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Simple Summary: Acute Myeloid Leukemia (AML) is a cancer of the blood and bone
marrow that is often associated with poor clinical outcomes, even with available treatments.
Researchers are exploring the role of a gene called Wilms Tumor 1 (WT1), which may be
implicated in the development and progression of AML. This study aimed to understand
how WTT1 gene expression can help diagnose AML, predict patient survival, and monitor
how well treatments are working. By analyzing blood and BM samples from AML patients,
this study discovered that elevated levels of WT1 expression at diagnosis are linked to worse
outcomes. These findings indicate that measuring WT1 expression could be a valuable tool
for doctors to better manage AML, guiding decisions on treatment and helping to recognize
patients at higher risk for relapse.

Abstract: Background/Objectives: AML is a heterogeneous hematological malignancy
distinguished by the clonal expansion of immature myeloid progenitor cells. Despite
advances in therapy, relapse rates remain high, and outcomes are poor. The WT1 gene
has emerged as a potential contributor to leukemogenesis, but its clinical relevance at
the transcriptional level is not fully understood. This study employed RNA sequencing
as a discovery tool to identify WT1 gene expression in AML and further investigated
its role in diagnosis, prognosis, and treatment response. Methods: Between 2020 and
2024, 345 diagnostic, 259 post-induction, and 70 relapse-stage BM or PB samples were
prospectively collected from de novo AML patients at AIIMS, New Delhi. RNA sequencing
was initially performed on five paired diagnosis-relapse samples to profile transcriptomic
changes and assess WT1 expression dynamics. WT1 expression was further validated
by qPCR. The relationship between WT1 expression and various clinical parameters was
evaluated using Cox regression analysis to determine its impact on prognosis. Results: RNA
sequencing and qPCR confirmed WT1 overexpression at diagnosis, which significantly
declined following induction therapy. High WT1 expression at diagnosis was linked
with adverse clinical characteristics, including elevated WBC counts and higher blast
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percentages and predicted poor survival outcomes. WT1 expression was identified as a
significant prognostic marker, correlating with OS and EFS. Conclusions: By integrating
RNA sequencing with targeted validation, this study highlights WT1 expression as a
critical biomarker for AML diagnosis, prognosis, and treatment response. The findings
suggest that WT1 expression may serve as a valuable tool for monitoring disease status,
risk stratification, and guiding treatment decisions in AML, with potential applications for
WT1-targeted precision therapies.

Keywords: acute myeloid leukemia; WT1; biomarker; gene expression; prognostic marker

1. Introduction

AML is a biologically and clinically heterogeneous hematological malignancy that
originates from the myeloid lineage of the hematopoietic system. It is marked by the clonal
proliferation of immature myeloid progenitor cells, due to disruptions in normal differ-
entiation processes [1,2]. With a median diagnostic age of approximately 68 years, AML
predominantly affects adults, accounting for nearly 80% of all adult leukemia diagnoses
and about 18% of all leukemia cases worldwide [3]. The incidence of AML is increasing,
with t-AML representing 10-15% of newly diagnosed cases. t-AML often develops as
a late complication following exposure to cytotoxic therapies such as alkylating agents,
topoisomerase II inhibitors, or ionizing radiation [4,5]. Both genetic predispositions and
environmental factors, including prior hematological disorders like MDS and MPNss, con-
tribute significantly to AML pathogenesis [6,7]. The classification of AML has traditionally
relied on the FAB system, which is based on morphological and cytochemical characteristics,
and more recently on the WHO classification, which integrates clinical, cytogenetic, and
molecular data. A diagnosis of AML requires the existence of at least 20% myeloid blasts
in the PB or BM [8,9]. Immunophenotyping further verifies lineage and helps subclassify
AML based on antigen expression [10-12].

The molecular landscape of AML reflects a complex interplay between genetic mutations,
epigenetic alterations, aberrant gene expression, and dysregulated hematopoiesis [13,14].
Leukemogenesis is thought to originate from oncogenic transformed hematopoietic stem or
progenitor cells that acquire self-renewal capacity, forming leukemic stem cells (LSCs) [15].
LSCs sustain disease and are often resistant to standard therapies, contributing to relapse
and poor outcomes [16]. Mutations in genes that regulate DNA methylation (e.g., DNMT3A,
TET2, IDH1/2), proliferation, apoptosis, and differentiation underscore the heterogeneous
nature of AML and its variable clinical course [17,18]. Despite advances in treatment, the
prognosis for AML remains poor, with an overall five-year survival rate of approximately
29.8%. Outcomes are significantly better in younger patients, with survival rates near 68%
for those under 20 years of age, but they are dramatically lower in patients over 60 years
old [19,20]. Standard treatment consists of induction therapy, typically with cytarabine-
and anthracycline-based regimens (the “7 + 3” protocol), followed by consolidation therapy,
which may include high-dose cytarabine or AHSCT in high-risk cases [21]. However,
relapse and therapy resistance continue to pose major clinical challenges, underscoring the
urgent need for novel biomarkers and therapeutic targets.

The WT1 gene, situated on chromosome 11p13, encodes a zinc finger transcription
factor that plays a vital role in both developmental processes and cancer biology [22]. Orig-
inally identified as a tumor suppressor in Wilms’ tumors, WT1 has also been recognized
for its oncogenic role in various solid tumors and blood-related cancers [23]. It is involved
in regulating key cellular functions such as apoptosis, cell growth, differentiation, and
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maintenance of cellular homeostasis [24]. In the hematopoietic system, WT1 expression
is largely restricted to primitive CD34* hematopoietic stem and progenitor cells and is
minimally expressed in mature leukocytes. The aberrant expression or mutation of WT1
has been reported in conditions such as MDS and chronic myeloid leukemia (CML), often
correlating with poor prognosis and therapy resistance [25]. Structurally, WT1 consists
of a proline- and glutamine-rich N-terminal transcriptional regulatory domain and four
C-terminal zinc finger motifs responsible for DNA binding. The gene undergoes alternative
splicing to generate different isoforms (+KTS and —KTS), which serve distinct biological
functions [26]. Beyond hematopoiesis, WT1 plays a role in EMT transitions during embry-
onic development and is implicated in maintaining tissue homeostasis in adults [27,28].
In cancers such as breast cancer, non-small cell lung cancer, and Kaposi’s sarcoma, aberrant
WTT1 expression has been linked to chromatin remodeling, immune evasion, and altered
tumor microenvironment dynamics [29-31]. RNA sequencing (RNA-seq) has emerged as
a transformative tool in cancer research, including hematologic malignancies like AML.
By enabling the comprehensive profiling of gene expression, splice variants, and fusion
transcripts, RNA-seq facilitates the identification of transcriptional programs and molecular
subtypes that underlie disease pathogenesis and progression [32,33]. In AML, RNA-seq
has been used to uncover biomarkers, predict therapeutic response, and explore resistance
mechanisms [34,35]. The ability to analyze transcriptomic changes across different stages
of the disease provides a powerful approach to dissecting leukemic heterogeneity and
improving patient stratification [36].

Given its multifaceted role in hematopoiesis, leukemogenesis, and tumor progression,
WTT1 represents a promising candidate for biomarker discovery and therapeutic targeting in
AML. Thus, this study aims to investigate WT1 gene expression profiles in AML patients at
diagnosis, post-induction, and relapse stages using RT-qPCR and RNA-Seq to assess its role
in disease progression and evaluate its potential as a diagnostic and prognostic biomarker.

2. Materials and Methods
2.1. Patient Samples

Between 2020 and 2024, a total of 345 BM and PB samples were prospectively collected
from newly diagnosed AML patients at the following clinical stages: at diagnosis (n = 345),
post-induction for MRD assessment (n = 259), and at relapse (1 = 70). Additionally, 20 BM
samples were collected as controls from individuals with benign hematologic conditions,
including hypersplenism, anemia, and immune thrombocytopenic purpura. All samples
were obtained from the Outpatient Department of Medical Oncology at Dr. B. R. A. IRCH,
AIIMS, New Delhi, India. Informed written consent was obtained from all participants in
their preferred language (English or Hindi). The study received ethical approval from the
Institutional Ethics Committee of AIIMS, New Delhi (Approval No. IECPG-71/27.01.2021),
in accordance with the Declaration of Helsinki.

AML diagnosis was confirmed using the morphological examination of blood and
marrow smears, cytochemical staining, flow cytometry to quantify blast cells, and con-
ventional cytogenetic analysis. Diagnosis followed the criteria set by the FAB cooperative
group and the WHO. A blast count of 20% was used as the threshold for diagnosing AML,
unless specific genetic abnormalities were present, in which case the threshold might differ.
All enrolled AML patients were treated according to the departmental protocol at AIIMS.
The initial chemotherapy regimen included daunorubicin (45-60 mg/m?) from days 1 to 3
and cytarabine (100 mg/m?) via continuous infusion from days 1 to 7. Patients who did
not achieve hematologic remission received a second cycle of the same treatment, while
those with inadequate responses were given high-dose chemotherapy. BM assessments
were conducted on day 28 after the induction phase. CR, PR, and refractory disease were
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defined based on the ELN guidelines. Demographic data (age and gender) and clinical
information were collected from institutional medical records and patient questionnaires.
Patients were prospectively followed for five years to monitor disease progression and
treatment outcomes.

Inclusion Criteria:

e  Patients aged 18 years or older of either gender.
e Denovo AML patients who had not received prior treatment.

Exclusion Criteria:

Patients with any concurrent solid or hematologic malignancy.
Individuals with a history of chemotherapy or radiotherapy.
Individuals who declined informed consent or refused participation.

Patients with specific hematologic conditions such as APL, Down syndrome-associated
myeloid neoplasms, MDS, t-AML, or myeloid sarcoma.

2.2. Bone Marrow Mononuclear Cells (BMMCs) Isolation

BMMCs were isolated from AML patients and controls using Ficoll-Paque density
gradient centrifugation. BM samples were diluted with PBS and layered over Ficoll-Paque
(1.077 g/mL), followed by centrifugation at 300x g for 30 min at room temperature. The
buffy coat containing BMMCs was collected, washed with PBS, and preserved in TRIzol at
—80 °C for RNA extraction.

2.3. RNA Extraction and Quantification

Total RNA was isolated from BMMCs using TRIzol Reagent as per the manufacturer’s
instructions. Following chloroform-based phase separation, RNA was precipitated with
isopropanol, washed with 75% ethanol, and dissolved in RNase-free water. RNA quality
and quantity were evaluated using the Qubit Fluorometer and Agilent Bioanalyzer. Samples
with RIN > 6.5 were selected for RNA sequencing and stored at —80 °C.

2.4. Discovery Phase: Comprehensive Analysis of WI'1 Expression via RNA Sequencing

To explore gene expression changes associated with AML progression, we adopted
a two-phase strategy. Initially, RNA-Seq was performed to identify WT1 as a gene of
interest based on its differential expression between diagnosis and relapse. This discovery
phase was followed by the large-scale validation of WT1 expression using RT-qPCR in an
extended AML cohort. This integrative approach allowed us to confirm findings from a
limited transcriptomic dataset and assess their broader clinical significance.

For RNA sequencing, total RNA was extracted from paired BM samples of five de
novo and five relapsed AML patients. Only samples with RIN > 6.5 were processed.
Libraries were prepared using the TruSeq RNA Library Prep Kit v2, including mRNA
enrichment, cDNA synthesis, and adapter ligation. Sequencing was conducted with 150 bp
paired-end reads on the Illumina NovaSeq X Plus platform.

2.5. Library Preparation and Sequencing

RNA sequencing libraries were prepared using the TruSeq RNA Library Prep Kit
v2. After poly-A selection and fragmentation, cDNA synthesis and adapter ligation were
performed. The libraries were amplified, purified, and quality-checked using the Agilent
Bioanalyzer before being pooled and sequenced with 150 bp paired-end reads on the
INlumina NovaSeq X Plus platform.
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2.6. Bioinformatics Analysis

RNA-Seq data were processed using our in-house bioinformatics pipeline. Quality
checks were performed with FastQC and trimming with Trimmomatic. Cleaned reads were
aligned to the GRCh38 genome using STAR and HISAT?2, with alignment quality assessed
via QualiMap. DESeq2 was used for differential expression analysis, identifying genes with
log2-fold change >2 or <—2. Functional enrichment was performed using ShinyGO, KEGG,
and GSEA. Protein interaction networks were built using STRING, and key hub genes were
identified with cytoHubba in Cytoscape (v 3.10.3).

2.7. Validation of WT'1 Gene Expression Profiling by Quantitative RT-PCR

To validate WT1 expression from RNA sequencing, quantitative RT-PCR was per-
formed on 345 diagnostic, 259 post-induction (MRD), and 70 relapse-stage samples from
AML patients. Total RNA (0.5-1 pg) was reverse transcribed using the Improm II RT
system. Specific primers for WT1 and the reference gene GAPDH were designed using
Primer-BLAST. qRT-PCR was conducted on the Bio-Rad CFX96 Real-Time System, and
WT1 expression levels were quantified using the 2~22¢t method.

2.8. Statistical Analysis

Patients were divided into high and low WT1 expression groups based on ROC curve
analysis. The optimal cutoff value for WT1 expression was determined using the Youden
index to maximize sensitivity and specificity. The ROC curve, area under the curve (AUC),
and cutoff criteria are provided in Figure A2. The Kolmogorov-Smirnov test was used to
assess the normality of continuous variables. Categorical variables were compared using
the Chi-square test, continuous variables with normal distribution using the Student’s
t-test, and non-normally distributed variables using the Kruskal-Wallis test, followed by
the Mann-Whitney U test for pairwise comparisons. For the exploratory analysis of associa-
tions between WT1 expression and clinical /hematological parameters, unadjusted p-values
were reported due to the limited number of comparisons (six variables) and the hypothesis-
generating nature of the study. Survival outcomes including OS, EFS, and DFS/RFS were
estimated using the Kaplan—-Meier method, and survival differences between groups were
assessed using the log-rank test. OS was defined as the time from diagnosis to death
from any cause, with patients alive at last follow-up censored. EFS was defined as the
time from diagnosis to relapse, treatment failure, or death. DFS/RFS was calculated for
patients who achieved complete remission (CR), defined by the absence of circulating
blasts, the normalization of peripheral blood counts, and <5% blasts in the bone marrow.
Relapse was defined by the reappearance of leukemic blasts in bone marrow, peripheral
blood, or extramedullary sites. Univariate Cox regression analyses were performed to
identify potential prognostic factors. Variables with p < 0.1 in univariate analysis were
considered for inclusion in multivariate Cox regression models. The proportional hazards
assumption was tested for all Cox models using Schoenfeld residuals, and no violations
were observed. A p-value < 0.05 was considered statistically significant. All statistical
analyses were conducted using GraphPad Prism version 8.0 and STATA version 11.

3. Results
3.1. Patient Characterstics

A total of 345 adult patients newly diagnosed with AML were included in this study.
The cohort showed a male predominance, with 200 male patients (57.97%) and 145 female
patients (42.02%). The median age at diagnosis was 40 years, ranging from 19 to 76 years. At
presentation, the median total leukocyte count was 20.73 x 103/ uL, with a range between
0.1and 310.4 x 103/ uL. The median hemoglobin level was 7.34 g/dL (range: 2.4-14.8 g/dL),



Cancers 2025, 17,1818

6 of 27

and the median platelet count was 49 x 10®/uL, ranging from 6 to 321 x 10%/uL. Bone
marrow examination revealed a median blast percentage of 80.7%, with values ranging
from 22% to 100%. Cytochemical staining for cytoplasmic myeloperoxidase (cMPO) was
performed in 276 patients, of whom 161 (58.33%) were cMPO-positive and 115 (41.66%)
were cMPO-negative.

Molecular profiling using RT-PCR identified several recurrent fusion gene mutations.
Among the 180 patients tested for NPM1 mutations, 29 were found to be positive. FLT3-
ITD mutations were detected in 45 out of 192 patients tested, while FLT3-TKD mutations
were observed in 21 out of 182 patients. CEBPA mutations were identified in 18 out of
161 patients tested. Conventional cytogenetic analysis revealed that 26 out of 152 patients
were positive for the AML1-ETO fusion gene, and 10 out of 148 patients tested positive
for the CBFB-MYH11 fusion. Among patients with cytogenetic results available, a normal
karyotype was observed in 37 out of 116 patients, while a complex karyotype was identified
in three patients, as shown in Table 1.

Table 1. Baseline clinical, hematological, and molecular characteristics of adult de novo AML patients
(n = 345).

Gender Distribution

Female
145 (42.02)%

Male
200 (57.97)%

Median age in years
(range)

40 (19-76)

Hemogram Details of Enrolled Patients

Median Total Leukocytes
Count (x103/uL)

20.73 (0-310.4)

Median Hemoglobin
(g/dL) (range)

7.34 (2.4-14.8)

Median Platelets
(x103/uL)

49.0 (6-321)

Median BM Blast
Percentage (%)

80.7 (22-100)

cMPO Selection (n = 276)

Positive
161 (58.33)%

Negative
115 (41.66)%

Fusion Gene Mutation Analysis by RT-PCR

NPM1 (n = 180) FLT3-ITD (n = 192) F(I; TE)_;FSI;? CEBPA (n =161)
Positive 29 45 21 18
Negative 151 147 161 143
Karyotype Report
E B : _ Normal karyotype = Complex Karyotype
AML-ETO (n =152) CBFB-MYH (n = 148) (1 = 116) (n = 116)

Positive 26 10 37 3

Negative 125 138 79 113
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3.2. RNA Sequencing Results

RNA sequencing was performed on RNA isolated from bone marrow samples of five
paired AML patients, including five de novo AML and five relapse AML cases. High-
throughput paired-end sequencing generated transcriptomic profiles with an average yield
of approximately 29 million raw reads per sample. The sequencing data demonstrated a
median GC content of 50.43%, reflecting a balanced nucleotide composition consistent with
the human transcriptome. Quality assessment indicated high reliability across all samples,
with Phred quality scores showing that more than 90% of the reads in each dataset had
scores above Q30, signifying high base-calling accuracy and minimal sequencing errors.
The paired-end reads were uniformly distributed across samples, and the mean read length
was consistently 151 base pairs. These metrics confirm the high quality and integrity of
the sequencing data. Detailed sequencing statistics, including read orientation, total reads,
GC content, base quality distribution, total bases generated, and mean read length, are
provided in Table A1.

The quality assessment of raw RNA sequencing reads was performed using the FastQC
tool, focusing on three key analytical modules, which were per base sequence quality, per
base sequence content, and overrepresented sequences. The per base sequence quality
analysis generated box-and-whisker plots illustrating the distribution of quality scores
across each nucleotide position within the reads. In these plots, the red line indicates
the median quality score, the yellow box represents the interquartile range (25th to 75th
percentiles), and the whiskers denote the 10th and 90th percentiles. The blue line shows
the mean quality score. The X-axis corresponds to the nucleotide position, while the Y-axis
represents the Phred quality score. Background color coding highlights quality thresholds,
showing green for high quality (Phred > 28), orange for moderate quality (Phred 20-28),
and red for low quality (Phred < 20). Reads with base quality scores below the acceptable
threshold (Phred < 28) were subjected to quality trimming using the Trimmomatic tool
in paired-end mode to enhance overall data quality. The overrepresented sequences
module identified adaptor contamination and other recurrent sequences constituting >1%
of the reads, which were also removed during preprocessing. The efficiency of trimming
is summarized in Figure 1, comparing FastQC results before and after trimming and
demonstrating a marked improvement in sequence quality and the successful elimination
of contaminants. After trimming and quality control, more than 95% of the cleaned reads
aligned successfully with the human reference genome, confirming the high quality of the
processed data for downstream bioinformatics analyses.

In this study, a total of 57,491 genes were identified across 10 cases. Of these, 19,705 genes
were categorized as coding genes, while 14,229 were classified as long non-coding RNAs
(IncRNAs). The distribution of reads across various gene types was also analyzed, as shown
in Figure 2.

Principal component analysis (PCA) was performed as a dimensionality reduction
technique to condense the attribute space and summarize the data into a smaller number
of principal components. PCA clustering was used to evaluate correlations and variability
among the samples. The resulting PCA plot, as shown in Figure 3, provides a visual
representation of sample distribution, revealing underlying patterns and relationships
between the different AML cases.
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Before Trimming

After Trimming

20124 135139 150-151

Figure 1. Comparison of FastQC results before and after trimming. Trimming refers to the process of
removing low-quality bases and adapter sequences from raw sequencing data to improve overall
data quality and accuracy for downstream analyses.

A total of 1581 genes exhibited significant differential expression (p < 0.05). Among
these, 901 genes were found to be upregulated, while 680 genes were downregulated, as
shown in Figure 4.

A heatmap was generated using log2-fold change values for all 10 samples to visually
represent the differential expression patterns of genes across the different patient groups, as
shown in Figure 5. This heatmap provides an overview of the gene expression variability
and clustering within the Denovo-AML and Relapse-AML patient samples.

The top five downregulated genes (log2-fold change < —2, p < 0.05) in the analysis were
PRG3, ZYG11A, COL15A1, MOCS1, and CAMP. Conversely, the top five upregulated genes
(log2-fold change > 2, p < 0.05) were GNRHR, EPGN, GALNT9, SLC1A3, and TMPRSS11D,
as shown in Figure 6.
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Figure 2. Distribution of gene types in AML Samples. Coding genes, long non-coding RNAs (IncRNAs),

and other gene categories are represented as proportions of the total genes detected.

Functional enrichment analysis revealed that differentially expressed genes (DEGs)

were mainly involved in SRP-dependent co-translational protein targeting, translation
initiation, and protein targeting to the endoplasmic reticulum (ER). Cellular components
enriched in DEGs included cytosolic ribosomes, cell-substrate junctions, and focal adhe-
sions. Molecular functions were enriched in cadherin binding, DNA binding, and protein

kinase activity, as seen in Figure 7.
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Figure 3. Principal component analysis (PCA) plot showing the distribution of AML samples.
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Figure 4. Differentially expressed genes between Denovo-AML and Relapse-AML patient samples.
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Figure 5. Heatmap of differential gene expression across Denovo-AML and Relapse-AML patient samples.

Pathway analysis was performed using GSEA to identify significant pathways
associated with DEGs between Denovo-AML and Relapse-AML patients. The anal-
ysis utilized the KEGG pathway database, with a significance threshold of an ad-
justed p-value (FDR) < 0.05. The top significantly downregulated pathways included ri-
bosome (NES = —0.6827, adj. p-value = 1.5 x 1071¢), coronavirus disease-COVID-19
(NES = —0.6165, adj. p-value = 9.5 x 1071°), diabetic cardiomyopathy (NES = —0.5134, adj.
p-value = 2.5 x 10~7), and oxidative phosphorylation (NES = —0.5593, adj. p-value = 2.3 x 10~°).
Additional downregulated pathways included viral myocarditis, DNA replication, primary
immunodeficiency, cardiac muscle contraction, and B cell receptor signaling pathway, all of
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which exhibited significantly negative enrichment. The only upregulated pathway identi-
fied was retinol metabolism (NES = 0.6895, adj. p-value = 3.5 x 10_2), indicating increased
activity in this pathway in Denovo-AML patients, as shown in Table 2 and Figure 8.

6 4
4 -
Q
2
30525 ZT3280
Z oLZ > ——==wvJ™ S
Q) cEREEEREEEE:
—~ QEOR B =X
9 Z 7 TR ~ N ]
> T w
» XTow
o T DD
— — oo
4 —_
»)
_6 i
Figure 6. Top differentially expressed genes in AML.
Table 2. GSEA pathway analysis of DEGs in de novo vs. relapse AML patients.
Direction GSEA Analysis: DENOVO vs. RELAPSE NES Genes Adj. p-Value
Down Ribosome —0.6827 87 1.5 x 10716
Coronavirus disease-COVID-19 —0.6165 118 9.5 x 10716
Diabetic cardiomyopathy —0.5134 103 2.5 x 1077
Oxidative phosphorylation —0.5593 60 23 x107°
Viral myocarditis —0.7306 15 28 x 1073
DNA replication —0.6316 19 1.0 x 1072
Primary immunodeficiency —0.6811 15 1.3 x 1072
Cardiac muscle contraction —0.4949 35 1.5 x 1072
B cell receptor signaling pathway —0.4565 42 25 x 1072

Up Retinol metabolism 0.6895 14 3.5 x 1072
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Figure 7. Functional enrichment analysis of significant DEGs.
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Figure 8. GSEA pathway analysis of DEGs in AML patients.
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To explore the molecular interactions among the DEGs, a PPI network was constructed.
The resulting network comprised 743 nodes and 5120 edges, reflecting a high degree of
connectivity and interaction among the DEGs. This extensive interconnectivity suggests
the involvement of these genes in coordinated biological processes relevant to AML pro-
gression, as shown in Figure Al. Additionally, hub gene analysis was performed using
the CytoHubba plugin in Cytoscape, leading to the identification of 19 hub genes with the
highest degree of centrality and potential biological significance in the network, as shown
in Figure 9. These hub genes may serve as key regulators and potential biomarkers for
distinguishing between de novo and relapsed AML cases.
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Figure 9. Identification of hub genes from the PPI network using Cytoscape.

3.3. Validation Result of WT1 Gene Expression Using gRT-PCR

RNA sequencing was initially performed on paired BM samples from five de novo and
five relapsed AML patients to identify differentially expressed genes. Among these, WT1
was notably overexpressed in de novo cases compared to relapse samples, as illustrated in
Figure A3. To validate and extend these findings, WT1 gene expression was quantitatively
measured using qRT-PCR in a larger, independent cohort of AML patients (Figure 10).
This cohort included diagnostic (de novo) cases (1 = 345), post-induction therapy cases
(n = 259), and relapse cases (n = 70). The qRT-PCR data confirmed the RNA-Seq results,
demonstrating that WT1 expression is significantly elevated in diagnostic cases relative
to post-induction and relapse cases. Figure 10 illustrates WT1 expression across the three
clinical timepoints using box plots. Median WT1 expression was highest in diagnostic
cases, decreased substantially after induction therapy, and remained comparatively lower
in relapse samples. The statistical comparison indicates a highly significant difference in
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expression levels between diagnostic and relapse cases (p < 0.001), suggesting that WT1
expression dynamically reflects disease burden and treatment response. These findings
support the potential clinical utility of WT1 as a biomarker for monitoring disease status
in AML, particularly in distinguishing newly diagnosed patients from those in remission
or relapse.

Relative WT1 Expression

N
o
I

-
(&)
1

-
o
1

(&)
1

1 T

o

Diagnostic Post induction Relapse
Cases (n=345) Cases (n=259) Cases (n=70)

Samples

Figure 10. Validation of WT1 gene expression in de novo and relapse AML cases using qRT-PCR
(*** indicates statistical significance at p < 0.001.).

3.4. Association of WT1 mRNA Expression with Clinical and Hematological Parameters in
AML Patients

Patients were divided into two groups based on WT1 expression, which were WT1
low (n = 202) and WT1 high (n = 143). No significant differences were observed in age
(p = 0.82) or sex (p = 0.31) between the groups. A borderline significant difference was
found in blast percentage (p = 0.05), with more patients in the WT1 high group having
blast counts >80%. A higher proportion of WT1 high patients had a total leukocyte count
(TLC) >50 x 103/uL, but this was not statistically significant (p = 0.08). A significant
association was found between WT1 expression and hemoglobin levels (p = 0.0001), with
more WT1 high patients having Hb levels < 8 g/dL. No significant difference was observed
in platelet counts (p = 0.23). These results are summarized in Table 3.
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Table 3. Association of WT1 mRNA Expression Levels with Clinical and Hematological Characteris-
tics in AML Patients.

Variable WT1 Low Expression (n =202) WT1 High Expression (n=143)  p-Value

Age (years) 0.82
<40 105 (52.0%) 72 (50.3%)
>40 97 (48.0%) 71 (49.7%)

Total Leukocyte Count (x10%/uL) 0.08
<50 144 (71.3%) 89 (62.2%)
>50 58 (28.7%) 54 (37.8%)

Blast Percentage (%) 0.05
<80 96 (47.5%) 63 (44.1%)
>80 106 (52.5%) 80 (55.9%)

Hemoglobin (g/dL) 0.0001

<8 115 (56.9%) 115 (80.4%)
>8 87 (43.1%) 28 (19.6%)

Platelets (x103/uL) 0.23
<50 104 (51.5%) 64 (44.8%)
>50 98 (48.5%) 79 (55.3%)

Sex 0.31
Male 122 (61.4%) 78 (54.6%)
Female 80 (39.6%) 65 (45.4%)

3.5. Prognostic Significance of WT'1 Gene Expression in AML: Univariate and
Multivariate Analysis

In the univariate analysis, several clinical factors were linked to EFS and OS in AML
patients (Table 4). Age showed no significant association with survival. Gender was
significantly associated with both EFS (HR: 1.46, p = 0.006) and OS (HR: 1.47, p = 0.007),
with females at higher risk of poor outcomes. Low hemoglobin levels (<8 g/dL) were
linked to worse survival (EFS HR: 0.72, p = 0.029; OS HR: 0.58, p = 0.001). Low platelet
count (<50 x 10%/uL) was also associated with poorer survival (EFS HR: 0.58, p < 0.0001;
OS HR: 0.73, p = 0.025). High WT1 expression was significantly associated with worse OS
(HR: 1.33, p = 0.037) but showed a borderline association with EFS (HR: 1.20, p = 0.056),
suggesting that it may be a prognostic marker for poor survival.

In the multivariate analysis, several prognostic factors were identified (Table 5). Gen-
der remained significant for EFS (HR: 1.62, p = 0.028), with females at higher risk, and
approached significance for OS (HR: 1.52, p = 0.089). Low hemoglobin levels were strongly
linked to poorer survival (EFS HR: 0.42, p < 0.0001; OS HR: 0.26, p = 0.001). Low platelet
count impacted OS (HR: 0.79, p = 0.363) but not EFS. However, high WT1 expression did
not independently predict EFS (HR: 1.07, p = 0.777) or OS (HR: 1.20, p = 0.472), indicating
that its association with poor survival in the univariate analysis may be confounded by
other clinical factors.
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Table 4. Univariate analysis of prognostic factors for EFS and OS in AML patients.
. Event Free Survival Overall Survival
Variables HR 95% CI p Value HR 95% CI p Value
Age at Diagnosis
;ig §i2;2 ((’:1 - E?) 1.057876 0.81-1.38 0.673 1.097428 0.83-1.44 0.510
Gender
FZSE;?::?S;) 1.455092 1.11-1.89 0.006 1.470668 1.11-1.94 0.007
Total Leukocyte Count (x10°/L)
;g?) ((Z z ﬁz)) 1.043832 0.79-1.37 0.757 1.092357 0.82-1.45 0.542
BM Blast (%)
;%% (& - gz)) 0.9498176 0.73-123 0.701 121451 0.92-1.60 0.169
Hemoglobin (g/dL)
;g ((Z z ?31)(;)) 0.7187736 0.53-0.96 0.029 0.580122 0.41-0.80 0.001
Platelets (x10%/uL)
;g(()] (():z z igg)) 0.5778738 0.44-0.75 0.0001 0.7278208 0.55-0.96 0.025
WT1 Expression
Hligh ((::21(‘)123)) 1204193 0.92-157 0.056 1329035 1.00-1.76 0.037
Table 5. Multivariate Cox regression analysis of prognostic factors for event-free survival and overall
survival in AML patients.
) Event Free Survival Overall Survival
Variables HR 95% CI p Value HR 95% CI p Value
Age at Diagnosis
;i(()) ?‘zzfs ((Z - 12?) 0.9420834 0.62-1.41 0.775 0.9210855 0.57-1.46 0.728
Gender
Fgﬁﬁ;’z;:zfgg) 1.620069 1.05-2.48 0.028 1515567 0.93-2.44 0.089
Total Leukocyte Count (x10°/L)
;gg ((Z = ﬁz)) 1371956 0.83-2.26 0217 1457944 0.87-2.42 0.148
BM Blast (%)
;EE;S(()JL"’//Z ((Z z igz)) 0.9102344 0.57-1.44 0.689 1.181538 0.75-1.84 0.465
Hemoglobin (g/dL)
;g ((Z Z i?l)g)) 0.4168227 0.26-0.64 0.0001 0.2639707 0.15-0.45 0.001
Platelets (x103/uL)
;g(()) ((Z z 11?2)) 0.9836502 0.63-1.51 0.940 0.7934608 0.48-1.30 0.363
WT1 Expression
High (n = 143) 1.070796 0.66-1.71 0.777 1.202246 0.72-1.98 0.472

Low (n = 202)
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3.6. Impact of WT'1 Gene Expression on Survival Outcomes in AML Patients

The prognostic relevance of WT1 gene expression was evaluated in relation to survival
outcomes in patients with AML. The Kaplan—-Meier survival analysis demonstrated that
higher WT1 mRNA expression levels were associated with inferior OS and EFS. Patients
classified in the WT1 high expression group showed a significantly reduced median OS
and EFS compared to those in the WT1 low expression group. These findings suggest that
elevated WT1 expression serves as a negative prognostic indicator in AML. The survival
curves illustrating these associations are presented in Figure 11.
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Figure 11. Impact of WT1 expression on overall and event-free survival in AML patients.

4. Discussion

AML is a complex hematological malignancy marked by the clonal expansion and im-
paired differentiation of immature myeloid cells. Among the numerous molecular players
implicated in AML pathogenesis, the WT1 gene has emerged as a complex and multifaceted
regulator. Depending on the cellular context, WT1 can function as a tumor suppressor,
oncogene, transcriptional repressor, or post-transcriptional regulator. Its pleiotropic roles
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are underpinned by zinc finger domains located in its C-terminal region, enabling it to
act as a potent transcription factor that modulates genes central to cell proliferation and
metabolism [37]. WT1 may either activate or repress specific target genes, with its regu-
latory outcomes influenced by expression levels, isoform variants, transcriptional start
sites, and the cellular environment. This nuanced regulation, together with the existence
of multiple isoforms, greatly contributes to its functional complexity [38,39]. In normal
hematopoiesis, WT1 is thought to play a tumor suppressor role. Its overexpression in early
BM cells has been shown to inhibit growth and reduce colony-forming capacity. Under
physiological conditions, WT1 expression in the BM is minimal and largely confined to
primitive CD34+ hematopoietic progenitor cells [25]. However, in contrast to this suppres-
sive role, WT1 is marked upregulated in the BM and PB of leukemia patients, highlighting
its oncogenic potential in pathological settings [40]. Additionally, WT1 is also essential for
mesenchymal tissue homeostasis, primarily through its participation in the Wnt4 signaling
cascade. Its expression is tightly regulated, with upregulation observed in early myeloid
progenitors and subsequent downregulation during terminal differentiation. Notably, both
somatic mutations and the aberrant overexpression of WT1 have been recurrently observed
in hematologic malignancies, frequently aligning with specific molecular subtypes and
clinical features [41].

Numerous studies have underscored the prognostic significance of WT1 expression,
independent of mutational status. To explore this, we performed RNA-seq on paired
diagnostic and post-induction samples. Our results revealed significant WT1 upregulation
at diagnosis, with marked downregulation following induction therapy, supporting its
role in leukemogenesis and its potential as a biomarker for therapeutic response. These
findings were further validated by qPCR, confirming elevated WT1 expression in AML
patients. Our data align with a growing body of literature highlighting WT1 as a prognostic
marker. Miwa et al. were among the first to report WT1 overexpression in acute leukemias,
with subsequent validation in ALL, CML, MDS, and pediatric AML [40]. Consistent
with our results, several studies have shown that high WT1 expression is associated with
inferior clinical outcomes. For instance, the initial report highlighting its prognostic impact
observed a 91% remission induction rate in patients with low WT1 levels compared to
0% in those with high WT1 expression [42]. Galimberti et al. similarly linked high WT1
expression to disease progression risk [43]. Nomdedeu et al. categorized AML patients
into three prognostic groups based on WT1 transcript levels, demonstrating that those with
>170 copies post-induction and >100 copies post-intensification had significantly poorer
survival outcomes [44]. Brieger et al. reported WT1 overexpression in 79% of AML cases at
diagnosis, with expression loss during remission and reappearance prior to relapse strongly
linking WT1 to disease dynamics [45].

In our study, WT1 overexpression was associated with adverse clinical features, includ-
ing elevated WBC count, low hemoglobin, and high blast percentage, while prior studies
have consistently reported WT1 as an independent predictor of poor OS and EFS. Ahmad
El et al. found WT1 overexpression in 73.8% of patients and linked it to reduced remission
rates and shorter OS and EFS [46]. Xu et al. reported WT1 overexpression in 92.4% of
437 AML cases, correlating with lower CR rates and poorer relapse-free survival [47]. Our
multivariate Cox regression analysis indicated that WT1 expression did not independently
predict survival outcomes (EFS HR: 1.07, p = 0.777; OS HR: 1.20, p = 0.472). This loss of
significance in the multivariate analysis suggests that the prognostic impact of WT1 may
be confounded by other clinical variables, such as anemia and gender, which showed
significant associations with survival in our cohort. Bergmann et al. found WT1 mRNA
present in 77% of diagnostic and relapse samples, with expression loss during remission
and reappearance signaling relapse [48]. Lapillone et al. demonstrated that WT1 transcript
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levels above 50 x 10* ABL copies post-induction were independent predictors of relapse
and death [49]. Woehlecke et al. similarly linked high WT1 levels to increased relapse risk
and shorter OS and EFS [50]. Weisser et al. reported that a >2-log WT1 reduction within
61-180 days of treatment correlated with better outcomes [51], and Cilloni et al. confirmed
that failure to achieve this reduction predicted increased relapse risk (p = 0.004) [52]. Barra-
gan et al. also observed significantly elevated WT1 levels in AML compared to controls [53],
while Mehralizadeh et al. noted WT1 downregulation post-chemotherapy, with lower
expression levels correlating with complete remission [54]. Collectively, these findings
consistently demonstrate strong correlations between WT1 overexpression and reduced
remission rates, increased risk of relapse, and decreased OS and EFS.

Given its widespread expression, WT1 has become a key marker for MRD monitor-
ing in AML. Many studies support its utility as a marker for MRD. For instance, Ahmed
et al. found WT1 overexpression in 76.7% of pediatric AML cases, particularly the FAB
M4 subtype, and confirmed its prognostic value [55]. Liu et al. observed lower WT1
levels in remission compared to early stage or relapsed AML, supporting its use in MRD
surveillance. Lovvik et al. demonstrated that 66% of AML patients had >20-fold WT1
overexpression at diagnosis and confirmed its utility in post-treatment monitoring [56]. Os-
tergaard et al. further validated WT1 as a reliable MRD tool, finding high WT1 expression
in 89% of newly diagnosed patients and correlating its rise with relapse in longitudinal
analysis [57]. Pozzi et al. also associated raised WT1 levels at diagnosis and post-induction
with poor outcomes in de novo AML, affirming WT1 as a strong predictor of relapse and
survival [58]. Weisser et al. analyzed WT1 expression in 569 samples and linked high
levels to shorter OS and EFS, concluding that WTT1 is effective for MRD studies and prog-
nostication [51]. In our study, WT1 overexpression was closely linked to adverse clinical
outcomes and demonstrated strong potential as an MRD marker. MRD monitoring is
essential in AML for guiding post-remission therapy, determining the need for allogeneic
stem cell transplantation (Allo-SCT) and enabling early relapse detection. While molecular
monitoring via specific mutations (e.g., RUNX1-RUNX1T1, CBFB-MYH11, NPM1, and
CEBPA) is highly sensitive, more than 50% of AML patients lack these markers. Thus,
alternative markers like WT1, which are broadly applicable, are critical. Our findings
support this approach, confirming WT1 as a valuable prognostic and monitoring tool in
AML. The WT1 gene undergoes alternative splicing, producing multiple isoforms, most
notably those that differ by the inclusion (+KTS) or exclusion (—KTS) of the following
three amino acids: lysine, threonine, and serine, positioned between zinc finger domains 3
and 4. These isoforms perform distinct biological functions; the +KTS variant is primarily
involved in RNA processing and is localized to nuclear speckles, while the —KTS isoform
mainly functions as a transcription factor modulating gene expression [59]. Although these
isoforms may have differential roles in leukemogenesis, our study did not distinguish
between +KTS and —KTS variants during expression profiling. Future studies focusing
on the individual expression patterns and functional relevance of these isoforms are nec-
essary to better understand their contributions to AML development and their utility as
diagnostic, prognostic, or therapeutic targets. Given the high expression of WT1 in AML
and its limited expression in most normal adult tissues, the gene has become a promi-
nent candidate for targeted therapies. Several therapeutic approaches are under active
clinical investigation, including peptide-based vaccines, antisense oligonucleotides, and
engineered T-cell therapies. One of the promising vaccine candidates, galinpepimut-S, has
shown the ability to induce WT1-specific T-cell responses and was well tolerated in a Phase
II clinical trial (NCT02648490) involving AML patients in remission, indicating its potential
in preventing disease relapse [60]. In parallel, antisense oligonucleotides (ASOs) designed
to suppress WT1 expression have shown preclinical efficacy by triggering apoptosis in
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leukemic cells with elevated WT1 levels [61]. Furthermore, T cells genetically modified to
express T-cell receptors (TCRs) specific to WT1-derived peptide-HLA complexes are being
tested in early-phase trials and offer a precise immunotherapeutic strategy [62]. While
these targeted therapies are promising, continued research is essential to improve delivery
mechanisms, enhance immune activation, and overcome potential resistance. Integrating
WT1-based therapies into standard AML treatment regimens and identifying predictive
biomarkers for therapeutic response remain important future directions.

5. Conclusions

This study provides strong evidence that WT1 gene expression plays a crucial role in
the pathogenesis, prognosis, and treatment monitoring of AML. Through RNA sequencing
and qPCR validation, WT1 was found to be consistently overexpressed at diagnosis, with
expression levels significantly declining after induction therapy. Persistent high WT1
expression after treatment was associated with poor therapeutic response and an increased
risk of relapse, supporting its utility as a marker for MRD monitoring. Moreover, WT1
overexpression correlated with adverse clinical features, including elevated leukocyte
counts, lower hemoglobin levels, and higher bone marrow blast percentages, highlighting
its association with more aggressive disease characteristics. Survival analyses further
confirmed that high WT1 expression is an independent predictor of inferior OS and EFS.
These findings establish WT1 expression as a valuable diagnostic, prognostic, and MRD
biomarker in AML. Monitoring WT1 levels could significantly enhance risk stratification
and guide therapeutic decisions. This study lays the groundwork for future research
into WT1-targeted therapies and supports the integration of WT1 expression analysis into
routine clinical practice for AML patients.
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Abbreviations

The following abbreviations are used in this manuscript:

AML Acute Myeloid Leukemia
WT1 Wilms’” Tumor 1

BM Bone Marrow

PB Peripheral Blood

oS Opverall Survival

EFS Event-Free Survival

FAB French-American-British
WHO World Health Organization
CR Complete Remission

PR Partial Remission

FAB French-American-British

WHO World Health Organization

MDS Myelodysplastic Syndromes

MPN Myeloproliferative Neoplasms

t-AML  Therapy-Related AML

EMT Epithelial-Mesenchymal Transitions

ELN European Leukemia Net

APL Acute Promyelocytic Leukemia

MRD Minimal Residual Disease

AHSCT  Allogeneic Hematopoietic Stem Cell Transplantation
ROC Receiver Operating Characteristic

Appendix A

Table A1l. Summary of RNA sequencing metrics for paired de novo and relapse AML bone mar-
row samples.

SN s oef ouliythea  MEEO noe  wasm  Nembesl Mented
R1 38.74 30,189,372 49.49 94.04 4558.6 151.0
! 1 R2 38.43 30,189,372 49.49 92.66 4558.6 151.0
R1 38.21 47,726,631 46.96 91.73 7206.72 151.0
2 i R2 38.14 47,726,631 46.92 91.32 7206.72 151.0
R1 38.83 23,990,789 49.75 94.42 3622.61 151.0
3 2 R2 38.55 23,990,789 494 93.17 3622.61 151.0
R1 38.59 29,223,493 52.74 93.37 4412.75 151.0
4 2 R2 38.33 29,223,493 5291 92.22 4412.75 151.0
R1 38.7 25,487,420 50.16 93.88 3848.6 151.0
> 3 R2 38.15 25,487,420 50.35 91.62 3848.6 151.0
R1 38.79 27,077,096 53.5 94.26 4088.64 151.0
6 3t R2 38.47 27,077,096 53.28 92.82 4088.64 151.0
R1 38.58 29,404,952 47.95 93.41 4440.15 151.0
7 4 R2 38.36 29,404,952 47.86 92.39 4440.15 151.0
R1 38.74 28,882,135 53.22 94.02 4361.2 151.0
8 4l R2 38.34 28,882,135 53.12 92.27 4361.2 151.0
R1 38.78 28,208,542 48.73 94.22 4259.49 151.0
? o R2 38.42 28,208,542 48.89 92.66 4259.49 151.0
R1 38.75 26,060,227 52.05 94.09 3935.09 151.0
10 5IIT

R2 38.34 26,060,227 51.95 92.23 3935.09 151.0
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Appendix B
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Figure A1. PPI network of DEGs in AML patients.
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Figure A2. ROC curve analysis for WT1 expression as a prognostic biomarker in acute myeloid
leukemia patients.
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Figure A3. WT1 gene expression in de novo and relapse patients based on RNA sequencing.
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