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In situ synthesis of cyano-bridged Cu (I)/Cu (II) complexes usually requires organometallic
catalysts or is carried out under high-temperature and high-pressure conditions. Herein,
the cyano-bridged two-dimensional Cu (I)/Cu (II) photocatalyst, [Cu2 (Py)3(CN)3]n (1), is
synthesized in situ at room temperature. The in situ synthesis mechanism of 1 shows that
the partial Cu (II) complex catalyzed the C-C bond cleavage of 1,3-isophthalonitrile (L) to
introduce -CN and generate Cu (I)/Cu (II). Its ultrathin nanosheets can be obtained by
adding sodium dodecyl benzene sulfonate and performing ultrasonic synthesis in the
process of synthesis 1. The ultrathin nanosheets of 1 have a lattice distance of about
0.31 nm, and it can rapidly decompose methylene blue (MB) (K = 0.25 mg L−1 min−1 at pH
= 3). This research work is beneficial for in situ synthesis of cyano-bridged Cu (I)/Cu (II)
complexes at room temperature and explores their synthesis and photocatalytic
mechanism.
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INTRODUCTION

The full use of renewable solar energy can solve the problems of environmental pollution and energy
shortage (Liu L. et al., 2021; Wei et al., 2021). One of the conditions affecting the photocatalytic
degradation of organic pollutants is the efficient use of light (Wang et al., 2021a; Liu X. et al., 2021;
Karthik et al., 2022). Tuning the energy-level distribution of photocatalysts at the molecular level can
expand their light absorption range and utilization efficiency to improve the photocatalytic
performance. The organic ligands that contain unsaturated functional groups can effectively
improve the absorption and utilization of light (Tanabe and Cohen, 2011; Mei et al., 2021).
Cyano (-CN) is one of the organic ligands that contain unsaturated bonds. Introducing it into
photocatalysts could expand the absorption and utilization of light (Liu et al., 2018; Wang et al.,
2021b; Pan et al., 2022). However, its introduction into materials often requires the use of toxic
cyanides (Li et al., 2018a) [such as KCN, NaCN, Zn (CN)2, TMSCN, and K3Fe (CN)6]. These toxic
cyanides pose a serious threat to the environment and even humans if used improperly. In situ
introduction of -CN is a method that can reduce the use of toxic cyanide. Catalytic C-C bond
cleavage of acetonitrile molecules to introduce -CN is a commonly used method (June 2004; Lu et al.,
2004; Li et al., 2015; Xia et al., 2016). This reaction usually requires the use of organometallic catalysts
(Murahashi et al., 1986; Luo et al., 1998; Taw et al., 2002; Tobisu et al., 2006; Yasui et al., 2008;
Grochowski et al., 2010; Xu et al., 2012), for example, [Pd(PPh3)4], [Cp (PMe3)Rh(SiPh3)(CH2Cl2)]
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[BArˊ4], and [RhCl(cod)]2. Some Cu (Marlin et al., 2001; Zhang
and Fang, 2005; Li et al., 2009; Xu et al., 2010; Zhu et al., 2011; Xu
et al., 2013), Zn (Yang et al., 2009), and Ag (Huang et al., 2004;
Guo et al., 2009) complexes can also perform this reaction at high
temperature and high pressure. However, whether using
organometallic catalysts or using high temperature and
pressure, they consume a lot of energy. In situ synthesis of
-CN-bridged complexes at room temperature can save energy
and discover new synthetic mechanisms.

In mixed valence metal complexes (Heyduk and Nocera, 2001;
Yue et al., 2016; Dao and Sun, 2021), since they contain metals in
two valence states, electron transfer easily occurs between these
two valence states and has important research values such as
electronic conductivity and characteristic color changes. Since
mixed valence complexes contain ions of the same element with
different oxidation states, the charges are transferred between
ions of different oxidation states under the action of an external
electric field, so mixed valence complexes generally have good
electronic conductivity. Moreover, most of the mixed valence
complexes have strong absorption in the visible light region and
show a darker color, which can be used to develop photocatalytic
materials to expand the absorption of light. Research has shown
that there are many mixed valence complexes, such as Pt (II, III),
Ru (II, III), Os (II, III), Fe (II, III), and Mn (III, IV) complexes.
The Cu (I)/Cu (II) complexes are mostly monovalent and
divalent, with a 3d9/3d10 configuration. In Cu (I)/Cu (II)
complexes, the copper (I) and copper (II) centers have
different coordination numbers and steric structures, which
lead to their easy formation of complexes with two-
dimensional (2D) structures. With full exposure to surface
atoms and/or active sites, 2D materials nanosheets (Wang
et al., 2020; Zhao et al., 2020; Thirumal et al., 2021) can be
advantageous for improving the catalytic performance.

In this study, a cyano-bridged 2D Cu (I)/Cu (II) photocatalyst,
[Cu2 (Py)3 (CN)3]n (1), is synthesized in situ by C-C bond
cleavage of 1,3-isophthalonitrile (L) at room temperature. The
in situ synthesis mechanism of 1 is analyzed by X-ray single-
crystal diffraction, Fourier infrared (IR), electrospray ionization
mass spectrometry (ESI-MS), and electron paramagnetic
resonance (EPR). Mechanistic inference and active species
identification for the photocatalytic degradation of methylene
blue by 1 are carried out by using ESI-MS and EPR. The
aforementioned results provide a direction for the in situ
synthesis and explore the mechanism of cyano-bridged Cu (I)/
Cu (II) complexes at room temperature.

EXPERIMENTAL SECTION

Materials and Methods
1,3-Isophthalonitrile (L), P25, Cu (NO3)2·3H2O, ZrCl4, N,N-
Dimethylformamide (DMF), sodium dodecyl benzene
sulfonate, 2-aminoterephthalic acid, pyridine (Py), anhydrous
methanol, and methylene blue (MB) are analytically pure and
purchased from Energy Chemical (Shanghai, China). All the
water in the experiment is pure water produced by Wahaha
Company (Hangzhou, China).

The IR spectra of 1 are measured on KBr pellets with a Nicolet
5DX FT-IR spectrometer. The elemental analysis of 1 (carbon,
hydrogen, and nitrogen) is performed with a Perkin-Elmer 240
elemental analyzer. The X-ray phase analysis of 1 is carried out
using Rigaku’s D/max 2500 X-ray diffractometer with Cu Kα
radiation (λ = 0.15604 nm); the tube voltage was 40 kV, the tube
current was 150 mA, a graphite monochromator was used, and 2θ
was 5° to 65°. The X-ray single-crystal diffraction of 1 is obtained
on a Bruker Apex CCD area-detector diffractometer. The X-ray
photoelectron spectroscopy (XPS) measurements of 1 are
performed on a Kratos Axis Ultra DLD system with a base
pressure of 10−9 torr. Scanning electron microscopy (SEM) of
1 is performed by using a Hitachi S-4800 under the following
conditions: Mag.: 1 KX, signal A: VPSE, and EHT: 20 kV. The
thermal stability of 1 is tested on a Pyris Diamond TG-DTG
Analyzer. Ultraviolet–visible (UV-Vis) absorption spectroscopy
of 1 is performed using a UV-2700 instrument from Shimadzu of
Japan with BaSO4 as a reference. The concentration of MB in the
solution was measured with a UV-Vis 2550 at a 664 nm
wavelength.

In Situ Synthesis of [Cu2 (Py)3 (CN)3]n (1)
A mixture of Cu (NO3)2·3H2O (0.0723 g, 3 mmol), 10 ml of
water, and 10 ml of methanol was used to obtain a light-blue
solution. Then 5 ml of pyridine is added to the solution, and the
color of the solution changed to navy blue. Finally, 5 mg of 1,3-
isophthalonitrile (L) is added to the solution and stirred
magnetically for 3 h. The solution is naturally volatilized for
1–2 months, and yellow bulk crystals of 1 are obtained. Yield:
25% (based on copper). Anal. Calcd for C18H15Cu2N6: C, 48.82;
H, 3.39; N, 18.98. Found: C, 53.47; H, 3.14; N, 18.35. IR (cm−1):
3442 s, 2118 s, 1724 w, 1600 m, 1442 s, 1390 w, 1213 w, 1147 w,
1068 w, 767 m, 701 s, 491 w, and 426 w.

Synthesis of Nanosheets of 1
The front part of the synthetic nanosheets is the same as the
synthesis of [Cu2 (Py)3 (CN)3]n (1). The filtrate was collected in
50 ml of a beaker, 2 ml of 50 mg/L sodium dodecyl benzene
sulfonate was added, and then ultrasound was applied for 10 min;
The suspension was collected and centrifuged at 10,000 rpm. The
solvent molecules were removed and washed with anhydrous
methanol and water three times and dried in an oven at 80°C for
8 h. The nanosheets of 1 were obtained (yield: 91%, based on
copper).

Synthesis of UIO-66-NH2
A mixture of ZrCl4 (3.495 g, 15 mmol) and 2-amino terephthalic
acid (2.715 g, 15 mmol) was dissolved in 115 ml of DMF with the
aid of ultrasonic vibrations. The reaction mixture was heated at
120°C for 24 h and then cooled to room temperature. The solvent
was removed, and the solid powder was washed three times with
DMF and methanol and dried at 80°C for 8 h to obtain UIO-66 as
a powder. Yield: 88% (based on p-phthalic acid).

X-Ray Crystallography
X-ray crystallography is performed on a Bruker Apex CCD area-
detector diffractometer (MoKα, λ = 0.71073 �Å), and the structure
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was solved by direct methods using the Olex2 program and
refined with the Olex2 program (Dolomanov et al., 2009). The
hydrogen atoms were placed at calculated positions and refined as
riding atoms with isotropic displacement parameters.
Crystallographic crystal data and structure processing
parameters for 1 are summarized in Supplementary Table S1.
Selected bond lengths and bond angles for 1 are listed in
Supplementary Table S2. Supplementary Material for 1 has
been deposited with the Cambridge Crystallographic Data Centre
[CCDC nos. 2141770 (1); deposit@ccdc.cam.ac.uk or http://www.
ccdc.cam.ac.uk].

Preparation of Solutions for Electrospray
Ionization Mass Spectrometry
The MB solution after photocatalytic degradation for 60 min is
centrifuged to remove 1, and the collected solution is subjected to
rotary evaporation to remove water molecules. Then 2ml of
anhydrous methanol was added to prepare a solution that could
be used to analyze the photocatalytic degradation of MB products.

Photocatalytic Experiments
Taking photocatalytic degradation of MB as an example, the
photocatalytic performances of 1 and its nanosheets are
investigated and compared with those of P25 and UIO-66-
NH2. The photocatalytic reaction conditions are as follows: the
MB initial concentration C0 = 5 mg/L, pH 3–9, dosage 50 ml;
photo-irradiation is carried out using a 300W xenon lamp
through UV cut-off filters to completely remove any radiation
below 420 nm and to ensure illumination by visible light only.
The irradiation intensity is approximately 10W/m2; a 250 ml
round glass container with a circulating water jacket is used,
temperature (T) = 25°C; the weights of the 1, nanosheets, P25, and
UIO-66-NH2 are 50 mg. The concentration of MB was measured
using a UV-Vis 2550 at a 664 nm wavelength. The photocatalytic
degradation performance is evaluated through the changes in the
concentration of MB before and after the reaction. The
degradation rate was calculated as follows:

η � C0 − C
C0

× 100%

where η is the degradation rate (%) and C0 and C are the qualities
of performance before and after degradation, respectively (mg/L).

RESULTS AND DISCUSSION

Structure of 1
In the previous work (Li et al., 2019a; Li et al., 2019b; Li et al., 2021),
we found that Cu (I) and Cu (I)/Cu (II) complexes can be
synthesized in situ by controlling the molar ratio of reactants,
reaction temperature, and time under high-temperature and
high-pressure hydrothermal synthesis conditions. Herein, at room
temperature, Cu (NO3)2·3H2O, pyridine (Py), and 1,3-
phenylenediacetonitrile (L) are reacted in a mixed solution of
water and methanol to obtain a yellow block coordination

polymer [Cu2 (Py)3 (CN)3]n (1). EPR (Supplementary Figure
S1) indicated that 1 contained a single electron, which is possibly
fromCu (II) or Cu (IV). To further analyze the valence state of Cu in
1, XPS characterization is performed. XPS (Figure 1A) and energy-
dispersive X-ray spectroscopy (EDS) mapping (Supplementary
Figure S2) show that 1 is composed of the C, N, and Cu
elements. The XPS characteristic diffraction peaks of C (1 s)
(Figure 1B) and N (1 s) (Figure 1C) are found at 284.78 (eV)
and 398.49 (eV), respectively. They are in the range of theoretical
and literature reported diffraction peaks (Li et al., 2018b). However,
for the valence state of copper in 1, this did not provide valuable
information about Cu (IV) ions but further determined the
possibility of magnetic contamination having a 3d9 configuration.
Both Cu (I) and Cu (II) signals were observed (Figure 1D,
Supplementary Figure S3): the Cu (II) has a main peak at
934.92 eV (peak II) with a shakeup satellite 943.5 (eV) (peak III)
at higher binding energies, and Cu(I) has a characteristic peak at
932.54 eV (peak I) with no satellite peak (Li et al., 2018c).

The Fourier IR (Supplementary Figure S4) of 1 shows that it
has a strong absorption at 2118 cm−1, which can be assigned to
the characteristic absorption peak of -CN (Marlin et al., 2001;
Zhang and Fang, 2005; Li et al., 2009; Xu et al., 2010; Zhu et al.,
2011; Xu et al., 2013). In view of the aforementioned analysis, it
can be determined that -CN and Cu (I)/Cu (II) exist in 1.

An X-ray single-crystal diffraction analysis reveals that 1
crystallizes in the monoclinic system, P21/c space group
(Supplementary Table S1), with a = 14.5080(7) Å; b =
18.2789(6) Å; c = 14.6503(7) Å; β = 107.953(5)o; V =
3695.9(3) Å3. 1 is a coordination polymer (Figure 2), and its
smallest structural unit (Figure 2A) shows its molecular formula
is C18H15Cu2N6, which is mainly composed of one Cu (II) cation,
one Cu (I) cation, three pyridine molecules, and three CN−

anions. The EPR (Supplementary Figure S1) test result has
shown that the coordination environment of Cu (II) ions in 1
does not have axisymmetric properties. Therefore, in 1, Cu (I) is
coordinated with one pyridine molecule and three CN− anions,
which belongs to 4-coordination. However, the Cu (II) in 1 is
coordinated with two pyridine molecules and three CN− anions,
which belongs to 5-coordination. The CN− belongs to bridging
ligands, so the CN− in 1 bridges adjacent to Cu (I) and Cu (II) to
form a 2D structure (Figures 2B–D). In 1, it is very interesting
that there are two kinds of pores in it (Supplementary Figure S5).
One of them is a small hole; it is composed of four -CN-bridged
four Cu (I) and Cu (II). The other is a micropore; it is composed
of eight -CN-bridged eight Cu (I) and Cu (II). The direct
distribution of micropores in 1 is 7.5 × 10.5 Å
(Supplementary Figure S5). Although Cu (I) and Cu (II) in 1
are coordinated with multiple CN-, the C-N distances fall in the
range of 1.140(5) ~ 1.159(5) Å [C(1)-N(1) = 1.140(5) Å; C(2)-
N(2) = 1.158(5) Å; C(3)-N(3) = 1.159(5) Å]. The Cu-N and Cu-
C distances fall in the range of 1.969(3) ~ 2.158(3) Å and
1.947(4) ~ 1.969(4) Å, respectively. These bond distances
(Supplementary Table S1) and bond angles (Supplementary
Table S2) in 1 are comparable to those in other cyanide-bridged
copper (I)/Cu (II) complexes (Marlin et al., 2001; Zhang and
Fang, 2005; Li et al., 2009; Xu et al., 2010; Zhu et al., 2011; Xu
et al., 2013).
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In Situ Synthesis Mechanism of 1
The aforementioned EPR, XPS, IR, and X-ray single-crystal
diffraction have indicated the elemental composition, functional
groups, and valence states of Cu ions in 1. The solution during in
situ synthesis of 1 is collected and tested for electrospray mass
spectrometry (ESI-MS). Numerous molecular fragmentation peaks
(Supplementary Figure S6) appeared in ESI-MS of the solution
during in situ synthesis of 1. There are seven molecular fragment
peaks related to Cu ions that can be deduced according to the
composition and valence state of reactant raw materials and
solvents. They are [Cu·(L)·(Py)·(H2O)2·(NO3)]

+,[Cu2·(Py)3·(CN)3]+,
[Cu·(L)2·(NO3)·(H2O)2]

+,[Cu·(Py)4·(H2O)2]
2+,[Cu·(NO3)2·(H2O)4]

+,
[Cu·(Py)2·(H2O)2·(NO3)2]

+, and [Cu·(L)2·(NO3)2·(H2O)2]
+.

Therefore, the possible in situ synthesis mechanism (Figure 3)
of 1 is as follows: at room temperature, Cu (NO3)2·3H2O is
dissolved in 1:1 methanol and water to form a light-blue solution,
and the temperature of the solution is about 10°C. At this time,
the Cu (II) exists in the form of [Cu·(NO3)2·(H2O)4] in solution.
Then 5 ml of pyridine is added to the solution, and the color of the
solution changed from light blue to navy blue. This indicates that
pyridine reacts with Cu (II) to form [Cu·(Py)2·(H2O)2·(NO3)2].
Since the amount of pyridine added to the solution is very large, it
has a stronger coordination ability with Cu (II) than NO3

−, thus
forming [Cu·(Py)4·(H2O)2]

2+. Finally, 5 mg of 1,3-
isophthalonitrile (L) is added to the navy solution, and the
temperature of the solution at this time changed from 10 to

45°C. This phenomenon indicates that the Cu (II) complex has
reacted with L and formed [Cu·(L)·(Py)·(H2O)2·(NO3)]

+ and
[Cu·(L)2·(NO3)2·(H2O)2]. The coordinating atoms in the six-
coordinated [Cu·(L)2·(NO3)2·(H2O)2] are too crowded, so one
NO3

− anion is lost to form [Cu·(L)2·(NO3)·(H2O)2]
+. In

[Cu·(L)2·(NO3)·(H2O)2]
+, Cu (II) catalyzes the cleavage of the

C-C bond in L, generating (CN)2 and 1,3-dimethylbenzene. At
this time, the Cu (II) and (CN)2 undergo a redox reaction to form
Cu (I) and CN−, respectively. Therefore, at this time, in addition
to a large amount of pyridine, there are Cu (I) and CN− in the
solution. They self-assemble at room temperature to form
[Cu2·(Py)3·(CN)3]n. It can be seen that the copper complex
can also catalyze the cleavage of the C-C bond on the L
structure and in situ synthesis of cyano-bridged Cu (I)/Cu (II)
coordination polymers at room temperature.

Photoelectric Response and Photocatalytic
Performance of 1
UV-Vis diffuse reflectance spectroscopy (Figure 4) shows that 1
is yellow, and it has more than 30% light absorption in the range
of 220–800 nm. The cyclic voltammetry curve (Supplementary
Figure S7) shows that the band gap (eV) of 1 is 2.63 eV. The
HOMO = −5.41 eV and LUMO = −2.78 eV of 1 can be calculated
by the following formulas (Li et al., 2018a): EHOMO/eV =
−4.44—Eonset (Ox); ELUMO/eV = −4.44—Eonset (Red).

FIGURE 1 | XPS of 1: (A) survey, (B) C (1 s), (C) N (1 s), and (D) Cu (2p).
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Therefore, 1 and its nanosheets are very good photocatalysts
with a visible light response; they photocatalytically degrade MB
in comparison with P25 and UIO-66-NH2 in solutions of pH 3–9.
The performance of these photocatalysts was investigated under
the irradiation of a 300W xenon lamp, with the MB solution as a
blank control. In order to better study the performance of these
photocatalysts in photocatalytic degradation of MB, a control
experiment of the adsorption of MB is carried out in the dark. The
experimental results (Figure 5) show that the amount of
photocatalytic degradation of MB per unit time of these
photocatalysts is greater than that of the adsorption of MB
(Supplementary Figure S8). Moreover, their performance for
photocatalytic degradation ofMB in acidic solutions is better than
that in neutral and basic solutions (Figure 5). Among them, their
performance is the best at pH = 3. At this time, the photocatalytic
degradation rates of MB can reach 0.0556, 0.0261, and
0.0417 mg L−1 min−1. The performance of 1 is about 2.1 times
that of P25 and 1.3 times that of UIO-66-NH2.

The ultrathin nanosheets of 1 can be obtained by adding
sodium dodecyl benzene sulfonate and performing ultrasonic
synthesis in the process of synthesis of 1. 1 has a 2D structure and
is flaky (Figure 6A). When it was exfoliated into nanosheets, its
morphology did not change, but it became thinner and has a
lattice distance of about 0.31 nm (Figure 6B–F). The EDS
mapping (Supplementary Figure S9) of nanosheets shows

that it is still composed of the Cu, C, and N elements. Since 1
has become an ultrathin nanosheet, more surface sites can be fully
exposed. Therefore, the nanosheets of 1 can quickly decompose
MB, and the photocatalytic degradation rate can reach
0.25 mg L−1 min−1 at pH = 3. This rate is 4.5, 9.6, and
6.0 times that of 1, P25, and UIO-66-NH2, respectively. In
addition, the performance of these nanosheets is almost the
same as that of MoS2 nanosheets (K = 0.50 mg L−1 min−1 at
pH 3). However, the ultrathin Cu (I)/Cu (II) inorganic
coordination polymer quantum sheet (ICPQS) {[CuII (H2O)4]
[CuI4 (CN)6]}n photocatalytic degradation performance (K =
2.5 mg L−1 min−1 at pH 3) of MB with practical applications
(Li et al., 2018b) is 10.0 times that of these nanosheets.
However, the performance of these nanosheets for
photocatalytic degradation of MB (K = 0.0737 mg L−1 min−1 at
pH 3) is 3.4 times higher than that of the Cu (I) polymer [Cu
(L)2·(CN)]n (Li et al., 2018c). It can be seen that the exfoliation of
2D materials into ultrathin nanosheets can allow more sites on
the catalyst surface to be used, thereby improving the
performance of photocatalytic degradation of pollutants.

Photocatalytic Mechanism of 1
tert-Butanol is used as a blank reference. The photocatalytic
degradation of MB is carried out by adding dimethyl pyridine
N-oxide (DMPO) to the solution at pH = 7, and the free radicals

FIGURE 2 | (A) The smallest structural unit of 1; (B–C) The 2D structure formed by -CN bridged Cu(I)/Cu( II); (D) Hole distribution in 2D structure of 1.
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generated during the reaction are detected by EPR. The test
results show (Supplementary Figure S10) that the OH active
species are generated during the photocatalytic process. The
solution of photocatalytic degradation of MB for 60 min is

collected for ESI-MS characterization, and the test results
show (Supplementary Figure S11) that there are five signals
related to the fragmentation of MB molecules. They are
[C16H18N3S]

+, [C16H22N3SO]
+, [C6H4N2SO7]

+, [C6H9N2SO8]
+,

and [C4H6NO6]
+. Combined with the EPR (Supplementary

Figure S10) and ESI-MS (Supplementary Figure S11), the
mechanism and path (Figure 7) of 1 photocatalytic
degradation of MB can be clearly deduced. It can be clearly
seen that under visible light irradiation, the generated OH
undergoes a redox reaction with MB, which is carried out in
multiple steps: first, the amide bond in the MB molecule is
broken; then the S atom and the O atom combine to form a
S=O bond; under the attack of free radicals, the methyl group on
the N atom is oxidized to generate a small molecular acid and ring
opening to generate 2,5-dinitrobenzene sulfonic acid; finally, all
aromatic rings are broken off to generate the small molecular
acid, CO2, and water.

Stability and Cycling Experiments of 1
Both 1 and its nanosheets exhibited good photocatalytic
performance under acidic conditions. The photocatalytic
degradation of MB is the best at pH = 3 (Figure 5), and their
rates can reach 0.0556 and 0.2500 mg L min−1, respectively. 1

FIGURE 3 | In situ synthesis mechanism of 1.

FIGURE 4 | The UV-Vis absorption spectroscopy of 1.
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FIGURE 5 | Performance of photocatalytic degradation of MB: (A) 1, (B) P25, (C) UIO-66-NH2, and (D) nanosheets of 1.

FIGURE 6 | (A) SEM of 1 and (B–F) TEM of nanosheets.
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after photocatalytic degradation of MB is collected and washed
with absolute ethanol and water three times. Then it was heated in
a blast drying oven at 100°C for 8 h (Supplementary Figure S12
shows that it has good thermal stability within 30–100°C) and
characterized by analysis of its powder X-ray diffraction (PXRD).
The PXRD shows (Supplementary Figure S13) that its structure
has not changed. Therefore, 1 after photocatalytic degradation of
MB at pH = 3 is subjected to cycling experiments, and even after

five cycles, its performance can still remain above 99.5%
(Figure 8).

CONCLUSION

In summary, a cyano-bridged 2D Cu (I)/Cu (II) photocatalyst, [Cu2
(Py)3 (CN)3]n (1), is synthesized in situ at room temperature. Its in
situ synthesis mechanism suggests that the Cu (II) complex can
catalyze the C-C bond cleavage of 1,3-isophthalonitrile (L) to
generate -CN and Cu (I)/Cu (II). The photocatalytic degradation
of MB by these nanosheets is a multi-step redox process from
macromolecules to small molecules with the participation of OH.
The results of this study are beneficial to reducing the use of toxic
cyanide and in situ synthesis of CN−materials at room temperature.
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