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Type I interferons (IFNs) were first described for their ability to protect the host from viral
infections and may also have beneficial effects under specific conditions within some bac-
terial infections.Yet, these pleiotropic cytokines are now known to exacerbate infections by
numerous life-threatening bacteria, including the intracellular pathogens Listeria monocyto-
genes and Mycobacterium tuberculosis. The evidence that such detrimental effects occur
during bacterial infections in both animals and humans argues for selective pressure. In this
review, we summarize the evidence demonstrating a pro-bacterial role for type I IFNs and
discuss possible mechanisms that have been proposed to explain such effects.The theme
emerges that type I IFNs act to suppress myeloid cell immune responses. The evolution-
ary conservation of such anti-inflammatory effects, particularly in the context of infections,
suggests they may be important for limiting chronic inflammation. Given the effectiveness
of type I IFNs in treatment of certain autoimmune diseases, their production may also act
to raise the threshold for activation of immune responses to self-antigens.
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autoimmunity

INTRODUCTION
Type I interferons (IFNs) are a class of cytokines that includes
numerous IFNα subtypes, IFNβ, IFNδ, IFNε, IFNκ, IFNτ, and
IFNω (1, 2). These secreted factors are predominantly produced
by innate immune and non-immune cells of humans and other
animals in response to recognition of conserved microbial prod-
ucts, rather than specific antigens. The different type I IFNs vary in
their sequences but bind and signal using a common, ubiquitously
expressed, heteromeric cell surface receptor (IFNAR) comprised
of IFNAR1 and IFNAR2 chains. Ligation of IFNAR in diverse cell
types activates a canonical JAK/STAT signaling cascade primar-
ily involving JAK1, Tyk2, STAT1, and STAT2 proteins. Activation
of these factors leads to induced transcription of numerous type
I IFN-stimulated genes (ISGs), the protein products of which
largely act to disrupt various stages of viral replication (3, 4).
Type I IFNs are thus important for resistance to several viral
infections and are used in the clinic for effective antiviral ther-
apy (2). However, type I IFNs also exert a variety of other effects
on cellular functions and immune responses. For example, they
up or down regulate production of and responsiveness to other
cytokines, chemokines, and can stimulate cell growth, cell survival,
or apoptosis (2, 5). Consequently, these cytokines are also used for
treatment of melanomas, leukemias, and other cancers (6), and
as immune modulatory agents to suppress neuroinflammation in
patients suffering from relapse-remitting multiple sclerosis (MS)
(2). Hence, type I IFNs exert seemingly opposing pro- or anti-
inflammatory effects and pro- or anti-apoptotic effects. It is likely
that these opposing effects reflect cell type-specific differences in
the activation of secondary or “non-canonical” signaling events
and/or variations in the dominance of a specific type I IFN species.

Indeed, individual type I IFN proteins vary in their ability to elicit
specific responses and stimulation of different cell types can cause
distinct signaling events (7, 8).

The second class of IFN protein (type II or IFNγ) is more
critical for host defense against intracellular bacterial pathogens,
such as Mycobacterium tuberculosis and Listeria monocytogenes.
IFNγ signals through its own ubiquitously expressed heteromeric
receptor (IFNGR), which utilizes IFNGR1 and IFNGR2 chains to
activate a canonical JAK/STAT pathway primarily involving JAK1,
JAK2, and STAT1. In contrast to type I IFNs, which are broadly
expressed, IFNγ is produced primarily by lymphocytes. Antigen-
specific IFNγ production occurs when appropriate T lymphocyte
populations respond to specific microbial antigens, while antigen
non-specific production of IFNγ is stimulated by cytokines such as
interleukin (IL)-12 and IL-18. Studies using L. monocytogenes and
other bacterial infection models indicate that both T and natural
killer (NK) cells are capable of this antigen non-specific IFNγ pro-
duction (9–11). Myeloid cells such as macrophages and dendritic
cells (DCs) are key targets of IFNγ, as shown by the increased
susceptibility to L. monocytogenes infection in mice selectively
defective for functional IFNGR1 in myeloid cells (12, 13). The
expression of numerous IFNγ activated genes (GAGs) is induced
by the cytokine. Some of these genes are identical to ISGs and
have antiviral effects. However, IFNγ is unique in its ability to
elicit a potent anti-microbial state of activation in macrophages.
This “M1-type” activation is associated with increased expression
of GAGs such as nitric oxide synthase 2 (NOS2) and NADPH
oxidase subunits. These enzymes generate nitric oxide (NO) and
reactive oxygen species (ROS) that alter cell signaling and under
appropriate circumstances can mediate direct killing of bacteria
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(14, 15). IFNγ-inducible GTPases also promote macrophage resis-
tance to bacterial and parasite infections by increasing the ability of
phagosomal compartments to contain and kill engulfed microbes
(16–18). IFNγ also upregulates myeloid cell expression of MHC
II and other factors important for antigen presentation and T cell
activation (19). In addition, IFNγ impacts maintenance and pro-
liferation of hematopoietic stem cells (HSC). Specifically, basal
production of IFNγ in the absence of infection drives HSC cycling
and the elevated levels occurring during infection can activate HSC
proliferation and myelopoiesis to replenish monocytes and other
immune cells (20, 21).

Despite the antiviral effects of type I IFNs, and in the con-
text of the antibacterial effects of IFNγ, it is increasingly evident
that host responsiveness to type I IFNs correlates with increased
host susceptibility to infections by L. monocytogenes, M. tubercu-
losis, Francisella tularensis, and several other intracellular bacterial
pathogens (22–24). Here, relying heavily on the L. monocytogenes
model, we review the pathways involved in the induction of type I
IFNs by intracellular bacteria and various mechanisms proposed
to account for the suppressive effects of type I IFN signaling. A
theme that emerges from these studies is that type I IFNs have
suppressive effects on anti-microbial and antigen-presenting func-
tion of myeloid cells. Such effects may contribute to both the
observed ability of these cytokines to increase host susceptibil-
ity during bacterial infections and to their effectiveness in therapy
of neuroinflammatory disease.

BACTERIAL FACTORS CONTRIBUTING TO TYPE I IFN
PRODUCTION DURING L. MONOCYTOGENES INFECTION
Listeria monocytogenes is a Gram-positive facultative intracellu-
lar bacterium that causes the systemic disease Listeriosis. The
mortality rate of Listeriosis is quite high even in hospitalized
patients; hence, L. monocytogenes remains a leading cause of death
from foodborne illnesses within the United States. L. monocyto-
genes can infect hematopoietic and non-hematopoietic cell types
through phagocytosis or cellular mediated uptake (25, 26). Fol-
lowing systemic infection in the murine model L. monocytogenes
localizes to the liver and spleen where resident phagocytes, primar-
ily macrophages and DCs, engulf the bacteria. L. monocytogenes
that escape from phagosomal compartments in these cells can
replicate within the cell cytosol and further propagate the infection
into neighboring cells. To facilitate vacuolar escape, the bacteria
secrete a pore-forming hemolysin (hly) known as listeriolysin O
(LLO) (27).

Like many other bacteria, L. monocytogenes induces produc-
tion of pro-inflammatory cytokines such as TNFα and type I IFNs
when engulfed by professional phagocytes. Studies of infection
in bone marrow derived macrophages (BMM) suggest that there
are two waves of the cellular response to L. monocytogenes infec-
tion (28, 29). An “early phase” gene expression profile is seen
at 1–2 h post infection by both virulent wild-type L. monocy-
togenes and avirulent ∆hly or heat-killed bacteria that cannot
escape from vacuolar compartments into the host cytosol (28,
29). Several of these “early phase” genes, including il1b, tnfa,
and those encoding several chemokines are induced through the
activation of Toll-like receptor (TLRs) and the ensuing activa-
tion of NFκB (28, 29). A subsequent “late-phase” response is

observed at 4–8 h after infection by wild-type, but not killed
or ∆hly, L. monocytogenes strains (28, 29). “Late-phase” genes
include IFNβ, multiple subtypes of IFNα, and several ISGs (28,
29). The fact that killed and ∆hly L. monocytogenes strains fail
to induce this late-phase IFN-dominated response supports the
interpretation that products from bacteria replicating within the
BMM cytosol stimulate cytosolic pathogen recognition receptors
(PRR), though TLR stimulation can augment the induction of
type I IFNs during L. monocytogenes infection (29, 30). There
has been considerable interest in identifying the cytosolic PRRs
responsible for type I IFN production during L. monocytogenes
infection.

PATHWAYS LEADING TO THE PRODUCTION OF TYPE I IFNs
DURING BACTERIAL INFECTION
Pathways known to be important for induction of type I IFN
within L. monocytogenes-infected phagocytes are diagrammed in
Figure 1. Amongst the earliest identified cytosolic PRRs were the
nucleotide-binding oligomerization domain (NOD)-containing
proteins; members of the nucleotide-binding domain, leucine-rich
repeat (LRR) protein family referred to as NLRs. NOD1 and NOD2
proteins sense distinct muropeptide fragments from the cell wall
from L. monocytogenes and other bacteria (31–33). Recognition
of appropriate muropeptides activates a serine/threonine kinase
receptor interacting protein (RIP2) to initiate downstream signal-
ing and activation of NFκB (31). With regards to triggering of
type I IFN production, NOD1, NOD2, and RIP2 seem to play an
ancillary role. They augment the induction of type I IFN and other
cytokine expression in response to L. monocytogenes (29, 31–33),
but mice and BMM deficient for any one of these proteins retain
the ability to mount inflammatory responses and synthesize type I
IFNs in response to L. monocytogenes (31, 34, 35). Thus, the recog-
nition of bacterial cell wall components by the cytosolic NOD1
and NOD2 proteins is not crucial for the induction of type I IFNs
during L. monocytogenes infection.

Nucleic acids are potent inducers of type I IFN production and
it was shown that extracts from L. monocytogenes induce IFNβ pro-
duction in a manner sensitive to DNAse treatment of the extracts
(36). L. monocytogenes was also reported to actively secrete both
RNA and DNA during infection of macrophages (37). Cytoso-
lic RNA is detected by the RNA helicase retinoic acid inducible
gene 1 protein (RIG-I), related RIG-I-like (RLR) proteins includ-
ing melanoma differentiation-associated gene 5 (MDA5), as well
as other non-RLR helicases and PRRs (38–40). RNA recognition
by RIG-I and MDA5 induces their recruitment to mitochondria,
where they encounter an adaptor protein [mitochondrial antiviral
signaling (MAVS)] that regulates downstream signaling to induce
type I IFNs (41–43). Secreted L. monocytogenes DNA could also
be detected using these RNA receptor systems if it is transcribed
into RNA by host cell RNA polymerase III (37). However, defi-
ciency in RIG-I, MDA5, or MAVS fails to ablate IFNβ production
by L. monocytogenes-infected BMM (37, 44, 45). Thus, it does
not appear that RNA sensing is crucial for recognizing cytosolic
L. monocytogenes infection in this cell type, although it may play
a more important role in sensing L. monocytogenes infection of
other cell types and for sensing infection by other bacteria, namely
Legionella pneumophila (46, 47).
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FIGURE 1 | Pathways implicated in type I IFN production following
L. monocytogenes infection. Several cytosolic receptors are able to
recognize L. monocytogenes (Lm) microbial components to induce type
I IFN production. (Yellow) Endosomal TLRs recognize a variety of Lm
bacterial patterns including cell wall fragments, which can also stimulate
NOD proteins. NOD proteins require association with RIP2 to activate
TBK1. Lm secretes RNA, DNA, and cyclic-di-nucleotides. Secreted RNA
(red) binds to RIG-I or MDA5, both of which associate with MAVS.
Cytosolic DNA (blue) can alternatively be converted into RNA by RNA

polymerase III and induce type I IFNs through the RIG-I pathway. DNA
is also directly sensed by DDX41 or IFI16 to induce the production of
type I IFNs in a STING-dependent mechanism. cGAS can sense DNA
and convert it into cGAMP, which binds with high affinity to STING to
stimulate IFNβ production. C-di-nucleotides bind to STING directly and
to DDX41, either of which may result in IFNβ synthesis. TBK1 and IRF3
are essential for the induction of type I IFN production during Lm
infection, and each of these upstream sensing pathways converges on
TBK1 activation.

DNA present in the host cell cytosol can also be detected and
trigger the production of type I IFNs (40). Several putative recep-
tors have been identified that might mediate such recognition,
including the DNA-dependent activator of IRFs (DAI), IFN-
inducible gene (IFI)-16, and LRR flightless-interacting protein
(LRRFIP1). Deficiency or knockdown of DAI, IFI16, or LRRFIP1
fails to completely ablate type I IFN production by infected murine
BMM (48–50). However, recently IFI16 was shown to have a
larger role in the recognition of L. monocytogenes DNA in the
human macrophage cell line, THP1. Knockdown of IFI16 in these
cells drastically reduced the production of IFNβ in response to
L. monocytogenes DNA (51). The DNA-binding DEAD-box heli-
case DDX41 has also been shown to bind L. monocytogenes DNA.
DDX41 elicits type I IFN production through a mechanism requir-
ing the stimulator of interferon genes protein (STING), also called
MITA, MPYS, or ERIS (52). STING induces type I IFN produc-
tion by activating the TNFR-associated NF-κB kinase (TANK)-
binding kinase 1 (TBK1), which phosphorylates a C-terminal
serine residue on the transcription factor IFN regulatory factor
3 (IRF3) to induce IRF3 dimerization and nuclear translocation
(34, 53). IRF3 and other IRF family members bind to the pro-
moters of type I IFN genes and ISGs to regulate and initiate their

transcription. TBK1 and IRF3 are thus not surprisingly essen-
tial for the production of type I IFNs during L. monocytogenes
infection (34, 54). Likewise, deficiency or knockdown of STING
significantly decreases IRF3 activation and IFNβ production in
BMM, DC, or fibroblasts infected with L. monocytogenes (55–57).

It appears that STING does not respond to intact DNA, but
rather to endogenous or exogenous cyclic-di-nucleotides (40).
In the presence of cytosolic dsDNA, the enzyme cGAS synthe-
sizes an endogenous cyclic-di-nucleotide, cGAMP (58). Binding
of cGAMP to STING occurs with a very high affinity (~4 nM)
and induced conformational changes that presumably initiate the
downstream events that culminate in type I IFN production (59).
Exogenous cyclic-di-nucleotides can also activate STING (56, 57,
60). Both cyclic-di-GMP (cdGMP) and cyclic-di-AMP (cdAMP)
are produced by bacteria and function as second messengers. There
is evidence that cdAMP is released from replicating L. monocyto-
genes (61, 62), thus it is conceivable that cdAMP secreted by the
bacterium mediates the STING-dependent production of type I
IFNs in L. monocytogenes-infected macrophages. However, while
the affinity of cdAMP for STING is not known, STING binds
cdGMP ~300-fold lower affinity (~1 µM) than cGAMP DNA
(59). Thus, it is also conceivable that cGAMP produced by cGAS
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in response to secreted bacterial DNA contributes to STING-
dependent type I IFN production. Regardless, it is important
to keep in mind that STING deficient mice showed significantly
reduced serum IFNβ only very early (8 h) after L. monocytogenes
infection (56, 57). Thus, systemic L. monocytogenes infection can
trigger type I IFN through multiple pathways and the impact of
STING on overall type I IFN production in this model is limited.

TYPE I IFN SIGNALING AND INCREASED SUSCEPTIBILITY TO
BACTERIAL INFECTION
In certain bacterial infection models, protective effects of type I
IFNs have been reported. For example, type I IFN can reduce bac-
terial burdens in cultured cells infected with L. pneumophila or
Chlamydia trachomatis and survival of mice is increased in sep-
sis models with group B Streptococcus and E. coli (63–65). Mice
lacking expression of IFNε, which is abundantly expressed within
the female reproductive tract, were also reported to be highly sus-
ceptible to urogenital infection by C. muridarum (66). The precise
mechanisms are not clear in these cases, but the observed protec-
tive effects appear to reflect unique aspects of the models and/or
pathogens studied since there is considerable evidence to indicate
that type I IFNs instead play a deleterious role during infections
by numerous other bacterial pathogens (22–24). Specifically, stud-
ies with mice lacking IFNAR1 report that bacterial burdens are
significantly reduced and survival increased following systemic
or mucosal infections with intracellular bacteria that infect the
cytosol of host cells, such as L. monocytogenes (54, 67–70) and
F. tularensis (71) as well as bacteria like M. tuberculosis (72–74)
and C. muridarum (75, 76) that reside within vacuolar compart-
ments. In addition, heightened type I IFN production correlates
with increased host susceptibility to several bacterial infections. In
mice, examples of this include the correlation of increased type
I IFN production in mice with a mutated ubiquitin specific pep-
tidase (USP18) and sensitivity to Salmonella typhimurium (77).
Furthermore, isolates of L. monocytogenes and M. tuberculosis that
hyper-induce type I IFN production have heightened pathogenic-
ity in animal models (78, 79). The administration of type I IFNs or
agents that induce these cytokines also causes increased suscepti-
bility to L. monocytogenes and M. tuberculosis in model infections
(54, 78, 80). Type I IFN production is also increased during viral
infections. In mice, lymphocytic choriomeningitis virus (LCMV)
infection potently induces type I IFNs and leads to ~1000-fold
increased susceptibility to a secondary L. monocytogenes infection
as measured by bacterial burdens (81). In humans, a similar sit-
uation occurs following infection with influenza virus. Influenza
infections are often associated with secondary bacterial infections
and secondary bacterial pneumonias are estimated to account for
up to 25% of the more than 250,000 annual deaths attributed to
influenza (82, 83). Such secondary infections are also thought to
have caused most of the deaths from the 1918 influenza pandemic
(84). Streptococcus pneumoniae is a prevalent bacterial cause of
pneumonias and a model of influenza and secondary S. pneu-
moniae infection showed that increased bacterial burdens and
mortality was dependent on IFNAR expression (85). Severe bacter-
ial infections have also been noted in patients receiving prolonged
IFNα2 therapy for chronic hepatitis C virus infection (86–88).
Moreover, in the absence of obvious viral infections, signatures of

type I IFN responses correlate with disease progression in human
tuberculosis and leprosy patients (89, 90). Thus, despite numer-
ous differences in the receptors and cytokines themselves, the
association of type I IFNs with exacerbated bacterial infections
appears to have been conserved in murine and human systems.
An improved understanding how these cytokine responses are
deleterious to their hosts and what has driven their conserva-
tion across this evolutionary span are important questions to
address.

MECHANISMS PROPOSED TO ACCOUNT FOR THE
PRO-BACTERIAL EFFECTS OF TYPE I IFNs
A summary of the proposed mechanisms for the deleterious effects
of type I IFN signaling during bacterial infections is outlined in
Figure 2.

INDUCTION OF HOST CELL DEATH
It has long been known that bacterial infections can induce death
of multiple cell types within tissues of murine hosts. In the systemic
L. monocytogenes infection model, this cell death is exacerbated by
type I IFNs. O’Connell et al. observed that expression of pro-
apoptotic genes such as TNF-related apoptosis-inducing ligand
(TRAIL), promyelocytic leukemia (PML), and death-associated
protein 6 (Daxx) were increased in the spleens of L. monocyto-
genes-infected wild-type, but not IFNAR1 deficient, mice (54).
Consistent with increased apoptosis in these tissues, terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) staining is also increased in the spleens of infected wild-
type mice, when compared to infected IFNAR1−/− or IRF3−/−

mice (54, 69). This TUNEL staining was localized to lympho-
cyte rich follicles within the spleens, suggesting that type I IFN
might induce apoptosis of lymphocytes and that such apoptosis
could itself be detrimental (54, 69). The possibility that lympho-
cyte apoptosis is deleterious to the host is also consistent with the
observation that mice deficient in lymphocytes or T cells alone
are resistant to acute systemic L. monocytogenes infection (91–93).
Resistance in T cell-deficient hosts is thought to reflect consti-
tutively heightened macrophage activation (94), and correlates
with reduced production of the anti-inflammatory cytokine IL-
10 (91). It was thus proposed that in mice responsive to type I
IFNs, the uptake of apoptotic cells by macrophages triggers their
production of IL-10, which in turn inhibits host resistance (91).
Myeloid cells are also sensitive to apoptosis in response to type I
IFN and IFNAR expression has also been correlated with increased
apoptosis of splenic and pulmonary macrophages during L. mono-
cytogenes and pulmonary C. muridarum infections, respectively
(54, 76). As mentioned above, these type I IFNs increase expres-
sion of the pro-apoptotic factor TRAIL during L. monocytogenes
infection (54). Similar to IFNAR1−/− mice, mice lacking TRAIL
demonstrate reduced TUNEL staining and increased resistance
during L. monocytogenes infection (95). These effects were further
correlated with increased numbers of splenic lymphocytes and
monocytes. Type I IFN production induced by LCMV infection
also correlates with granulocyte apoptosis and impaired control
of L. monocytogenes infection (81). Thus, there is a clear associ-
ation between type I IFNs, cellular death, and impaired myeloid
cell responses during bacterial infections. Nonetheless, it remains
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FIGURE 2 | Some mechanisms previously proposed to account for the
pro-bacterial effects of type I IFNs. (A) Type I IFNs up regulate pro-apoptotic
genes resulting in lymphocyte (green) apoptosis. Apoptotic lymphocytes
stimulate myeloid cell IL-10 secretion. (B) Increased apoptosis of myeloid cells
(orange) leads to reduced amounts of inflammatory monocytes during

infection. (C) Signaling through the IFNAR suppresses myeloid cell secretion
of pro-inflammatory cytokines and chemokines, which can result in decreased
IFNγ production. (D) Expression of IFNGR is suppressed in response to type I
IFN signaling in myeloid cells thus decreasing cellular responsiveness to IFNγ.
(E) Type I IFNs induce the production of IL-10 to inhibit IFNγ responsiveness.
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unclear whether apoptosis of T or myeloid cells is a primary cause
of the increased host susceptibility.

SUPPRESSION OF PRO-INFLAMMATORY CYTOKINE AND CHEMOKINE
PRODUCTION
Type I IFN production during viral infection is known to sup-
press production of IL-12 and other pro-inflammatory cytokines
(96). Similarly, type I IFN production was associated with reduced
secretion of IL-12 and TNFα in both L. monocytogenes and M.
tuberculosis infection models (68, 72). Type I IFNs also suppress
IL-1β production by inhibiting inflammasome activation (97), and
reduced IL-1β secretion correlated with increased host suscep-
tibility in M. tuberculosis infection models (98, 99). Expression
of chemokines such as CCL2 is also regulated by type I IFNs
(100, 101). CCL2 and its chemokine receptor CCR2 are critical
for migration of inflammatory monocytes to sites of infection
by L. monocytogenes and other bacteria (102–104). Spleens of
IFNAR1−/− mice have increased accumulation of inflammatory
monocytes during L. monocytogenes infection (68), however, type
I IFNs upregulate CCL2 and recruitment of monocytes into the
lung during M. tuberculosis infection (80). In the latter study,
accumulation of monocytes correlated with more severe infec-
tion. By contrast, type I IFNs were reported to impair production
of CXCL1, CXCL2, and neutrophil accumulation in lungs and
more severe infection in mice infected with S. pneumoniae (85).
Moderately, impaired neutrophil recruitment was also correlated
with reduced IL-17 production and increased disease severity in
mice in response to type I IFNs during F. tularensis and L. mono-
cytogenes infections (71). However, it is debated whether or not
neutrophils are protective during infections by L. monocytogenes
and other intracellular bacteria (105, 106). Moreover, the neu-
tropenia seen in patients treated with type I IFNs fails to correlate
with their susceptibility to bacterial infections (86, 87). Thus, type
I IFNs can alter production of cytokines and chemokines involved
in neutrophil or inflammatory macrophage recruitment.

SUPPRESSION OF MYELOID CELL RESPONSIVENESS TO IFNγ

IFNγ is critical for the pro-inflammatory anti-microbial (M1) type
activation of macrophages and transgenic mice lacking responsive-
ness to IFNγ selectively in myeloid cells are highly susceptible to
L. monocytogenes and other intracellular pathogens (12, 13, 107).
The macrophages activated by IFNγ have increased expression of
molecules involved in both MHC class I and MHC class II antigen
presentation, as well as enzymes producing reactive oxygen and
nitrogen species with potential anti-microbial functions and pro-
inflammatory cytokines and chemokines, including IL-12 (19).
Expression of some, but not all, of these genes can also be induced
when macrophages are stimulated with type I IFNs. In contrast,
only IFNγ stimulates macrophages to express or upregulate MHC
class II molecules (108). Indeed, stimulation of macrophages with
type I IFNs suppresses their induction of MHC II expression in
response to IFNγ. As mentioned above, type I IFNs also suppress
production of IL-12 and CXCL1 and 2 (85, 96). These data suggest
that type I IFNs are able to prevent or dampen classical M1-type
anti-microbial macrophage activation in response to IFNγ. Con-
sistent with this interpretation, a recent report revealed an inverse
correlation between IFNβ and IFNγ gene expression patterns in

lesions of human leprosy patients (90). The IFNβ-driven response
also correlated with IL-10 production, and IFNβ production con-
tributed to IL-10 secretion, leading the authors to conclude that the
impaired IFNγ responses in M. leprae infected macrophages is due
to IL-10 production (90). Indeed, IFNβ and IL-10 treatments both
impaired the ability of IFNγ to induce expression of the vitamin
D receptor, the vitamin D-1a-hydroxylase, and the anti-microbial
peptides cathelicidin and DEFB4 in macrophages (90).

Type I IFNs were also associated with the induction of IL-10
secretion and Programed death-ligand 1 (PD-L1) expression by
myeloid cells during chronic LCMV infection (109, 110). Experi-
ments using antibody blockade of IFNAR showed reduced expres-
sion of these immune suppressive factors and increased clearance
of persistent viral infections (109, 110). Interestingly, the blockade
of IFNAR also suppressed production of IL-1β and IL-18, argu-
ing against the notion that improved viral clearance was due to
increased inflammasome activation. Rather, the improved viral
clearance was associated with increased serum IFNγ and block-
ade of IFNAR failed to improve viral clearance in mice treated
with antibody to block IFNγ (109, 110). The therapeutic effects
of blocking type I IFN signaling also correlated with an improved
ratio of stimulatory versus immune regulatory antigen-presenting
cells (APCs) and enhanced antiviral T cell responses. Although
the authors of one study further suggested that the suppression
of inflammatory and immune responses in these studies reflected
chronic type I IFN signaling (109), a second study observed that
type I IFNs increased IL-10 secretion and PD-L1 expression by
DCs as early as 1 day post infection (110).

Leading up to these recent studies,prior efforts had also demon-
strated suppressive effects of type I IFNs on myeloid cell activation
during systemic L. monocytogenes infection of mice (70). In this
model, the suppressive effects of type I IFNs correlate with reduc-
tions in myeloid cell surface IFNGR1. Similarly, surface IFNGR1
staining is significantly reduced on myeloid cells from M. tuber-
culosis infected patients compared to healthy control and effective
treatment of these patients correlates with restored myeloid sur-
face expression of IFNGR1 (111). IFNAR expression is necessary
and recombinant type I IFNs are sufficient to trigger IFNGR1
down regulation in mouse and human myeloid, but not T cells
(70, 112), suggesting this mechanism might contribute to a selec-
tive inhibition of myeloid cell responsiveness to IFNγ. Indeed, the
reduced expression of IFNGR1 correlates with decreased respon-
siveness to IFNγ as indicated by reduced STAT1 phosphorylation
and impaired induction of MHC class II expression in the context
of L. monocytogenes, M. tuberculosis, and F. novicida infections
(70, 111, 113).

Additional mechanistic studies have revealed that type I IFNs
suppress myeloid cell surface IFNGR1 within hours of stimulating
the IFNAR and that this effect is due to transcriptional silencing of
the otherwise constitutively expressed ifngr1 gene (70, 111, 112).
The rapid reductions in ifngr1 transcript abundance following
IFNβ stimulation are preceded by loss of activated RNA poly-
merase II at the ifngr1 transcriptional start site and the accumula-
tion of epigenetic marks on nearby histones that are indicative of
condensed chromatin (112). The reduction in ifngr1 transcription
is also associated with recruitment of the early growth response
3 (Egr3) transcription factor shortly after IFNβ treatment (112).
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Egr3 is a member of the Egr family of zinc finger transcription fac-
tors originally defined for their role in regulation of cell growth and
differentiation (114, 115). Egr3 can act as an activator or repres-
sor in response to various stimuli, depending on post-translational
modifications and association with various adapter proteins (114–
117). One such adaptor protein, the NGFI-A binding protein Nab1
is a known corepressor and is also recruited to the ifngr1 pro-
moter shortly after Egr3 (112). Knockdown of Nab1, but not Nab2,
prevented IFNGR1 down regulation in macrophages treated with
IFNβ, suggesting that recruitment of a repressive Egr3/Nab1 com-
plex is responsible for rapid silencing of ifngr1 transcription (112).
Given that the half-life of IFNGR1 protein is estimated at 3–4 h
(118), such transcriptional silencing is sufficient to rapidly reduce
myeloid cell responsiveness to IFNγ. Nonetheless, type I IFN stim-
ulation does not appear to cause a complete loss of myeloid cell
surface IFNGR1, possibly due to the induction of SOCS proteins
and other endogenous negative feedback circuits that attenuate
cellular responses to IFNAR signaling. These results suggest that
down regulation of IFNGR1 expression might be an early step
in the cascade of events leading to the suppression of myeloid
cell responses that result in increased bacterial burdens and dis-
ease severity during acute and chronic bacterial infections, and the
establishment or maintenance of chronic viral infections.

COMMON FEATURES OF PROPOSED MECHANISMS
Given the numerous effects of type I IFNs on various cells of
the immune system and on non-immune cells, it is plausible that
their pro-pathogen effects vary for different pathogens. This seems
particularly likely for pathogens infect different tissue or cell types,
where the responses to type I IFNs may differ. For instance, a recent
study demonstrated that IFNAR expression on non-hematopoietic
cells was required to increase host susceptibility to the intracellu-
lar bacterial pathogen Ixodes ovatus Ehrlichia (119). The effects of
these cytokines may also differ depending on the route of infection
and the presence or nature of competing commensal microbes. For
example, Kerbauer et al. suggested that type I IFNs might not be
as detrimental to the host following gastric infection of mice with
L. monocytogenes (120). Regardless, results from the studies high-
lighted above clearly implicate myeloid cells/APCs as key targets
of type I IFNs in settings where these cytokines are deleterious to
the host. Precisely, how these cytokines act to dampen myeloid cell
immunity and what selective advantage this confers on the host
remains to be discerned.

APPOSING EFFECTS OF TYPE I IFNs IN AUTOIMMUNE
DISEASES
The role of type I IFN signaling during autoimmune disease
remains controversial,possibly indicating that these cytokines have
opposing effects in different disease settings. For example, chronic
type I IFN production is a hallmark of systemic lupus erythe-
matosus (SLE) and several groups have reported a subset of ISGs
upregulated in SLE patients compared to healthy controls (121–
124). ISG signatures were also associated with disease severity and
progression in SLE patients (121–123). It has thus been suggested
that type I IFNs promote SLE pathology through the activation of
effector cells. Type I IFNs can paradoxically promote not just death
of lymphocytes, but also T cell survival, proliferation, cytotoxicity,

and B cell differentiation and antibody production. Any of these
effects might conceivably contribute to increased tissue damage
and disease progression in SLE patients.

In contrast to the exacerbation of SLE by type I IFNs, these same
cytokines confer therapeutic benefits in certain other autoimmune
diseases. The most obvious example of this is the neuroinflamma-
tory disease MS. IFNβ is a common therapy and has been shown
to reduce the frequency of clinical exacerbations in patients with
relapse-remitting MS (125). The mechanisms for these beneficial
effects remain uncertain. However, type I IFNs also suppress dis-
ease in the murine experimental autoimmune encephalomyelitis
(EAE) model of MS. As for MS, IFNβ is therapeutic in the EAE
model and deletion of the ifnb gene or IFNAR1 robustly increased
EAE pathogenesis in mice (126, 127). Furthermore, using con-
ditional knockouts, it was shown that IFNAR1 expression on
myeloid cells was specifically required for the therapeutic effects
of IFNβ during EAE (127). Deficiencies in IFNAR1 expression on
myeloid cells also severely exacerbated disease and correlated with
increased secretion of TNFα and CCL2 as well as increased expres-
sion of MHC II (127). These immunosuppressive effects of IFNβ

treatment in humans may likewise target myeloid cells.
Other autoimmune diseases where type I IFNs appear to play

a protective role include collagen type II induced arthritis in non-
human primates (128). Treatment with double-stranded RNA
species or recombinant IFNα also lowered the frequency and
severity of arthritic symptoms in the murine model of antigen-
induced arthritis (129). The pharmacokinetics of IFNβ therapies
have shown to be a barrier is translating many of these treatments
from animal models to clinical use in humans. However, Mullen
et al. engineered a latent form of IFNβ that can only become
activated when cleaved by aggrecanase (130). Aggrecanases are
highly expressed within the joints and synovial fluid of rheuma-
toid arthritis and osteoarthritis patients and are responsible for
the cleavage of aggrecan, an important component of joint tissue
(130). This delivery method allows for temporal and tissue specific
release of IFNβ that resulted in a significantly increased half-life of
IFNβ as well as reduced pathology and joint swelling from collagen
induced arthritis (130).

Humans with autoimmunity often carry a single nucleotide
mutation in protein tyrosine phosphatase non-receptor type 22
(PTPN22) (131). PTPN22 is an intracellular protein tyrosine
phosphatase that is exclusively found in immune cells (131), and
was recently associated with TLR signaling for type I IFN synthesis
in myeloid cells (132). Functional PTPN22 was also shown to sup-
press inflammatory arthritis and promote gut homeostasis (132).
Mice deficient in PTPN22 demonstrate increased susceptibility in
the dextran sodium sulfate (DSS) mouse model of acute colitis
(132). TLR stimulation by microbiota also induced immunosup-
pressive effects that correlated with type I IFN production and
decreased progression of experimental colitis in mice (133). Treat-
ment with recombinant IFNβ phenocopied the decreased colitis
achieved through TLR stimulation (133). Moreover, in a ran-
domized placebo controlled study of active ulcerative colitis, a
significant clinical response, and in some cases, disease remis-
sion, was seen in patients that received IFNβ therapy compared
to the patients that received placebo (134, 135). It was noted
that the therapeutic effects of IFNβ treatment in this disease
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correlated with reduced production of IL-13, an effector cytokine
driving intestinal inflammation (134). Mice deficient in type I
IFN signaling have been shown to have exacerbated DSS-induced
acute colitis (136, 137). Furthermore, mice with IFNAR1 deletion
specifically in myeloid cells demonstrated significantly increased
weight loss and colitis disease activity score when treated with
DSS (136). These data suggest that type I IFN signaling specifi-
cally in myeloid cell is protective during DSS-induced acute colitis.
Interestingly, the authors further showed that IFNAR1−/− mice
recovered from DSS treatment more quickly than wild-type mice,
suggesting a deleterious role of type I IFNs during the recovery
phase of colitis (136).

CONCLUSION
Interferons are important mediators and regulators of the immune
response to viruses, bacteria, and other pathogens. They can sup-
press inflammatory responses and exacerbate the pathogenesis
in certain autoimmune diseases and several intracellular bac-
terial infections. Indeed, pathogens such as L. monocytogenes
may actively promote type I IFN production through secretion
of nucleic acids or cyclic-di-nucleotides that are recognized by
cytosolic pattern recognition receptors to stimulate a type I IFN
response. However, type I IFNs appear to be protective in certain
other bacterial infections and in many viral infections, and may
exacerbate the autoimmune disease SLE. Thus, blindly blocking
their production as a therapy for bacterial infections would likely
have severe untoward effects in these other disease settings. It thus
remains an important challenge to dissect the mechanisms for the
divergent pro- and anti-inflammatory effects of type I IFNs, as
well as their paradoxical protective and deleterious effects dur-
ing infectious and other diseases. As we review here, a number of
observations have been correlated with the pro-bacterial effects of
type I IFNs. However, while these observations have led to the pro-
posal of several differing mechanisms to explain these detrimental
effects of type I IFNs during intracellular bacterial infections, a
common theme is the suppression of myeloid cell inflammatory
responses. Whether such suppression results from the induction
of effector cell death and IL-10 production, suppression of T
cell cytokine or chemokine production, suppression of inflam-
masomes, or down modulation of IFNGR expression remains to
be seen. However, even in the absence of experimental proof that
points to a specific mechanism, it is attractive to speculate that the
deleterious effects of type I IFN signaling during bacterial infec-
tions are tolerated because their ability to suppress myeloid cell
responses also has a beneficial effect in protecting the host from
MS and other autoimmune diseases.
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