained

245 TLC images and 245 RV images. The dataset was then

randomly split into a training set and a testing set, which

comprised of 440 and 50 images, respectively.

The proposed contrastive learning model is based upon

SimCLR (Chen et al., 2020), which learns representations by

contrasting image pairs and is implemented with a classifier

which can differentiate post-COVID-19 subjects from healthy

controls. The structure of the model is presented in Figure 1A.

First, the contrasting image pair is generated by two

transformations, T2k−1(·) and T2k(·), which are composite

transforms comprised of random resized clop, random

horizontal flip, random affine transform, and random

perspective transform (Figure 1B). Furthermore, we applied

a volume transform of which a certain probability for the input

image of T2k(·) is transformed to the image at its counterpart

lung volume (i.e. TLC image being replaced by RV image and

vice versa). The probability was set at 0.4 in this study. Next,

the representations h2k−1 and h2k are extracted by the encoder

f(·) comprising the pre-trained convolutional layers of the

ResNet18, which is able to achieve good performance in

predicting COVID-19 subjects with a relatively small set of

parameters as compared with other state-of-the-art

convolutional neural networks (Pham, 2020). h2k−1 and h2k
are mapped to the space (z) where contrastive loss is applied

by the projection head g(·), which is a multilayer perceptron

with one hidden layer. In addition, they are fed into a sigmoid

classifier c(·) for differentiating the post-COVID-19 subjects

from the healthy controls, where the history of being

diagnosed with COVID-19 was treated as the ground truth

for the classification.

The total loss (Ltotal) is the weighted average of the

contrastive loss (Lcontrastive) and classification loss (Lclass) as

defined in Eq. 1. The similarity (si, j) between zi and zj is

maximized by minimizing the normalized temperature-scaled

cross entropy loss (NT-Xent, Eq. 3). Lcontrastive is computed at

both l(i, j) and l(j, i) in a mini-batch (Eq. 4). For more

information of the contrastive loss, please refer to

Chen et al. (2020). On the other hand, Lclass is the binary

cross entropy loss of sample i and sample j in a mini-batch

(Eq. 5).

Ltotal � w1Lcontrastive + w2Lclass (1)
si, j � zizj

‖zi‖
����zj���� (2)

l(i, j) � −log exp (si, j/τ)
∑2N

k�11[k≠i] exp (si, k/τ) (3)

Lcontrastive � 1
2N

∑N

k�1[l(2k − 1, 2k) + l(2k, 2k − 1)] (4)

Lclass�− 1
2N

⎡⎣∑N

k�1y2k log(p(y2k))+(1−y2k)log(1−p(y2k))+
y2k−1 log(p(y2k−1))+(1−y2k−1)log(1−p(y2k−1))⎤⎦

(5)
where w1 and w2 are weights for Lclass and Lcontrastive,

respectively, and N is the sample size of a mini-batch. The

model was built using Pytorch 1.11 and trained with NVIDIA

GEFORCE RTX 2080 Ti graphic card. The training detail was

documented in the supplementary material.

In summary, our contrastive learning model introduces

two new components to SimCLR: a lung volume transform to

learn latent representations of phenotypes from inspiration

and expiration CT images and a cross entropy loss to

differentiate the post-COVID-19 subjects from the healthy

controls.

TABLE 1 Demographic and PFT data for all the subjects.

Post-COVID
(n = 140)

Control (n = 105) All (n = 245)

Mean SD Mean SD p Mean SD

Age (yrs.) 45.88 15.93 44.59 14.05 0.504 45.32 15.13

BMI 32.13 7.58 25.73 3.59 <0.001 29.74 8.38

FVC %Predicted 97.81 15.25 101.00 10.37 0.064 98.83 14.11

FEV1 %Predicted 97.60 14.75 99.50 10.71 0.263 97.85 14.09

RV/TLC (%) 29.28 8.94 28.39 7.74 0.424 28.75 9.79

TLC (L) 5.56 1.35 5.83 1.24 0.117 5.70 1.33

RV (L) 1.57 0.56 1.66 0.62 0.254 1.63 0.69

DLCO %Predicted 97.74 22.00 89.92 13.21 0.001 93.50 20.11

Percentage Percentage p Percentage

Female (%) 0.66 0.51 0.025 59.50
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FIGURE 1
(A) The structure of the proposed volume-independent contrastive learning model. (B) Illustrations of the transforms applied to the training
images.

Frontiers in Physiology frontiersin.org04

Li et al. 10.3389/fphys.2022.999263

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.999263


Identification of subject-clusters

The latent representations (h) of TLC and RV images that

belonged to the same subjects were concatenated and K-means

clustering was applied to search for the subject-clusters within

the concatenated latent representations. The number of

subject-clusters was determined by evaluating the inter-

cluster and intra-cluster variability. Moreover, the inter-

cluster differences in terms of the clinical and imaging-

based variables were examined. The clinical variables

include sex, age, body mass index (BMI), FVC %predicted,

FEV1 %predicted, diffusing capacity for carbon monoxide %

predicted (DLCO %predicted), TLC volume, RV volume, and

the ratio between RV volume and TLC volume (RV/TLC). The

imaging variables include emphysema percentage with respect

to the total lung volume at TLC (Emph%), air trapping

percentage due to functional small airways disease with

respect to the total lung volume at RV (AirT_fSAD%)

(Galbán et al., 2012), tissue percentage with respect to the

total lung volume at TLC (Tissue_TLC%), tissue percentage

with respect to the total lung volume at RV (Tissue_RV%),

ground glass opacity percentage with respect to the total lung

volume at TLC (GGO%), and bronchovascular pattern

percentage with respect to the total lung volume at TLC

(Bronchovascular%). Emph%, AirT_fSAD%, Tissue_TLC%,

and Tissue_RV% were derived using our in-house software

(Haghighi et al., 2018; Haghighi et al., 2019) while GGO% and

Bronchovascular% were computed using a texture analysis,

called Adapted Multiple Feature Method (AMFM) (Uppaluri

et al., 1999).

Statistical analysis

Pairwise deletion was used to handle any missing data.

Numbers of missing data for the variables analyzed in this

study are shown in Supplementary Table S1. The differences

between the means of independent groups were analyzed by

Welch’s ANOVA with the Games-Howell method for post-

hoc pairwise tests. Chi-square test was used to examine the

relationships between two categorical variables. The data

points which are three standard deviations greater or

smaller than the mean are treated as outliers and are

excluded from the analysis. The statistical significance

level α was set at 0.05. The statistical analyses were

conducted using SciPy 1.4.1 and Pingouin 0.3.4 in Python

3 packages.

Results

The contrastive deep learning and the following statistical

analyses were conducted for the 245 subjects. Among them,

140 subjects (57.14%) were the post-COVID-19 patients and 105

(42.86%) the healthy controls. The post-COVID-19 subjects had

greater BMI and DLCO% predicted, and lower FVC %predicted.

In addition, they had higher proportion of females, compared

with the control group (Table 1).

Performance of the contrastive learning
model

An averaged accuracy of 97.74% and 90.00% was achieved on

a five-fold cross-validation analysis and on the testing dataset,

respectively. Moreover, an area under the receiver operating

characteristic curve (AUC) of 0.98 was achieved on the testing

dataset (Supplementary Figure S1).

We tested how performing the volume transform would

affect the latent representation space. As illustrated in

Figure 2, the models trained with and without the volume

tranform had good performance in differentating the post-

COVID-19 subjects from the control group. The model

without volume transform achieved an accuracy on test

data of 92% (AUC = 0.97) which is similar to the model

with volume transform (AUC = 0.98). However, the latent

representations of TLC and RV images generated by the

model without volume transform did not share the similar

features (i.e. clusters of TLC and RV images were formed)

while those generated by the model with volume

transform did.

Characteristics of subject-clusters

Three clusters (C0-C2) were identified by k-means

clustering in the feature space of latent representations of

the images (h). There were 102, 120, and 23 subjects in C0, C1,

and C2, respectively. Based on our sample size of 245 and

3 clusters, the sample size is sufficient to detect medium effect

size with power of 0.95 and type one error rate of 0.05. The

distribution of the different types of subjects projected in a 2D

space is illustrated in Figure 3. The contrastive learning model

was able to separate the post-COVID-19 subjects from the

healthy controls and group them together by their similarity.

Figure 4 demonstrated two representative subjects for each

cluster that were closest to the respective cluster’s geometric

centroids.

C0 consisted of the healthy controls only (0% post-COVID-

19 subjects), while C1 and C2 were majorly composed of the

post-COVID-19 subjects (97.50% and 100.00% post-COVID-

19 subjects, respectively). C1 was female dominant (67.50%

females) while C0 and C2 had relatively balanced numbers in

females and males. The encounter types for COVID-19 diagnosis

for C1 and C2 were mostly outpatient (90.37%) and inpatient

(67.39%), respectively. There were significant differences
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between clusters in terms of age and BMI. C2 (62.04 yrs.) had

greater age than C0 (44.15 yrs., p < 0.001) and C1 (43.59 yrs., p <
0.001). C1 (32.99, p < 0.001) and C2 (32.37, p < 0.001) had higher

BMI than C0 (25.57) (Figure 5 and Supplementary Table S2).

There was no significant difference between C1 and C2 in terms

of the time interval between the diagnosis of COVID-19 and the

first visit to the post-COVID-19 clinic (C1: 118.88 days, C2:

93.05 days, p = 0.199).

In terms of PFT results (Figure 5 and Supplementary Table

S2), C2 was characterized by lower FVC %predicted (84.93%),

DLCO %predicted (66.76%), TLC (4.40 L), and higher RV/TLC

(36.48%) than C0 (FVC %predicted: 101.14%; p = 0.005, DLCO

%predicted: 90.32%; p < 0.001, TLC: 5.87 L; p < 0.001) and C1

(FVC %predicted: 99.41%; p = 0.012, DLCO %predicted:

101.95%; p < 0.001, TLC: 5.77 L; p < 0.001). In addition,

C1 was marked by the greatest DLCO %predicted (101.95%;

p < 0.001 and p < 0.001 for C1 vs. C0 and C1 vs. C2, respectively)

among the clusters.

From the perspective of imaging characteristics (Figure 6

and Supplementary Table S2), C2 had the greatest Tissue_TLC

% (19.15%, p < 0.001 and p < 0.001 for C2 vs. C0 and C2 vs. C1,

respectively), GGO% (15.85%, p < 0.001 and p < 0.001 for

C2 vs. C0 and C2 vs. C1, respectively), Bronchovascular%

(22.25%, p < 0.001 and p < 0.001 for C2 vs. C0 and C2 vs. C1,

respectively), and the least Emph% (0.68%, p < 0.001 and p <
0.001 for C2 vs. C0 and C2 vs. C1, respectively). C1 had the

highest AirT_fSAD% (4.10%, p < 0.001 and p = 0.008 for C1 vs.

C0 and C1 vs. C2, respectively), and the lowest Tissue_RV%

(25.55%, p < 0.001 and p < 0.001 for C1 vs. C0 and C1 vs. C2,

respectively). Moreover, C1 had larger Tissue_TLC% (13.02%,

p < 0.001), GGO% (3.68%, p < 0.001), and Bronchovascular%

(16.64%, p < 0.001) than C0 (Tissue_TLC%: 10.50%, GGO%:

0.39%, Bronchovascular%: 11.79%). There was no significant

difference between C0 and C2 in terms of AirT_fSAD% (C0:

1.08%, C2: 1.68%, p = 0.55), and Tissue_RV% (C0: 32.84%, C2:

34.63%, p = 0.51).

FIGURE 2
Comparison of the latent representations generated by the models trained with and without the volume transform. The data points were
projected on the first and second principal axes.

FIGURE 3
The distribution of the different types of subjects projected
on the first and the second principal axes.
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Discussion

In this study, we proposed a volume-independent contrastive

learning model to differentiate the images of the post-COVID-

19 subjects from those of the healthy controls with an accuracy of

0.90 and an AUC of 0.98 on test data, and extract latent

representations of the images for discovering subgroups of the

post-COVID-19 subjects. Beside the inspiration images,

expiration images were used to augment the training images so

that the model can be generalized to different lung volumes. This

was achieved through a lung volume transform in the training

process to maximize the similarity between the inspiration and

expiration images. The inclusion of the lung volume transform in

the training process ensured the model to capture the features from

the inspiration and expiration images of the same subjects. Without

use of the lung volume transform, the model became volume

dependent. The volume-independence model input feature is

essential when precise volume control during scanning cannot be

guaranteed.

Three clusters were identified by the latent representations

extracted by the contrastive learning model. The first cluster

C0 was regarded as the healthy control cluster since it was

composed of healthy controls (0% post-COVID-19 subjects), while

C1 and C2 clusters were treated as the post-COVID-19 subtypes since

they consisted ofmostly post-COVID-19 subjects with distinct clinical

and imaging features (97.50% and 100.00% post-COVID-19 subjects

for C1 and C2, respectively). The characteristics of C1 and C2 were

summarized in Table 2.

FIGURE 4
The TLC and RV images of the representative subjects for each cluster. The first and the third column showed the activation maps which
indicated the important regions for determining if the subjects were post-COVID-19 subjects (red) or control subjects (purple).
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C1 was dominated by obese female subjects with normal lung

functions other than a higher lung diffusing capacity, andmost of

the C1 subjects were not hospitalized. C1 was characterized by

increased lung tissue during inspiration, greater amount of GGO

patterns, and thickening bronchovascular structure, which are

known phenotypes associated with the inflammation caused by

the infection of COVID-19. Another study has suggested that

even in mild cases, return of increased GGO can still be observed

after 90 days from the diagnosis of COVID-19 (Nagpal et al.,

2021). Furthermore, increased air-trapping due to small airways

disease (AirT_fSAD% ↑, Tissue_RV % ↓) was found in

C1 subjects. It has been shown that small airways disease,

which is presented as air-trapping without emphysema, is a

long-term sequela of COVID-19 (Cho et al., 2022; Jia et al.,

2022). Small airways disease and emphysema are two common

progressive phenotypes in patients with chronic obstructive

pulmonary disease (COPD). The extent of AirT_fSAD% (or

emphysema) in C1 subjects is comparable to (or lower than)

that of the COPD C1 subjects in former smokers whose severity

levels were predominately classified as at risk with GOLD stage 0.

Normal DLCO is defined as 75%–140% of predicted (Ponce and

Sharma, 2021), so the DLCO % predicted of post-COVID-

19 subjects is within the normal range for healthy subjects.

The slightly elevated DLCO %predicted in post-COVID-

19 subjects was contributed by C1 subjects (101.95%). On the

other hand, C2 subjects has decreased and abnormal DLCO %

predicted (66.76%). It has been found in a retrospective study

that the elevated lung diffusing capacity may related to a clinical

diagnosis of obesity and asthma (Saydain et al., 2004). C1 subjects

may share similar characteristics with obesity and asthma

subjects. It requires more investigation in the future to better

understand the elevated DLCO %predicted in C1 subjects.

On the other hand, C2 was dominated by older subjects with

impaired lung functions and a more rigid lung (RV/TLC↑,
TLC↓), and most of them were hospitalized due to COVID-

19. The fact that C2 demonstrated the greatest lung tissue content

FIGURE 5
Demographic and PFT data which were significantly different (α = 0.05) between the clusters. A “*” denotes significance between two clusters
and the range of error bar is the mean ± the standard deviation.
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observed from both expiration and inspiration images and the

greatest amount of GGO patterns may show the signs of

interstitial fibrotic-like patterns (Supplementary Figure S2).

Moreover, increased bronchovascular thickening

(Bronchovascular % ↑) may indicate early bronchiectasis. The

hot spots shown in the activation maps demonstrated the

features of thickened bronchovascular structures which were

observed in C2 (Supplementary Figure S2). It is well

established that age and obesity are two of the major risk

factors of severe COVID-19 (Zheng et al., 2020; Wolff et al.,

2021). Furthermore, it has been reported that severity of COVID-

19 is a risk factor of fibrotic-like patterns in post-COVID subjects

(McGroder et al., 2021). Thus, C2may represent the subjects who

suffered badly from COVID-19.

This study had several limitations. First, the sample size is

relatively small and the cohort came from a single center. There

may exist more subgroups of post-COVID-19 subjects due to

comorbidities, which would require a larger sample size to be

identified. To enhance the generalizability of the clusters, active

learning models which learn the multimodal and cross-population

data over time would be beneficial (Santosh, 2020; Santosh and

Ghosh, 2021). Second, there was no reading for the clusters from

radiologists, whichmay providemore insight to the interpretation of

the clusters. In addition, this is a cross-sectional study. The

progression of these subtypes requires further investigation.

In this study, we demonstrated that a volume-independent

contrastive learning model can differentiate the CT images of

post-COVID-19 subjects from those of healthy controls, and it

can also extract distinct latent representations from the images for

clustering post-COVID-19 subjects. We identified two clinically

meaningful subtypes among the post-COVID-19 study cohort.

Clusters C1 and C2 are characterized by subjects with air-

trapping caused by small airways disease and subjects with

airway-associated interstitial fibrotic-like patterns, respectively. It

has been reported that contrastive models are able to achieve better

performance on unseen data than traditional deep learning models

FIGURE 6
Imaging variables which were significantly different (α = 0.05) between the clusters. A “*” denotes significance between two clusters and the
range of error bar is the mean ± the standard deviation.

TABLE 2 Summary of the cluster characteristics. A “+” and a ‘−’ denote
that the Post-COVID-19 clusters were significantly greater and
less than the control group in terms of the given variables.

C1 C2

Age +

BMI + +

FVC %Predicted −

DLCO %Predicted + −

RV/TLC +

TLC −

AirT_fSAD% +

Tissue_TLC % + ++

Tissue_RV % − +

GGO % + ++

Bronchovascular % + ++
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(Chen et al., 2020). With the design of 2D image input, we expect

that this pre-trainedmodel can be used for transfer learning on chest

X-ray images, which are more accessible at regular clinics, to detect

and classify patients with post-COVID-19. Furthermore, with

increasing cohort size the model has potential to detect the

features caused by different COVID-19 variants. Finally, the

knowledge of clinical and imaging features of post-COVID-

19 subtypes and the ability of subject classification by the model

may facilitate the management and treatment of long COVID.
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