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Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave compo-
nents of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expres-
sion and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and 
enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes 
in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychi-
atric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible 
link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, 
have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located 
on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and 
MMPs have also been shown to be important mediators of immune responses.
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Abbreviations
3′UTR​	� 3′ Untranslated region
AMPA	� α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
AMPAR	� α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor
APP	� β-Amyloid precursor protein
ASD	� Autism spectrum disorders
BD	� Bipolar disorder
BDNF	� Brain derived neurotrophic factor
CA1	� Cornu Ammonis area 1, subfield of 

hippocampus
CA3	� Cornu Ammonis area 3, subfield of 

hippocampus
CAM	� Cell adhesion molecule
CCI	� Controlled cortical impact
CPP	� Conditioned place preference
ECM	� Extracellular matrix
ECT	� Electro-convulsive therapy
eIF4E	� Eukaryotic initiation factor 4E
EPSP	� Excitatory postsynaptic potential

FCD	� Focal cortical dysplasia
FMRP	� Fragile X mental retardation protein
FPI	� Fluid percussion injury
FXS	� Fragile X syndrome
GABA	� γ-Aminobutyric acid
ICAM-5	� Intercellular adhesion molecule-5
KA	� Kainic acid
KO	� Knockout
LTD	� Long-term depression
LTP	� Long-term potentiation
MD	� Major depression
MMP	� Matrix metalloproteinase
mRNA	� Messenger ribonucleic acid
MT-MMP	� Membrane-type MMP
NAc	� Nucleus accumbens
NGF	� Nerve growth factor
NMDA	� N-methyl-d-aspartate
NMDAR	� N-methyl-d-aspartate receptor
PAR1	� Protease activated receptor 1
PFC	� Prefrontal cortex
PNN	� Perineuronal nets
PTE	� Post-traumatic epilepsy
PTZ	� Pentylenetetrazole
SAP-25	� Synaptosomal-associated protein of 25 kDa
SE	� Status epilepticus
TBI	� Traumatic brain injury
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TIMP	� Tissue inhibitor of metalloproteinases
TLE	� Temporal lobe epilepsy
tPA	� Tissue plasminogen activator
uPA	� Urokinase plasminogen activator
ZnT3	� Zinc transporter 3

Introduction to MMPs in the brain

Extracellular matrix (ECM) in the brain has emerged as an 
important reservoir of signaling molecules, which can influ-
ence synaptic plasticity, synaptogenesis, neurite outgrowth 
and other processes occurring in central nervous system. 
Many suggest now that “tetrapartite synapse” is a functional 
unit of the brain, where ECM plays equally important roles 
to pre-, post-synaptic terminals and glial cells’ invaginations 
[1, 2]. Matrix metalloproteinases (MMPs) are among the 
major modulators of ECM, providing precise proteolysis 
of its components, in addition to performing limited cleav-
age of cell adhesion molecules (CAMs), neurotrophins and 
cytokines [3, 4]. MMPs make up a family of over 20 proteins 
in humans and rodents (predominantly secreted, but six are 
membrane-bound), each encoded by a different gene. MMPs 
are a part of bigger, metzincin group of proteases, which all 
have Zn2+ and the conserved methionine residue in their 
active site [3, 5].

Based on their domain structure, MMPs are subdivided 
into eight groups, but all are composed of (starting from 
N-terminus): a signal peptide, propeptide, catalytic domain 
and in most cases hinge region and hemopexin domain. The 
signal peptide is removed after the protein enters the endo-
plasmic reticulum. MMPs are expressed as inactive zymo-
gens, where the propeptide has conserved cysteine residue 
binding Zn2+ in the active center of the enzyme. Activation 
occurs when the interaction between cysteine and Zn2+ is 
disrupted, which can be achieved by cleaving the propeptide 
off (by other proteases), as well as by other means, such as 
S-nitrosylation, detergents or sulphates [5, 6]. The catalytic 
domain of all MMPs has a highly conserved Zn2+ binding 
motif—HExGHxxGxxH (where x is any amino acid) and 
a distinct β-turn (usually ALMYP). That is why all MMPs 
have distinguishable, but often overlapping, substrate spe-
cificities. Moreover, the catalytic domain of MMPs requires 
binding of Ca2+ ions which are required for the stabiliza-
tion of its active state [7]. Gelatinases (MMP-2 and -9) have 
additional fibronectin type II inserts, which are required for 
collagen and elastin binding and cleavage.

Most of MMPs (except of MMP-7, MMP-26 and MMP-
23) have hinge region and hemopexin domain, which is 
responsible for interaction with substrates, dimerization 
and binding of one of four endogenous tissue inhibitors of 
metalloproteinases (TIMPs). MMP-23 instead of hemopexin 
domain has unique cysteine-rich, proline-rich and IL-1 type 

II receptor-like domains. MMP-14, MMP-15, MMP-16, and 
MMP-24 have also a transmembrane domain which anchors 
them to the cell membrane whereas MMP-17, and MMP-
25 have on their C-terminus a glycophosphatidyl inositol 
membrane anchoring signal [5].

Since excessive activity of MMPs might be detrimental 
to the tissue (as it happens under some pathological con-
ditions), the enzyme gene expression, mRNA maturation, 
distribution and survival, as well as protein release and acti-
vation are all strictly regulated. This can be best described 
in the example of one of the most studied MMP, MMP-9 
[8]. MMP-9 transcription is activity regulated by inducible 
transcription factors, such as AP-1 [9, 10], then MMP-9 
mRNA transport, survival and translation are also activity 
regulated, as it has been demonstrated for neurons [11–13]. 
MMP-9 is present within cells in vesicles distributed along 
microtubules and microfilaments and is secreted in a Golgi-
dependent pathway in 160–200 nm vesicles [14–16]. Nota-
bly, MMP-9 is often found in the same secretory vesicles as 
its inhibitor, TIMP-1 and although secreted upon stimula-
tion, it is thought to act very focally and can be concentrated 
at the cell membrane by binding to cell adhesion molecules 
such as the hyaluronian receptor CD44 [17, 18] or integrins 
[19].

The activation of proMMP-9 occurs extracellularly after 
its release and is controlled by a cascade of steps involving 
other proteases, inhibitors and receptors. For example, ser-
ine proteases: tissue plasminogen activator (tPA) or uroki-
nase plasminogen activator (uPA), which can be docked to 
the membrane by its receptor, uPAR, activate the conver-
sion of plasminogen to plasmin, which in turn can activate 
proMMP-9 [20]. Additionally, some MMPs such as MMP-
11 or MMP-28 and all membrane-type MMPs (MT-MMPs) 
have also a furin-like recognition motif in their propeptide 
and can be thus activated inside the cell before secretion or 
exposure to cell surface, and activate other secreted MMPs 
[21]. Once activated, MMP-9 can be inhibited, particularly 
by TIMP-1, but also by other TIMPs [22]. This is because, 
similarly to redundancy in MMPs substrate specificity, there 
is a significant overlap in the affinity of TIMPs to different 
MMPs [8].

TIMP-1 can inhibit MMPs directly by binding through its 
N-terminal domain to the catalytic site of the enzyme [23]. 
Interestingly, inhibition of MMP-9 can be also achieved by 
binding TIMP-1 C-terminus to the hemopexin domain of 
MMP-9, thus blocking its interaction with substrate or mem-
brane docking proteins [24]. MMP-9 and TIMP-1 share the 
same release kinetics [25] and it has been shown that those 
two proteins can be co-released even from a single vesi-
cle [14, 15, 26]. Moreover, it has been proposed by Ogata 
and co-workers [27] that TIMP-1 bound to MMP-9 via the 
hemopexin domain is also important during activation of the 
gelatinase by other MMPs, like MMP-3. Finally, activated 
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MMP-9 binds through its hemopexin domain to low-density 
lipoprotein receptor-related protein, which is an endocytic 
receptor for this and many other proteins, and after endocy-
tosis leads to the destruction of MMP-9 [28].

All the regulatory mechanisms, such as secretion, inter-
action with membrane receptors, internalization and TIMP-
dependent inhibition, are to limit spatially and temporar-
ily MMP’s activity outside the cell and prevent excessive, 
potentially pathological activity. An interesting example of 
physiological, tight control by TIMP-1 over MMP-9 has 
been recently published by Magnowska et al. [29], where 
both proteolytic activity of MMP-9 and its following inhibi-
tion by TIMP-1 were discovered to be necessary for synaptic 
plasticity (see below). Interestingly, activation of MMP-9 
in the brain tissue can be achieved by the degradation of 
TIMP-1 by cathepsin B, a lysosomal enzyme, which upon 
stimulation can be released to extracellular space and acti-
vate MMP-9 [30, 31]. Another example of MMP activat-
ing cascade is that of MMP-2, as it requires the formation 
of tertiary complex with TIMP-2 and MT1-MMP [32]. 
TIMP-2 forms a link between dimerized MT1-MMP and the 
hemopexin domain of pro-MMP-2. This leads to cleavage of 
MMP-2 propeptide by MT1-MMP and thus its activation.

As already mentioned, MMPs are inhibited by four 
endogenous inhibitors, TIMP-1 to TIMP-4. They are all 
soluble and share a common structure, but their role is very 
diverse. For example, TIMP-1 can act independently to its 
inhibitory activity as a growth factor suppressor [33] or a 
cytokine [34]. The cytokine effect of TIMP-1, which results 
in inhibition of neurite outgrowth and increase in growth 
cone volume, is mediated through its internalization by 
LRP-1 [35, 36].

Expression in the brain

Among the MMPs, many have been shown to be expressed 
in the brain, namely: MMP-1, MMP-2, MMP-3, MMP-7, 
MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-
13, MMP-14, MMP-15, MMP-16, MMP-17, MMP-24 and 
MMP-28. Notably, a number of those are expressed in the 
brain only under very particular physiological and/or patho-
logical circumstances.

MMP-1 (collagenase 1) expression in the brain has often 
remained undetected [37, 38]. However, recent studies have 
shown MMP-1 immunoreactivity in the olfactory lobe, 
entorhinal cortex, pontine nuclei, and periaqueductal gray, 
but not in the hippocampus [39]. Moreover, MMP-1 pro-
tein level was increased at 4 h following systemic kainate 
administration [39] or after ischemic stroke [40], and was 
shown to be present in the brains of Alzheimer’s disease 
patients [41]. MMP-1 seems to be mostly expressed by glia 
[42, 43], but there are also reports indicating its presence in 

neurons [39]. MMP-1 was also shown to enhance prolifera-
tion and increased differentiation towards neurons of hip-
pocampal neural progenitor cells [44]. Moreover, MMP-1 
overexpression in transgenic mice under GFAP gene pro-
moter enhances dendritic complexity and causes deficits in 
learning and memory [42]. Literature suggests that MMP-1 
in the brain acts mainly through activating protease activated 
receptor 1 (PAR1) [44], and thus increasing cytoplasmic 
Ca2+ concentration [42], as it was proven also in platelets 
[45]. Interestingly, PAR1 was shown to be cleaved and acti-
vated by another collagenase which is also expressed in the 
brain, MMP-13, however, this relationship was studied in 
cardiac fibroblasts and cardiomyocytes [45].

MMP-2 (gelatinase A) is one of the two gelatinases most 
extensively studied in the brain. It is constitutively expressed 
mainly by astrocytes [46, 47], however, many studies find it 
to be localized also in some cortical, and cerebellar neurons, 
as well as in the hippocampus and nucleus accumbens (NAc) 
[46, 48–51]. MMP-2, like most of the MMPs in the brain, is 
expressed at much higher level during early postnatal devel-
opment than during adulthood, reaching peak around day 4 
after birth [48, 52]. MMP-2 expression can be induced under 
various pathological conditions (see below). In particular, 
reactive astrocytes show increased expression of MMP-2 
[53]. MMP-2 in astrocytes is localized at the leading edge 
of processes, where it regulates actin cytoskeleton and thus 
affects cell migration [54].

MMP-3 (stromelysin 1) is, as many other MMPs, 
expressed during development in the central nervous sys-
tem. Around embryonic day 15, it is expressed in most 
brain areas in rat, and in mouse it is found in neurons of 
the ventricular zone. In late prenatal period, MMP-3 is also 
expressed in mature oligodendrocytes [55]. Until postnatal 
day 10, MMP-3 is expressed by most cells of the cerebellar 
cortex, striatum and hippocampus and can be found in both 
neuronal and glial cells [55–57]. MMP-3 is also expressed 
during postnatal brain development in cerebellum, spe-
cifically in Purkinje cell somata and dendrites as well as 
in some granule cells [51, 58]. In the adult brain, MMP-3 
expression level is either very low or negligible [37, 59], 
but some studies report its expression in the hippocampus, 
especially during learning paradigms [60, 61]. A recent 
study of Wiera et al. [57] shows that in the stratum radiatum 
of hippocampus, MMP-3 seems to be mainly expressed by 
astrocytes in a sparse punctate manner. MMP-3 has a very 
broad range of substrates in the brain. It was shown, for 
example, to cleave almost all components of perineuronal 
nets [53]. MMP-3 is upregulated in many brain patholo-
gies, disrupting blood–brain barrier, causing neuroinflam-
mation and apoptosis. In such conditions, it is expressed by 
injured neurons, oligodendrocytes, astrocytes and reactive 
microglia or invading macrophages [62, 63]. Induction of 
MMP-3 expression depends on binding of NFκB to its gene 
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promoter upon the release of inflammatory mediators, e.g., 
interleukin-1β caused by ischemia, traumatic brain injury 
(TBI) or infections [64]. In addition, MMP-3 acts itself 
as a signaling molecule and creates positive feedback for 
inflammatory response, as it causes activation of microglia 
and synthesis of cytokines, e.g., tumor necrosis factor-α, 
interleukin-1β, or interleukin-6 [65]. However MMP-3 was 
also shown to have beneficial effects during pathological 
states as it can cleave Fas ligand [66], can promote synap-
togenesis [67] and is involved in remyelination [68].

MMP-7 (matrilysin) expression during development, as 
well as in the normal adult brain, is often described as neg-
ligible [59, 69–71]. Most reports that detect MMP-7 in nor-
mal brain conditions point to glia (most often microglia) as 
MMP-7 expressing cells [69, 72, 73]; although the issue of 
MMP-7 source in the brain has often not been addressed in 
various studies. Interestingly, Le and Friedman [74] reported 
a high level of MMP-7 in hippocampal neurons, which 
dropped after seizures induced with kainic acid. MMP-7 is, 
though, strongly upregulated during such pathological con-
ditions in the brain as multiple sclerosis [73], experimental 
autoimmune encephalomyelitis [75], HIV dementia [76] or 
brain tumors [71]. Among the substrates of MMP-7 in the 
brain, the most prominent are pro-nerve growth factor (pro-
NGF) [74, 77], SNAP-25 [78], the NR1 subunit of NMDA 
receptor [79] or myelin-associated glycoprotein [80].

MMP-9 (gelatinase B) is the most studied MMP in the 
brain, with its expression in naïve brain kept on a very low 
level. It is found in hippocampus, cerebellum and cerebral 
cortex [46, 47, 51, 52] and is predominantly expressed by 
neurons, but also by glia [15, 47]. MMP-9 expression is 
tightly regulated on different levels (see above) and it peaks 
during early development [48, 51, 52]. Even though MMP-9 
levels in the adult brain are low, they are upregulated during 
neuronal increased activity/plasticity but also, as so many 
other MMPs in pathological situations (see below and for 
recent reviews: [4, 81]). Most interestingly, MMP-9 activity, 
as well as its mRNA are present in the vicinity of synapses 
[11, 82–84].

MMP-14 (MT1-MMP) is most often studied in the brain 
in the context of gliomas, where it is highly expressed along 
other MMPs. Under pathological and inflammatory condi-
tions, it has been found expressed by microglia [85]. MT1-
MMP is, however, expressed on a low level in the normal 
adult brain [37]. MT1-MMP in the hippocampus is predomi-
nantly localized in neuronal cell layer [86] and expression 
of MT1-MMP is elevated upon BDNF treatment in mixed 
neuronal cultures [87]. In retina, it is expressed in retinal 
ganglion cells as well as in Müller glia [88]. Interestingly, 
MT1-MMP expression increases in female hippocampus 
upon the presentation of novel odor [89].

MMP-24 (MT5-MMP) is expressed at relatively high lev-
els in the adult brain, particularly in the cerebellum, but also 

hippocampus and olfactory bulb [90, 91]. It can be found 
predominantly in neurons and its expression is increased 
during development regulating axonal growth and dendritic 
tree formation of Purkinje cells [91, 92].

Synaptic plasticity, learning and memory: 
MMPs expression and function

Brain plasticity refers to the capacity for structural and func-
tional reorganization of the neural networks in response to 
external challenges. Beside learning and memory, which 
allow for adaptation to the changing environment, neuro-
plasticity is necessary to recover after disorders and injuries. 
Brain plasticity is manifested at many levels in the nervous 
system, ranging from molecular events, such as changes in 
gene expression, protein availability and function, to cellular 
physiology, to behavior. At the cellular level, the plasticity 
is supported by dynamic modifications in neural connectiv-
ity and excitability that are driven by molecular changes in 
synapses, entire neurons and glial cells.

Synapses are particularly prone to dynamic alterations, 
and thus believed to play a major role in the plasticity. Aber-
rant synaptic plasticity leads to many pathological condi-
tions, e.g., epileptogenesis, drug addiction, autism spectrum 
disorders, schizophrenia or depression. Compensatory brain 
plasticity may reduce the detrimental effects of such pathol-
ogies as multiple sclerosis, Parkinson’s disease, cognitive 
deterioration or Alzheimer’s disease. Induction and mainte-
nance of activity-dependent synaptic plasticity adaptations 
require a temporal and spatial control of a complex sequence 
of events that result in the modification of pre- and post-
synaptic content, as well as remodeling of the entire tetra-
synapse morphology.

Excitatory synapses that are particularly plastic, are pre-
dominantly located on small dendritic protrusions called 
spines, whose morphology can be taken as a proxy for the 
synaptic efficacy [93]. Small dendritic spines often harbor 
silent synapses, equipped with a limited number of NMDA 
receptors for glutamate and virtually missing AMPA recep-
tors (AMPAR) for this excitatory neurotransmitter. Increased 
synaptic efficacy that may produce neuronal depolarization 
associates with the accumulation of AMPAR (and thus 
enhanced glutamate responsiveness) that in turn correlates 
with increased spine volume and enlargement of the den-
dritic spine head, producing spines with a mushroom shape.

MMPs have repeatedly been implicated in synaptic plas-
ticity thanks to their capacity to act in a tightly controlled, 
short temporal window, targeting extracellular matrix, cell 
adhesion molecules, synaptic receptors, neurotrophins and 
other proteins implicated in synaptic efficacy and remod-
eling. Studies with broad spectrum MMPs inhibitors have 
demonstrated impairments in various short- and long-term 
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plasticity models including paired pulse and theta burst 
facilitation, maintenance of long-term potentiation (LTP), 
induction and magnitude of long-term depression (LTD) 
in the hippocampus [94–96], as well as ocular dominance 
plasticity in the visual cortex and barrel cortex plasticity, 
resulting from sensory deprivation [97–99].

Recent studies have shed light on the role of MMPs in 
synaptic plasticity. In this regard, the best studied involve-
ment of metalloproteinase function in synaptic plasticity 
processes concerns the activity of MMP-9. This issue has 
been covered by extensive reviews [4, 100–103], so it will 
be only briefly presented here.

MMP-9 is released from the postsynaptic compartment 
of excitatory synapses in an activity-dependent manner [11, 
82]. Upon activation, MMP-9 cleaves (among others) such 
synaptic cell-adhesion molecules as: β-dystroglycan [104], 
neuroligin-1 [105], nectin-3 [106], intercellular adhesion 
molecule-5 (ICAM-5) [107, 108], synaptic cell adhesion 
molecule-2 and collapsin response mediator protein-2 [109], 
affecting NMDA receptors mobility and function at the syn-
apse [110, 111]. Chemical LTP experiments on dissociated 
and organotypic hippocampal cultures revealed MMP-9-de-
pendent spine enlargement, accumulation of AMPA recep-
tors in the synapse and increase in the spike count and bursts 
frequency [84, 112–115]. Transient function of MMP-9 is 
a requirement for maintenance of the late phase, NMDA-
dependent LTP at various pathways in the hippocampus 
[116–119], prefrontal cortex (PFC) [120], as well as basal 
and central nuclei of the amygdalar complex [121]. Further-
more, Dziembowska et al. [11] reported increases in MMP-9 
mRNA levels in the hippocampal dentate gyrus of rats with 
LTP evoked therein by the perforant path stimulation.

The increase of limited MMP-9 activity at the synapse has 
a profound impact on synaptic morphology. It was reported 
that activation of this metalloproteinase during LTP induc-
tion leads to the enlargement of dendritic spines [118]. This, 
actually, is a two-step process that begins with the MMP-
9-mediated elongation of dendritic spines into apparently 
more immature, filopodium-like shape [122–124]. Then, 
only upon inhibition of the proteolytic activity, which in 
neurons might be mediated via specific inhibitor TIMP-1 
[46, 125], dendritic spines assume larger, mushroom-like 
shape [29].

As far as learning and memory are concerned, MMP-9 
activity was reported to be increased after Morris water 
maze, head-shake response, passive avoidance and appeti-
tive learning [60, 61, 116, 126]. Importantly, in addition to 
the functional role of MMP-9 in activity-dependent synaptic 
remodeling, blocking the enzyme has dramatic consequences 
on learning processes in vivo. Using either pharmacologi-
cal inhibition or genetic ablation, it was demonstrated that 
MMP-9 activity was necessary for hippocampus-dependent 
learning, as shown in Morris water maze, contextual fear 

conditioning and reconsolidation of fear memory [60, 117, 
127, 128], as well as amygdala-dependent positive reinforce-
ment conditioning in sucrose preference task [126]. On the 
other hand, fear conditioning to an auditory cue, as well as 
avoidance learning of an exposure to an air-puff or a bitter 
taste in the Intellicages, remained undisturbed in MMP-9 
KO mice [117, 126]. Of note, LTP to lateral nucleus of the 
amygdala is believed to support the aversive learning, such 
as aforementioned fear conditioning to an auditory cue 
[121]. Therefore, lack of MMP-9 requirement in the aver-
sive learning might be explained by the fact that the enzyme 
is not obligatory for the lateral amygdala synaptic plasticity 
and LTP.

Interestingly, MMP-9 has also been considered as a player 
in human cognition. In the study of Bach et al. [129], block-
ing the activity of MMP-9 by administration of its inhibitor 
doxycycline 3.5 h prior to the fear conditioning procedure, 
reduced the fear response in human subjects measured 
1 week after the test. This might suggest that lower MMP-9 
activity during fear acquisition phase attenuated the forma-
tion of the fear memory. Moreover, reduced mRNA and pro-
tein levels of MMP-2, MMP-9 and TIMP-2 were observed 
in patients diagnosed with depression and displaying lower 
performance in cognitive tasks, as compared to healthy sub-
jects [130]. Furthermore, within the healthy control group, 
there was a positive correlation between MMP-2 (protein 
level), MMP-9 and TIMP-2 (mRNA levels) and perfor-
mance in cognitive tasks: visuospatial performance, working 
memory tasks, auditory-verbal memory, the effectiveness of 
learning processes and verbal fluency [130]. Similar positive 
correlation between MMP-9 serum level and decision-mak-
ing abilities was observed in bulimia nervosa patients [131]. 
Another report on MMP-9 involvement in cognition comes 
from a study on male bipolar patients. Those subjects car-
rying a MMP9 gene polymorphism −1562C/C, apparently 
characterized with lower promoter activity, performed better 
in cognitive tests than people with other genotypes [132]. It 
should be, however, noted that recent study by Gregory et al. 
[133] has questioned the role of this gene polymorphism 
in regulating MMP-9 expression in the brain and, further-
more, has demonstrated the gene polymorphism affects the 
brain structure and function that obviously may contribute 
to cognition.

MMP-3 role in learning and memory is best described 
in hippocampus-dependent learning tasks. In a spatial 
memory test—the Morris water maze—it was reported 
that MMP-3 mRNA and protein levels were elevated dur-
ing the acquisition phase, while pharmacological inhibi-
tion of MMP-3 activity disrupted this learning process [60, 
128]. The increase of MMP-3 level in this spatial learning 
task was prevented by the blocking of the NMDA receptor 
with the MK-801 antagonist [60, 128]. Similarly to spatial 
learning, a passive avoidance test revealed an increase of 
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MMP-3 protein level in the hippocampus within a few hours 
post training, suggesting the role of MMP-3-induced ECM 
remodeling in associative memory consolidation [134]. 
Habituation increases MMP-3 expression in hippocampus 
and PFC [135], while injection of MMP-3 inhibitor into the 
hippocampus interferes with this task [136].

Looking closer into cellular mechanisms of MMP-3 
action in the hippocampus, it was reported that, similarly 
to MMP-9, a transient activation of MMP-3 (within 30 min 
window post stimulation) is necessary for synaptic poten-
tiation, described in the excitatory postsynaptic potential 
(EPSP)-to-spike potentiation phenomenon—a long-term 
potentiation of synaptic inputs [137]. EPSP-to-spike poten-
tiation is a NMDA receptor-dependent process and the tim-
ing of MMP-3 activation overlaps with the short window of 
NMDARs activity requirement to prolong the potentiation 
[137, 138]. MMP-3 has been shown to cleave NR1 subunit 
of NMDA receptors in in vitro neuronal cultures, therefore, 
it could affect synaptic NMDARs function, necessary dur-
ing plastic adaptations [139]. Moreover, MMP-3 can affect 
synaptic efficacy by mediating the structural plasticity of 
dendritic spines. As reported in the visual cortex of MMP-3 
KO mice, the morphology of dendritic spines was impaired, 
namely, the higher number of short, mature spines perturbed 
open-eye potentiation in visual cortex of these knockout 
mice [140].

Similarly to MMP-3, MMP-7 has also been shown to 
affect spine morphology in a NMDAR-dependent manner. 
In cultured hippocampal neurons, application of recom-
binant MMP-7 induced a robust reorganization of spines, 
changing mushroom-shaped spines into filopodial type. 
This effect was triggered by rapid F-actin reorganization 
(observed after 10–20 min) and was dependent on NMDAR 
function (blocked by MK-801) [122]. In fact, in acute cor-
tical slices, MMP-7 cleaved NR1 and NR2A subunits of 
NMDARs. This caused a reduction in NMDA-induced Ca2+ 
influx [79]. Therefore, MMP-7 may directly affect NMDARs 
function and its downstream signaling, pivotal for synaptic 
plasticity. Moreover, in the presynaptic terminus, application 
of recombinant MMP-7 on cultured hippocampal neurons 
decreased the readily releasable pool of synaptic vesicles, 
decreased the size of active zones and inhibited vesicle 
recycling [78]. MMP-7 effects on vesicle recycling could 
be partially explained by its cleavage of the SAP-25 protein 
(synaptosomal-associated protein of 25 kDa), which disrupts 
the vesicle docking complex [78].

Among MT-MMPs involved in synaptic functions in 
the brain, MT5-MMP (MMP-24) is the best characterized. 
In comparison to other MMPs, it is highly expressed in 
the brain and it is present at the synapses thanks to bind-
ing to AMPA receptor binding protein (ABP), and gluta-
mate receptor interacting protein (GRIP) [141]. Monea 
and co-workers [141] have also identified N-cadherins as 

MT5-MMP substrates, which further implies the important 
function of this MMP at the synapse. Additionally, MT5-
MMP is capable of cleaving β-amyloid precursor protein 
(APP) creating carboxy-terminal fragments of APP, which 
are able to impair hippocampal LTP as well as reduce neu-
ronal activity in vivo [142]. In a study of traumatic brain 
injury (TBI) MT5-MMP protein level was increased during 
synaptic remodeling after the injury and blocking MMPs 
activity restored levels of N-cadherin and partially restored 
LTP induction [143]. In those experiments MT5-MMP was, 
however, expressed mainly in reactive astrocytes and appli-
cations of GM 6001, a broad spectrum MMP inhibitor, could 
not exclude the involvement of other MMPs in this process.

MMPs in epilepsy and epileptogenesis

Epilepsy is a brain disorder characterized by an enduring 
predisposition to generate epileptic seizures and by the 
neurobiological, cognitive, psychological and social conse-
quences of this condition. It is also manifested in the struc-
tural changes observed in epileptic brain, such as neuronal 
reorganization, especially prominent within hippocampus, 
including axonal sprouting.

In fact, epilepsy is not a homogenous disorder, but rather 
a collection of subtypes with a variety of etiologies. Thus, 
epilepsies are divided based on the underlying etiology 
into: (1) genetic, which are caused by genetic factors; (2) 
structural/metabolic, which have distinct structural or meta-
bolic conditions, including acquired epilepsies caused by 
stroke or brain trauma; and, (3) of unknown cause [144, 
145]. Acquired epilepsies constitute about 30% of all cases 
of epilepsy and are most commonly caused by stroke, brain 
trauma, alcohol use, neurodegenerative diseases, or infection 
[146]. In acquired epilepsies, brain-damaging insult leads to 
epileptogenesis (latency period without seizure) lasting up 
to several years that culminates in the appearance of seizures 
and epilepsy diagnosis.

Among epilepsy types with not well-defined genetic 
causes, particularly common are temporal lobe epilepsy 
(TLE) and post-traumatic epilepsy (PTE). TLE is the most 
frequent and drug-resistant type of adult focal epilepsy, char-
acterized by the appearance of epileptic foci in such tempo-
ral lobe structures as hippocampus or amygdala [147–149]. 
PTE develops often as a result of TBI caused by an external 
mechanical force. This initial brain insult triggers a cascade 
of events called epileptogenesis that can last in humans for 
years and that finally leads to the appearance of spontaneous 
recurring seizures (epilepsy) [150].

There are several mechanisms by which MMPs may 
participate in epileptogenesis and epilepsy, including 
blood–brain barrier breakdown, and contributions to inflam-
matory reactions and synaptic plasticity. The best examined 



3213MMPs in learning and memory and neuropsychiatric disorders﻿	

1 3

proteinase with a significant role in different models and 
types of epilepsy appears to be MMP-9 [4, 151].

Zhang et  al. [152, 153] were the first to report that 
MMP-9 level (as well as MMP-2) increased in a brain 
region- and age-related manner in rats subjected to procon-
vulsive treatment with kainic acid (KA)—a well-recognized 
model of TLE. Similar increases were also observed after 
treatment with bicuculline (GABAA receptor antagonist, 
provoking seizures). Next, Szklarczyk et al. [47] demon-
strated that MMP-9 expression—at the levels of mRNA, 
protein and enzymatic activity—was markedly upregulated 
by KA. Of particular interest was surprising finding that 
those responses were limited to the dentate gyrus, i.e., the 
hippocampal region undergoing the most extensive post-
KA plasticity, presumably supporting epileptogenesis. 
Then, Wilczynski et al. [154] directly investigated the role 
of MMP-9 in two animal models of epileptogenesis, namely, 
KA-evoked status epilepticus (SE, a condition known to 
provoke the development of epilepsy) and proconvulsive 
pentylenetetrazole (PTZ, a GABAA receptor antagonist) 
chemical kindling. They showed that the sensitivity to PTZ 
kindling was decreased in MMP-9 knockout mice but was 
increased in transgenic rats with neuronal overexpression of 
MMP-9. Furthermore, Wilczynski et al. [154] demonstrated 
that MMP-9 deficiency diminished KA-evoked pruning of 
dendritic spines and decreased aberrant synaptogenesis 
after mossy fiber sprouting. Finally, they also reported that 
MMP-9 was associated with excitatory synapses, where 
both MMP-9 protein levels and enzymatic activity become 
strongly increased upon seizures. Subsequently, the pre-
sumed role of MMP-9 in epileptogenesis was confirmed 
by Mizoguchi et al. [155], who showed enhanced MMP-9 
activity and expression in the injured hippocampus in PTZ 
kindling model. The role of MMP-9 in the development 
of epilepsy has been also supported by studies with such 
models of epilepsy as treatment with either pilocarpine or 
4-aminopyridine (seizure-inducing drugs), as well as the use 
of Wistar Albino Glaxo Rijswijk (WAG/Rij) rats that display 
higher propensity for seizure activity [156, 157].

PTE is a life-long complication of TBI [158], where sei-
zures are provoked by head injury. Little is known about the 
mechanisms that lead to post-injury epilepsy development. 
Based on data from experimental models and human tis-
sue, epilepsy resulting from head injury is associated with 
various morphological and physiological changes, such as 
neurodegeneration, myelin and axonal injury, axonal and 
synaptic plasticity, changes in spine density/morphology, 
neurogenesis, gliosis, blood–brain-barrier damage, angio-
genesis, changes in extracellular matrix and molecular reor-
ganization of ion channels in individual neurons.

It has been reported that in fluid percussion injury (FPI) 
and controlled cortical impact (CCI) models of TBI, tissue 
level of mRNA and active form of MMP-9 protein, were 

increased in ipsilateral cortex and hippocampus after injury 
[159–162]. This increase was observed during the first-
week post-injury [163, 164]. Besides the upregulation of 
MMP-9, time-dependent increase of its inhibitor, TIMP-1 
mRNA has been observed in ipsilateral cortical areas [165]. 
Unbalance between MMP-9 and TIMP-1 as a result of insult, 
could induce various structural, cellular and neurochemi-
cal changes, such as mossy fiber sprouting, synaptogenesis, 
changes in expression of β-dystroglycan, BDNF, integrins 
as well as cell death or neurogenesis. These processes could 
lead to increased excitability and changes in neuronal cir-
cuitry [166]. The possible role of MMP-9 in post-TBI con-
sequences was confirmed by finding that MMP-9 KO mice 
displayed less prominent motor deficits and significantly 
smaller post-TBI lesion volumes than wild-type siblings 
[164]. Recently, Pijet et al. [167] have demonstrated that 
PTE occurrence is correlated with the size of the lesion upon 
injury, where the high level of MMP-9 characterized by a 
large lesion area, predisposes to PTE development, while 
inhibition of MMP-9, with small lesion volume, protects 
from PTE. Pijet et al. [167] have also shown that MMP-9 
deficiency decreased the seizure appearance in a PTE model, 
whereas overexpression of MMP-9 increased the likelihood 
of spontaneous seizures.

The contribution of MMP-9 to epileptogenesis has further 
been substantiated by the use of MMP-9 inhibitors. It has 
been shown that inhibitors of MMP-9 used in status epilep-
ticus animal model, reduced neuronal cell death [156, 168, 
169], modified the inflammatory response by suppression of 
pro-inflammatory cytokines in microglial cells [63]. Finally, 
inhibition of dendritic spines morphological reorganization 
and severity of seizures induced in kindling model has been 
observed by Yeghiazaryan et al. [170], who proved the sup-
position that pharmacological inhibition of MMPs might 
be beneficial by suppressing seizure progression in animal 
models of epilepsy [168, 171].

In addition, in humans with different types of epilepsy, 
the occurrence of the seizures is correlated with the elevated 
levels of MMP-9 in serum or plasma as well as in the cer-
ebrospinal fluid [172–175]. Similarly, the ratio of MMP-9 
to TIMP-1 was increased under epileptic conditions [175]. 
It has been speculated that this phenomenon can promote 
brain blood barrier damage [176], which is correlated with 
elevated expression of MMP-9 in serum [177]. Moreover, 
studies made on brain surgery tissue revealed increase in 
MMP-9 level in epileptogenic lesions associated with epi-
leptic conditions such as focal cortical dysplasia (FCD), 
tuberous sclerosis or TLE [178–182]. Interestingly, in chil-
dren with intractable and non-intractable epilepsy, salivary 
MMP-9 concentration was decreased compared to controls 
[183]. Zybura-Broda et al. [182] have investigated epigenetic 
changes on the MMP9 gene promoter, finding an increased 
DNA demethylation in human epileptic tissue as compared 
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to control brain tissue. Notably, the authors have also dem-
onstrated that progressive Mmp9 gene promoter demethyla-
tion accompanied the development of seizure susceptibility 
in PTZ kindled rats.

The role of other MMPs in epilepsy development appears 
poorly investigated. An expression of MMP-2 in epilep-
togenesis process has often been examined simultaneously 
with MMP-9. Delayed increase in MMP-2 activity was 
observed in animal models of TLE after systemic injection 
of pilocarpine [168] or kainic acid [152, 153]. The increase 
of MMP-2 was less pronounced compared to MMP-9, never-
theless being significant. However, as so far, there is no fur-
ther data describing the involvement of MMP-2 in epilepsy 
development. MMP-2 may increase the permeability of the 
blood–brain barrier which encourage seizures appearance 
and facilitates epilepsy development [184]. Interestingly, 
MMP-2 serum levels in patients with epilepsy were signifi-
cantly lower [185].

In the kainic acid model of TLE, MMP-3 expression was 
found to be increased [186, 187]. Moreover, in response to 
TBI, both hippocampal and CSF levels of MMP-3 were ele-
vated [65, 188]. In contrast, serum MMP-3 levels in epileptic 
patients was found to be decreased [185]. Elevated expres-
sion of hippocampal MMP-3 mRNA and protein after TBI 
as well as SE was also reported [67, 159, 189]. Gorter et al. 
[62] also demonstrated an enhancement in the expression of 
MMP-2 and MMP-14 induced by SE evoked by electrical 
stimulation of the hippocampus.

Using an unbiased approach of antibody microarrays, 
Konopka et al. [179] found an elevated expression of MMP-
1, -2, -8, -10, and -13, in addition to MMP-9, in the epileptic 
brain tissue from patients with FCD. However, the expres-
sion of these proteinases was not as pronounced and/or not 
as consistent among patients as the expression of MMP-
9. Among these other MMPs, especially striking was the 
upregulation of MMP-2 in adult patients only, but the sig-
nificance of this finding is presently unclear.

MMPs in mental disorders: focus on autism 
spectrum disorders, fragile X syndrome, 
schizophrenia, bipolar disorder, chronic 
stress and major depression

Mental health is as a state of well-being that enables indi-
viduals to realize their abilities, deal with the normal stresses 
of life and work productively [190]. Mental health disorders 
appear when the homeostasis is lost and abnormalities in 
thoughts, perceptions, emotions, behavior and relationships 
with others appear [191]. The rise in number of people suf-
fering from mental disorders makes them a topic of consid-
erable and growing research interest [190]. Importantly, the 
neuropsychiatric disorders often share comorbidities, hence 

it may seem difficult to draw a hard line between particular 
medical conditions [192]. Therefore, it is legitimate to con-
sider that for this reason they also share some aspects of 
underlying, including molecular, mechanisms. For the pur-
pose of the present review, we shall focus on stress, major 
depression, bipolar disorder, autism spectrum and schizo-
phrenia– the most common neuropsychiatric disorders. 
These diseases pose particular research challenges, as they 
are all difficult to model in experimental animals. In fact, 
the animal studies usually focus on reproducing and inves-
tigating only selective disease symptoms. Fortunately, the 
very intense effort on human genomics and proteomics has 
resulted in revealing major categories of possible molecular 
players underlying the neuropsychiatric conditions. Those 
categories are often overlapping among those conditions, 
with the major ones being: inflammatory/immune responses, 
epigenetics and gene regulation, and finally synaptic plas-
ticity. Considering the fact that MMPs may fall into both 
inflammatory/immune category and synaptic plasticity and, 
as it has been well documented for MMP-9 in the brain, may 
be under very tight, including epigenetic, gene regulation 
(see above), there is no surprise that MMPs have been impli-
cated, especially MMP-9, by virtue of gene associations and/
or protein levels, in neuropsychiatric disorders.

MMPs in stress and depression

Evolutionarily, stress is a response of the organism to a chal-
lenge or threat. When working properly in normal life it 
helps to maintain balance, and in an emergency situation, 
to survive. A chronic stress, however, is like a continuous 
emergency mode that can rewire the brain, so it becomes 
more vulnerable to anxiety or even a major depression (MD) 
and other health problems.

Human data

MMP9 −1562 C/T (C1562T) gene promoter polymorphism 
is considered as functional, since a C to T substitution results 
apparently in a loss of binding of a nuclear silencer protein 
to this region of the MMP9 gene to produce an increase in 
transcriptional activity [193]. This polymorphism has been 
found to be associated with depression, with the C/C geno-
type or C allele increasing the risk of susceptibility to middle 
age depression and the T allele, on the other, hand reducing 
the risk [194]. The same study also found that in subjects 
bearing another MMP9 gene polymorphism of unknown 
functionality, namely, −1702 T/A, the T/T genotype or T 
allele led to increase in risk of recurring depressive disorder, 
whereas the A/A allele led to lower risks. As far as other 
MMPs are concerned, analysis of MMP7 −181 A/G gene 
polymorphism revealed its strong association with higher 
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incidence of recurring depressive disorder. This research 
also pointed that dual occurrence of C/T C-735T/MMP2/
genotype and G/G A-181G/MMP7/genotype, and, C/T–T/T 
genotypes of the MMP2C-735T and MMP9T-1702A poly-
morphisms, were also associated with increased risks of 
recurrent depression [194].

Expression analysis of MMPs revealed that MMP-9 was 
upregulated in serum upon two stressful stimuli (recall of 
either an event that frustrated the patient or a mental arith-
metic task) in patients with coronary disease [195]. In 
another study, an increased level of MMP-9 was found in 
the blood of patients with major depression [196]. MMP-9 
levels were also correlated with the severity of depression 
and the quality of life of the patients [197]. MMP-9 lev-
els were also found associated with several psychological 
factors linked with depression in a middle-aged population 
[198]. Another interesting observation was that in patients 
receiving electro convulsive therapy (ECT) as a treatment 
for depression, the serum levels of MMP-9 decreased sig-
nificantly in those patients who did not show relapse of 
depression [199]. Interestingly, transcript and protein levels 
of MMP-2, MMP-9 and TIMP-2 were found to be downreg-
ulated in patients with the recurrent depressive disorder as 
compared to healthy individuals [130]. Finally, both mRNA 
and protein levels of several MMPs (MMP2, MMP-7 and 
MMP-9) were demonstrated to be higher in patients with 
MD, when compared to healthy controls [200].

Animal experiments

In an animal model of prolonged stress (restrain of a mouse 
for 6 h per day, repeated for 21 days) that may contribute to 
depression, proteolytic activity of MMP-9 was shown to be 
enhanced in CA1 but not in CA3 of the hippocampus [106]. 
This result correlated with impaired social interactions that 
were reinstated following infusion of MMP inhibitor into 
the hippocampus [106]. Furthermore, Aguayo et al. [201] 
have found that a single stress exposure (2.5 or 24 h restrain) 
increases MMP-9 levels and activity in the hippocampus.

MMPs in autism spectrum disorders 
and fragile X syndrome

Autism spectrum disorders (ASD) are considered to be neu-
rodevelopmental disorders that affect communication and 
behavior. They are classified as a “spectrum” as there is var-
ied range of manifestation of the phenotype [202].

Human data

Probably the most extensively studied genetic alteration 
linked to ASD concerns FMR1, encoding fragile X mental 

retardation protein (FMRP) [203]. Missing FMRP produces 
fragile X syndrome (FXS). Most interestingly, MMP-9 
was found to be upregulated in the serum of patients with 
FXS, and, moreover, minocycline treatment that decreased 
MMP-9 levels led to clinical improvements in the patients 
[204–207]. In parallel, Janusz et al. [83] have demonstrated 
that FMRP controls local, dendritic/synaptic translation of 
MMP-9 and then Gkogkas et al. [208] using post mortem 
brains from FXS patients showed that phosphorylation of 
the mRNA 5′ cap binding protein, eukaryotic initiation fac-
tor 4E (eIF4E), was elevated concomitantly with increased 
expression of MMP-9 protein. More generally, the analysis 
of amniotic fluid in patients with ASD showed elevated lev-
els of MMP-9 [209]. Increased MMP-9 was also found in 
postmortem cortex of ASD patients [210].

Animal experiments

There are several lines of evidence linking MMP-9 to FXS. 
This syndrome is well modeled in mice by the knockout 
(KO) of the FMRP encoding gene (Fmr1). In fact, the first 
link between FXS and MMP-9 was revealed by Bilousova 
et al. [211], who reported increased MMP-9 activity in cul-
tured neurons from Fmr1 KO mice and, furthermore, the 
disease phenotype of elongated dendritic spines could be 
rescued by minocycline inhibiting MMP-9 activity. Simi-
larly, another group also showed that inhibiting MMP-9 
could rescue the abnormal spine dynamics noted in Fmr1 
KO mice [212]. Most interestingly, genetic removal of 
MMP-9 rescued the ASD-like symptoms of Fragile X in 
Fmr1 KO mice [213]. In another study, where abnormally 
high level of MMP-9 was observed in the auditory cortex 
of Fmr1 KO mice, genetic deletion of MMP-9 was able to 
rescue habituation deficits [214].

Furthermore, pharmacological inhibition of elF4E 
dependent MMP-9 translation (see above) has been able to 
reverse symptoms of Fragile X in Fmr1 KO mice [208]. In 
addition, the drug minocycline was able to lower MMP-9 
levels in Fmr1 knockout mice, reduced anxiety and rescued 
Fragile X such as phenotype [215]. Interestingly, metformin, 
a drug used for treating diabetes, has been shown to normal-
ize elF4E phosphorylation and MMP-9 gene expression, and 
subsequently rescue the core phenotypes of Fmr1 hemizy-
gous mice [216].

Perineuronal nets (PNN) are assemblies of the extracel-
lular matrix, which cover the interneurons expressing parval-
bumin. Abnormalities in PNN have been reported in schizo-
phrenia and Alzheimer’s disease. MMP-9 is considered as a 
PNN regulator and thus alterations in its levels might result 
in PNN abnormalities [217]. In fact, genetic reduction of 
MMP-9 levels to wild-type equivalence in Fmr1 KO mice 
led to the restoration of PNN formation around parvalbumin 
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cells in the auditory cortex and rescued altered sound-driven 
response phenotype in these mice [217].

ASD-like-phenotype had also been reported in zinc trans-
porter 3 (ZnT3) KO mice along with increased MMP-9 and 
BDNF levels—possibly due to perturbed zinc homeostasis. 
Treatment of these mice with minocycline rescued ASD-
like-phenotype and reduced BDNF levels [218].

Notably, it has been suggested that MMP-9 might serve 
as a very promising target for drugs to treat ASD and FXS 
patients [219].

MMPs in schizophrenia and bipolar disorder

Schizophrenia is a neuropsychiatric disorder affecting 0.5% 
of the human population [220]. The disease is characterized 
by heterogeneous display of positive symptoms (hallucina-
tions, delusions, and thought disorder), negative symptoms 
(avolition, restricted affect, poverty of speech, and social 
withdrawal), and cognitive dysfunction (working memory 
deficits, executive function, and attentional dysfunction). 
Schizophrenia onset occurs typically in early adulthood and 
is usually associated with a lifetime disability. Bipolar dis-
order (BD) is a major mental disorder with a high risk of 
suicide [221]. BD onset occurs in adolescence [222]. The 
disorder is characterized by mania episodes followed by 
depressive ones [222]. Of note, even though bipolar disor-
der and schizophrenia are typically considered to be separate 
diseases entities, in some cases it is difficult to provide a 
clear separation and these two conditions may be considered 
as a schizoaffective disorder [223].

Human data

MMP9 C1562T gene promoter polymorphism has been 
shown to associate with schizophrenia [224, 225]. An inter-
esting example of gene-schizophrenia association is rs20544 
C/T SNP that has been demonstrated to be strongly linked to 
the disease delusional symptoms [226]. This polymorphism 
is located within MMP9 3′UTR mRNA and the authors 
have also shown that it affects RNA structure and binding 
to FMRP as well as synaptic MMP-9 availability and mor-
phology of dendritic spines [226]. The polymorphism linked 
to lower MMP-9 synaptic release has been associated with 
more severe delusional symptoms [226]. Recently, Gregor 
et al. [227] have shown that the effects of anti-psychotic 
treatment, as well as the severity of childhood trauma are 
highly dependent on the type of MMP-9 gene variations. 
Thus, the SNP rs13925 was found to result in a reduced 
risk of developing treatment refractory schizophrenia, par-
ticularly in the presence of homozygous recessive genotype 
[227].

As far as MMP3 is concerned its −1171 5A/6A 
(rs3025058) polymorphism has been associated with schiz-
ophrenia [228]. In this study in Turkish population, it was 
found that the 6A/6A and 6A allele frequency was less in 
patients with schizophrenia, whereas the 5A/5A and 5A 
allele frequency was more.

Measuring the transcript and protein levels of MMPs in 
schizophrenia has also yielded interesting results. Ali et al. 
[229] reported that in spite of not finding any correlation 
between MMP9 −1562C>T SNP and schizophrenia, the 
levels of MMP-9 were found to be upregulated in serum of 
schizophrenic patients. An unbiased approach in screening 
altered levels of plasma proteins in patients with schizophre-
nia also revealed increased levels of MMP-9 and TIMP-1 
[196]. Rahimi et al. [230] showed that there were no sig-
nificant differences in the individual levels of MMP-9 and 
TIMP-1 genes in schizophrenia patients, but the MMP-9/
TIMP-1 ratio was significantly altered (see also Ref. [231]). 
Similarly, upregulated MMP-9 serum levels were found to 
be strongly associated with levels of mature BDNF (MMP-9 
aids in the formation of mature BDNF from pro-BDNF) in 
schizophrenia patients [232]. Another independent study 
confirmed increased MMP-9 activity in the blood of schiz-
ophrenia patients [233]. Increased MMP-9 serum levels 
were likewise found to be correlated to oxidative stress in 
schizophrenia cases [234]. Similarly, MMP-9 gene expres-
sion in blood mononuclear cells was found to be upregulated 
in schizophrenia patients who did not undergo treatment. 
Interestingly, the levels were no longer significantly different 
after the administration of the treatment [235].

As in schizophrenia, polymorphisms and changes in the 
levels of MMPs have been associated with BD. Rybakowski 
et al. [236] originally demonstrated that C1562T MMP9 pol-
ymorphism linked to BD. It was also found that the serum 
levels of MMP-9 were upregulated in patients with BD both 
during the acute phase and remission of depression [237]. 
Sodersten et al. [238] observed no differences in the level of 
MMP-9 in patients with BD but found that its levels corre-
lated positively and significantly with mature BDNF levels, 
what shall be considered in a context of findings suggesting 
that MMP-9 may cleave pro-BDNF to its mature form.

As far as MMP10 is concerned, individuals suffering from 
BD with T/T allele of MMP10 rs486055 (C/T R53K) poly-
morphism, were reported to have more depressive events 
than with C/T or C/C alleles [239]. Interestingly MMP-7 
levels were also shown to be elevated in patients with BD 
[240, 241].

Animal experiments

Clearly, the cognitive symptoms of schizophrenia appear 
the easiest to model in animals by studying learning and 
memory phenomena, which, however, might lead to great 
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oversimplifications. Nevertheless, in this context, it is wor-
thy to recall the aforementioned data linking MMP-9 levels 
to learning and memory functions (see above). In addition, 
negative symptoms of the disease are apparently relatively 
easy to model, however, to dissect those from depressive 
behaviors might be difficult. The positive symptoms of 
schizophrenia can be modelled by enhanced hyperlocomotor 
response to such NMDA receptors antagonists as MK-801. 
Lepeta et al. [226] demonstrated that MMP-9 heterozygous 
mice display such enhanced hyperlocomotor response to 
MK-801, thus, this result was in line with the aforemen-
tioned clinical data on MMP-9 3′UTR mRNA polymor-
phism causing lower synaptic MMP-9 levels and linked to 
enhanced delusional symptoms of the disease [226].

MMPs in addiction: alcohol, cocaine, 
methamphetamine, nicotine

Addiction is a condition characterized by compulsive drug 
use, seeking and other related behaviors, despite knowledge 
of the negative consequences [242]. Even though in many 
cases substance use is the most common type of addiction, 
a person is capable of developing an addiction also to other 
rewarding behaviors, such as gambling, game playing or 
internet as well [243]. Exposure to addictive substances has 
been shown to create long-lasting alterations in brain func-
tion [244]. These take place in brain areas and in neuronal 
circuits involved in appetitive reward learning and memory 
formation [245]. The overlap between molecular processes 
involved in the former and pharmacological actions of drugs 
suggest that the key proteins driving learning and memory 
are also important players in the formation of addiction.

The role of MMPs in addiction has recently been 
reviewed [4, 246]. One of the best described MMPs in the 
context of addiction is MMP-9. Data from human studies 
indicate that its levels are increased in the hippocampus 
of cocaine [247], heroin [248] and alcohol abusers [249]. 
Furthermore, MMP-9 mRNA level is increased in meth-
amphetamine addicts [250]. Moreover, in alcohol abusers, 
polymorphism of the MMP-9 gene producing higher protein 
expression is more frequent in alcoholics’ families than in 
control subjects’ families [251]. Animal studies revealed 
the involvement of MMPs in addiction to morphine [252], 
methamphetamine [76, 253, 254], nicotine [255], ethanol 
[256–258], cocaine [50, 259, 260] and heroin [50].

MMPs are activated and play functional roles in such 
particular aspects of addiction, as motivation in mice and 
human subjects [257], rewarding effect [254, 261, 262] or 
relapse/reinstatement in rats [50, 255, 259]. Animals devoid 
of MMP-9 drink as much alcohol as wild-type animals, yet 
they are impaired in alcohol seeking when access to ethanol 
is limited (withdrawal) or requires additional effort to obtain 

it (motivation) [257]. Similar alterations were also observed in 
MMP-2 and MMP-9 deficient mice, which subjected to meth-
amphetamine treatment did not develop sensitization towards 
this drug [254].

Some reports indicate that metalloproteinase inhibitors can 
reduce behavioral correlates of addiction. MMP-2 and MMP-9 
inhibitors reduced sensitization and blocked in mice metham-
phetamine conditioned place preference (CPP), i.e. reward-
ing effect of drug manifested by time spent in drug-associated 
chamber [261, 262]. When infused prior to cocaine adminis-
tration, a broad spectrum MMP inhibitor blocked acquisition 
of CPP and reduced its reinstatement after a cocaine-priming 
injection in rats that underwent CPP extinction [259]. The 
same inhibitor, when injected intracerebroventricularly to 
rats exposed to long-term alcohol vapor self-administration 
prevented the escalation of alcohol vapor intake during acute 
withdrawal [256]. Similarly, in heroin addiction, MMP inhibi-
tion attenuates heroin cue-induced seeking [263]. Not surpris-
ingly then, restoring the availability of MMPs reverses these 
effects, as overexpressing the active form of MMP-9 in the 
amygdala increased mice motivation towards ethanol self-
administration [257].

As far as the structural and functional plasticity is con-
cerned, Smith et al. [50] discovered that extinction and rein-
statement of cocaine self-administration causes an increase in 
spine density, together with the enlargement of spine heads 
in neurons of the nucleus accumbens, a structure particularly 
involved in execution of motivated behaviors and addiction 
[264]. This morphological remodeling is associated with 
MMP-2 and MMP-9 activities and causes strengthening of 
glutamatergic synapses, measured by the increase in AMPA/
NMDA receptors currents ratio. Our studies in the central 
amygdala, on the other hand, show that high motivation to 
ethanol self-administration is associated with the enlargement 
of long and mushroom spines [257]. This effect is not observed 
in MMP-9 KO mice. Moreover, ethanol consumption and sub-
sequent withdrawal change synaptic efficacy by the formation 
of silent synapses and the reduction of AMPA/NMDA recep-
tors currents ratio. Silent synapses are immature synaptic con-
nections, which appearance signifies enhanced plasticity [265]. 
They are strongly involved in cocaine and morphine addiction 
[266, 267]. Our observations that MMP-9 activity causes an 
increase in silent synapse number [29], while genetic abla-
tion of MMP-9 prevents their formation [257], indicate that 
the function of this gelatinase is particularly significant in the 
remodeling of synaptic efficacy.

Concluding remarks

Whereas traditionally, MMPs in the brain used to be consid-
ered as enzymes chiefly contributing to a pathological neu-
ronal cell loss occurring in such disorders as various forms 
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of neurodegeneration, stroke, traumatic brain injury, multi-
ple sclerosis, gliomas, etc., the present review offers another 
look at the brain MMPs. It has been well documented that 
these enzymes, with MMP-9 serving as a most prominent 
example (maybe merely because of being the most exten-
sively studied), contribute to learning and memory, as well 
as such major neuropsychiatric conditions as epilepsy (its 
development, i.e., epileptogenesis, in particular), schizo-
phrenia, autism spectrum (with particularly strong example 
of fragile X syndrome), and addiction to various substances 
of abuse (including alcohol, cocaine, and others), depres-
sion, etc. Physiological and pathological synaptic plasticity 
emerges as a common theme, as far as the mechanisms of 
all those conditions are concerned. Indeed, the evidence for 
pivotal role of some MMPs, again MMP-9 in particular, in 
functional and morphological, physiological and aberrant 
plasticity of excitatory synapses appears very convincing. 
The fact that MMP-9 might be locally produced and released 
at/around those synapses provides further support for this 
notion. On the other hand, MMPs might be also produced 
and released by glia and brain-invading leukocytes, fueling 
a neuroinflammation. To dissect those various activities 
(including mutual interactions, e.g., during the activation—
cleaving off the propeptide—step) of MMPs, their specific 
expression patterns (cellular origins and time-courses) poses 
the major research challenge. Addressing this challenge shall 
advance not only our understanding of the brain in health 
and disease but may be expected to lead to novel, impor-
tant disease biomarkers and diagnoses and even new thera-
pies aiming at either inhibiting the enzymes or augmenting 
their activities. One should not overlook in this context the 
apparent regulatory and signaling functions of MMPs, their 
enzymatic nature (particularly amenable for manipulation) 
and finally, extracellular locus operandi. It has to be finally 
noted that overlapping substrate specificity of various MMPs 
poses a great challenge by itself, as far as the development 
of specific enzyme inhibitors is concerned.
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