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Abstract
Background: Fibromyalgia	(FM)	is	characterized	by	chronic	widespread	pain.	
Its	pathophysiological	mechanisms	remain	poorly	understood,	and	effective	di-
agnosis	 and	 treatments	 are	 lacking.	 This	 study	 aimed	 to	 identify	 significantly	
changed	biosignatures	in	FM	and	propose	a	novel	classification	for	FM	based	on	
pain	and	soreness	(sng)	symptoms.
Methods: Urine	and	serum	samples	from	30	FM	patients	and	25	controls	under-
went	metabolomic	and	proteomic	profiling.
Results: Compared	 with	 controls,	 FM	 patients	 showed	 significant	 differen-
tial	expression	of	three	metabolites	in	urine	and	five	metabolites	and	eight	pro-
teins	 in	 serum.	 Of	 them,	 DETP,	 4-	guanidinobutanoic	 acid,	 SM(d18:1/18:0),	
PC(20:1(11Z)/18:0),	S100A7,	SERPINB3,	galectin-	7	and	LYVE1	were	first	reported	
as	potential	biomarkers	 for	FM.	Furthermore,	 lactate,	2-	methylmaleate	and	co-
tinine	 in	 urine	 and	 lactate,	 SM(d18:1/25:1),	 SM(d18:1/26:1)	 and	 prostaglandin	
D2	(PGD2)	and	PCYOX1,	ITIH4,	PFN1,	LRG1,	C8G,	C8A,	CP,	CDH5	and	DBH	
in	serum	could	differentiate	pain-		(PG)	and	sng-	dominant	groups	(SG).	Lactate,	
2-	methylmaleate,	cotinine,	PCYOX1,	ITIH4,	PFN1	and	DBH	have	a	higher	level	in	
SG.	SM(d18:1/25:1),	SM(d18:1/26:1),	PGD2,	LRG1,	C8G,	C8A,	CP	and	CDH5	in	SG	
are	lower	than	PG.	The	omics	results	indicated	disordered	free	radical	scavenging,	
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1 |  INTRODUCTION

Fibromyalgia	(FM)	is	a	chronic,	widespread	pain	disorder	
(Clauw	et	al.,	2011).	It	is	also	considered	to	encompass	a	
broad	array	of	somatic	and	psychological	symptoms	as	well	
as	a	‘chronic	pain	amplification	syndrome’	characterized	
by	dysregulation	of	variable	combinations	of	autonomic,	
neuroendocrine,	 immune	 and	 nociceptive	 processing	
functions	(Smith	et	al.,	2011).	It	is	more	prevalent	in	the	
female	gender	and	is	also	usually	accompanied	by	head-
aches,	fatigue,	sleep	disturbances,	cognitive	dysfunctions	
and	 circadian	 rhythm	 disturbances	 (Jahan	 et	 al.,	 2012;	
Perrot,	2019;	Wolfe	et	al.,	1990,	2010).	In	addition	to	pain,	
soreness	 (also	 designated	 as	 ‘sng’,	 pronounced	 sә-	ng)	 is	
another	common	complaint	amongst	FM	patients	(Chang	
et	al.,	2020b;	Lin	et	al.,	2018).	Sng	represents	the	state	of	
soreness	whilst	 simultaneously	 imitating	 the	natural	vo-
calization	of	human	beings	feeling	sore.	Sngception	(sore-
ness	 sensation)	 can	 decrease	 maximal	 muscle	 strength	
and	joint	range	of	motion	and	limit	activities	of	daily	liv-
ing	 (Mautner	 &	 Sussman,	 2016).	 Until	 now,	 the	 mecha-
nism	through	which	sngception	alters	patients’	wellness	
and	quality	of	life	remains	undetermined.

The	 clinical	 features	 of	 FM	 have	 been	 characterized,	
and	 FM	 is	 diagnosed	 solely	 on	 clinical	 grounds	 (Wolfe	
et	 al.,	 1990).	 FM	 diagnosis	 and	 therapy	 are	 challenging	
because	 of	 the	 lack	 of	 accurate	 diagnostic	 methods.	 FM	
has	 been	 intensively	 investigated,	 but	 the	 aetiology	 and	
pathogenesis	remain	elusive.	Physicians	currently	rely	on	
patient-	reported	information	about	a	multitude	of	symp-
toms	 to	diagnose	FM,	which	 is	 frequently	misdiagnosed	
or	undiagnosed.	Indeed,	no	reliable	molecular	biomarkers	
have	been	identified,	and	the	diagnosis	of	FM	still	depends	
on	in-	depth	clinical	evaluation.	Some	patients	remain	un-
diagnosed,	 leading	 to	 postponed	 care	 and	 poor	 manage-
ment	of	symptoms	(Arnold	et	al.,	2011;	Cohen,	2017).

Systems	biology	(e.g.,	metabolomics,	an	effective	post-	
genomic	 research	 tool)	 has	 been	 widely	 used	 to	 explore	
the	mechanism,	aetiology	and/or	biomarkers	of	complex	
disease	 (Zhang	 et	 al.,	 2015).	The	 lipidome	 is	 a	 subset	 of	
the	metabolome	and	plays	multiple	 roles	 in	cellular	 sig-
nalling,	 bioenergetics	 and	 membrane	 structure	 and	

function	 (Subramaniam	et	al.,	2011).	Proteomics	 is	used	
for	 detecting	 diagnostic	 markers,	 understanding	 patho-
genic	 mechanisms	 and	 interpreting	 functional	 protein	
pathways	in	various	diseases	by	identifying	and	quantify-
ing	the	‘proteome’	of	the	cell,	tissue	or	body	fluids	(Graves	
&	Haystead,	2002).	Integrating	multi-	omics	has	been	used	
to	characterize	and	decipher	the	underlying	pathomecha-
nisms,	 explore	 potential	 pathogenic	 factors,	 and	 provide	
more	 effective	 diagnosis	 and	 treatment	 for	 the	 disease	
(Gross	&	Han,	2011).

In	this	study,	we	investigated	the	untargeted	metabolo-
mic,	lipidomic	and	proteomic	patterns	in	urine	and	serum	
from	 FM	 patients.	 We	 aimed	 to	 construct	 the	 possible	
pathogenic	network	of	FM	based	on	the	correlation	of	lev-
els	of	metabolites	and	clinical	parameters.	Furthermore,	
we	aimed	to	explore	the	differences	between	pain	and	sng	
in	FM.

2 |  MATERIALS AND METHODS

2.1 | Participants, settings and clinical 
evaluations

Patients	 >20  years	 old	 who	 fulfilled	 the	 2011	 American	
College	 of	 Rheumatology	 criteria	 for	 FM	 were	 re-
cruited	from	the	outpatient	clinics	of	the	departments	of	
Neurology	 and	 Physical	 Medicine	 and	 Rehabilitation	 in	
National	 Taiwan	 University	 Hospital	 from	 July	 2017	 to	
July	2018	 (Wolfe	et	al.,	2011).	Briefly,	patients	had	 (1)	a	
widespread	 pain	 index	 (WPI)	 ≧7	 and	 symptom	 severity	
(SS)	scale	score	≧5	or	WPI	3–	6	and	SS	scale	score	≧9;	(2)	
symptoms	lasting	 for	at	 least	3 months	and	(3)	no	other	
disorders	 accounting	 for	 the	 pain.	 The	 WPI	 indicates	
whether	 patients	 have	 pain	 or	 tenderness	 in	 19	 regions,	
including	the	neck,	chest	and	abdomen	as	well	as	bilateral	
temporomandibular	 joints,	 shoulders,	 arms,	 forearms,	
buttocks,	 thighs,	 calves	 and	 back.	 We	 excluded	 patients	
who	 were	 unable	 to	 express	 themselves	 clearly	 or	 who	
had	 an	 acute	 infection,	 malignancy	 or	 history	 of	 major	
surgery.	To	assess	the	impact	of	both	pain	and	sng,	each	
participant	 completed	 the	 Revised	 Fibromyalgia	 Impact	

and	 lipid	and	amino	acid	metabolism	networks	and	resulting	NF-	κB-	dependent	
cytokine	generation	in	FM.	Lactate	level	was	altered	simultaneously	in	urine	and	
serum	and	significantly	higher	in	sng-	dominant	patients	than	others.
Conclusions: In	 this	 study,	 we	 identified	 potential	 biomarkers	 from	 FM	 pa-
tients.	 The	 selected	 biomarkers	 could	 discriminate	 sng	 and	 pain	 phenotypes	
in	FM	patients.	These	results	could	help	elucidate	 the	underlying	pathological	
mechanisms	for	more	effective	diagnosis	and	therapy	for	FM.
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Questionnaire	 with	 Integration	 of	 Soreness	 Assessment	
(FIQR-	S),	 including	 WPI,	 widespread	 sng	 index	 (WSI),	
pain	 visual	 analogue	 scale	 (P-	VAS),	 and	 sng	 visual	 ana-
logue	scale	(S-	VAS)	(Chang	et	al.,	2020b;	Lin	et	al.,	2018).	
For	 omics	 studies,	 FM	 patients	 were	 further	 divided	
into	 three	 phenotypes:	 pain-	dominant	 group	 (PG),	 sng-	
dominant	group	(SG)	and	no-	dominant	group	(NG)	based	
on	the	difference	between	P-	VAS × WPI	and	S-	VAS × WSI	
and	 according	 to	 the	 following:	 S-	VAS  ×  WSI  −  P-	
VAS × WPI < −10;	S-	VAS × WSI − P-	VAS × WPI > 10	
and	S-	VAS × WSI − P-	VAS × WPI = 10	to	−10,	respec-
tively	(Table	1).	Age-		and	sex-	matched	controls	were	re-
cruited	from	adults	receiving	regular	health	check-	ups	at	
the	National	Taiwan	University	Beihu	Branch.

2.2 | Urine and serum sample collection

Each	participant	provided	a	10-	ml	sample	of	mid-	stream	
urine	 and	 10  ml	 of	 peripheral	 blood	 collected	 from	 the	
antecubital	vein	upon	recruitment.	For	FM	patients,	sam-
ples	were	collected	before	any	treatment.	Urine	samples	
were	centrifuged	(1500 g	for	10 min	at	4°C),	aliquoted,	and	
stored	at	−80°C.	Blood	samples	were	collected	in	EDTA	
tubes	 on	 ice.	 Serum	 was	 separated	 immediately	 by	 cen-
trifugation	at	2000  rpm	 for	15 min	and	 stored	at	−80°C	
until	analysis.

2.3 | Ethics

The	 study	 protocol	 was	 approved	 by	 the	 Institutional	
Review	 Board	 of	 National	 Taiwan	 University	 Hospital	
(IRB	 No.	 201501081RINC).	 All	 participants	 provided	
written	 informed	 consent	 before	 entering	 the	 study.	 All	

clinical	 investigations	 were	 conducted	 according	 to	 the	
principles	of	the	Declaration	of	Helsinki.	The	correspond-
ing	authors	had	full	access	to	all	data	in	the	study	and	had	
final	responsibility	for	the	decision	to	submit	the	research	
for	publication.

2.4 | Metabolome and lipidome profiles 
for untargeted and lipid metabolites

Untargeted	 metabolomes	 in	 urine	 and	 serum	 were	 per-
formed	as	described	by	Hsu	et	al.	(Hsu	et	al.,	2019,	2020).	
Briefly,	 liquid	 chromatography	 tandem	 mass	 spec-
trometry	 (LC-	MS)	 analysis	 involved	 using	 an	 Agilent	
1290	 UPLC	 system	 (ACQUITY	 UPLC	 HSS	 T3	 col-
umn,	 2.1  ×  100  mm;	 1.8  µm;	 Waters)	 coupled	 with	 the	
6540-	Quadrupole-	Time-	of-	Flight	 (QTOF)	 mass	 system	
(Agilent	Technologies).	A	mobile	phase	consisted	of	0.1%	
formic	 acid	 in	 water	 (solvent	 A)	 and	 acetonitrile	 (ACN;	
solvent	B)	with	a	run	program	of	0–	1.5 min,	2%	B;	linear	
gradient	at	1.5–	9 min,	2%–	50%	B	and	9–	14 min,	50%–	95%	
B	and	isocratic	at	14–	15 min,	95%	B.	The	injection	volume	
was	2 μl	with	a	flow	rate	of	0.3 ml/min	in	LC.	A	jet	stream	
electrospray	ionization	(ESI)	source	was	used	for	sample	
ionization.	The	following	parameters	were	used	through-
out	 the	 study:	 curtain	 gas:	 gas	 temperature	 (325°C),	 gas	
flow	 (8  L/min),	 nebulizer	 pressure	 (40  psi),	 sheath	 gas	
temperature	(325°C),	sheath	gas	flow	(10 L/min)	and	cap-
illary	voltage	(40 kV	for	positive	and	35 kV	for	negative).	
The	mass	scan	range	was	set	to	50–	1700 m/z.

The	 LC-	MS	 lipidomic	 profiling	 in	 serum	 was	 an-
alysed	 by	 using	 a	 ZORBAX	 Eclipse	 Plus	 C18	 system	
(2.1 × 100 mm,	1.8 µm,	Agilent	Technologies)	for	QTOF	
with	 mobile	 phase	 A-	0.1%	 aqueous	 formic	 acid	 and	
10  mM	 ammonium	 acetate,	 and	 mobile	 phase	 B-	0.1%	

T A B L E  1  Clinical	characteristics	of	patients	with	fibromyalgia

Healthy 
controls

FM patients

Total SG PG NG

Age 51.17 ± 1.76 52.07 ± 1.97 50.22 ± 3.54 51.88 ± 2.9 57.00 ± 1.41

P-	VAS	score ND 5.27 ± 0.35 4.33 ± 0.87 5.94 ± 0.31# 4.50 ± 0.64

WPI ND 7.97 ± 0.95 2.77 ± 0.79** 10.88 ± 0.86*,## 8.00 ± 3.36

S-	VAS	score ND 4.03 ± 0.56 7.44 ± 0.68** 2.17 ± 0.49*,## 4.50 ± 0.64#,$

WSI ND 6.33 ± 0.95 10.70 ± 1.15* 3.64 ± 0.97## 7.75 ± 3.47

Note: Data	are	mean ± SD.
Abbreviations:	ND,	not	detected;	NG,	no-	dominant	sensation	group;	PG,	pain-	dominant	group;	P-	VAS,	pain	visual	analogue	scale;	SG,	sng-	dominant	group;	
S-	VAS,	sng	visual	analogue	scale;	WPI,	widespread	pain	index;	WSI:	widespread	sng	index.
*p < 0.05;	**p < 0.01	compared	with	total.
#p	<	0.05	compared	with	SG.
##p < 0.01	compared	with	SG.
$p < 0.05	compared	with	PG.
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formic	acid	and	10 mM	ammonium	acetate	in	ACN/iso-
propyl	alcohol	(50/50).	The	LC	program	was	a	linear	gra-
dient	at	0–	2.0 min,	35%–	80%	mobile	phase	B;	2.0–	7 min,	
80%–	100%	 mobile	 phase	 B;	 isocratic	 from	 7	 to	 14  min	
with	100%	mobile	phase	B	and	column	re-	equilibration	
with	100%	mobile	phase	B	for	2 min.	The	flow	rate	was	
0.35  ml/min.	 The	 sample	 reservoir	 and	 column	 oven	
were	maintained	at	4°C	and	55°C,	respectively.	The	in-
jection	 volume	 was	 5  μl.	 MS	 processed	 with	 a	 positive	
electrospray	 ionization	 mode	 involved	 300°C	 dry	 gas	
temperature,	 5  L/min	 dry	 gas	 flow	 rate,	 45  psi	 nebu-
lizer	pressure,	250°C	sheath	gas	temperature,	11 L/min	
sheath	gas	flow	rate,	3500 V	capillary	voltage	and	500 V	
nozzle	voltage.	MS	acquisition	was	executed	in	precur-
sor	 ion	scan	mode.	The	autosampler	and	column	oven	
were	maintained	at	4°C	and	55°C,	respectively.	The	in-
jection	volume	was	5 μl.	MS	acquisition	was	performed	
in	precursor	ion	scan	mode	and	multiple	reaction	moni-
toring	modes	(Liao	et	al.,	2020).

All	 MS	 raw	 data	 were	 converted	 to	 mzXML	 format	
by	 using	 Trapper	 (ISB)	 and	 normalized	 by	 TIPick,	 an	
in-	house	 package,	 as	 well	 as	 peak	 enhancement	 and	
peak	 chosen	 for	 the	 targeted	 metabolites.	 An	 in-	house	
database	 of	 sphingomyelin	 (SM),	 lysophosphatidyl-
choline,	 ceramides	 (Cer),	 phosphatidylcholines	 (PCs),	
phosphatidylinositol	 (PI),	 phosphatidylethanolamine	
(PE)	and	cerebroside	(CB)	was	used	for	lipid	screening.	
The	 analyst	 was	 blinded	 to	 patient	 group	 and	 disease	
classification.

2.5 | Tandem mass tag (TMT)- based 
quantitative proteomics

Serum	 samples	 were	 individually	 immunodepleted	
by	 using	 Proteome	 Purify	 12	 Human	 Serum	 Protein	
Immunodepletion	 Resin	 (R&D	 Systems)	 following	 the	
manufacturer's	 protocol.	 The	 immunodepleted	 serum	
samples	of	control	participants	were	randomly	pooled	into	
three	groups.	A	pooled	sample,	serving	as	an	internal	ref-
erence,	consisted	of	aliquots	of	protein	from	all	samples.	
The	immunodepleted	proteins	were	reduced,	S-	alkylated,	
trypsin	digested	and	desalted.	The	desalted	peptides	were	
TMT-	labelled	 by	 using	 the	 TMTsixplex™	 Isobaric	 Label	
Reagent	 Set	 (Thermo	 Fisher	 Scientific).	 A	 total	 of	 eight	
batches	 of	 TMT-	labelled,	 mixed	 samples	 were	 prepared	
according	 to	 the	 channel	 arrangement.	 Each	 batch	 of	
TMT-	labelled	 samples	 was	 further	 fractionated	 by	 using	
the	 High	 pH	 Reversed-	Phase	 Peptide	 Fractionation	 Kit	
(Thermo	Fisher	Scientific).

The	 fractionated	peptide	samples	were	analysed	with	
the	use	of	Ultimate	3000	RSLCnano	coupled	with	Thermo	
Orbitrap	 Eclipse	 Tribrid	 mass	 spectrometer	 (Thermo	

Fisher	Scientific)	on	a	75 μm × 25 cm	Acclaim	PepMapTM	
C18	column	(Thermo	Fisher	Scientific)	with	a	segmented	
gradient	in	60 min	from	5%	to	45%	solvent	B	(acetonitrile	
with	0.1%	formic	acid)	at	a	flow	rate	of	300 nl/min.	Solvent	
A	was	0.1%	formic	acid	in	water.	The	mass	spectrometer	
was	operated	in	a	data-	dependent	mode.	Survey	scans	of	
peptide	precursors	from	m/z	400	to	1600	were	performed	
at	120 K	resolution	with	a	2 × 105	ion	count	target.	The	top	
10	most	intense	precursor	ions	were	selected	for	MS/MS	
by	isolation	window	at	1.6 Da	with	the	quadrupole,	HCD	
fragmentation	 with	 a	 normalized	 collision	 energy	 of	 30	
and	MS2	scan	analysis	at	30 K	resolution	in	the	orbitrap.

Raw	 data	 files	 from	 nanoLC-	MS/MS	 were	 searched	
against	 the	 Uniprot	 human	 database	 (August,	 2020)	
using	 the	 Andromeda	 algorithm	 in	 MaxQuant	 software	
(v.	 1.6.14.0).	 TMT	 quantitation	 was	 also	 performed	 in	
MaxQuant	with	the	‘matching-	between-	run’	function	(Yu	
et	 al.,	 2020).	 Further	 data	 processing	 and	 statistics	 were	
performed	 using	 Perseus	 software	 (v.	 1.6.14.0)	 as	 previ-
ously	described	(Yu	et	al.,	2020).	Signals	from	each	channel	
were	normalized	with	the	internal	reference	channel,	that	
is	TMT131,	 in	 each	TMT	 batch,	 and	 further	 normalized	
by	 the	 quantile	 normalization	 method.	 All	 nanoLC-	MS/
MS	 raw	 files	 and	 MaxQuant	 search	 results	 were	 depos-
ited	at	the	ProteomeXchange	Consortium	(Deutsch	et	al.,	
2017)	via	the	PRIDE	partner	repository	data	set	identifier	
PXD022886.	The	analyst	is	blind	to	the	patient	group	and	
disease	categorization.

2.6 | Statistics

For	metabolomics	and	lipidomics,	LC-	MS/MS	spectrum	
data	sets	were	exported	to	SIMCA-	P+	v12.0	(Umetrics)	
or	 MetaboAnalyst	 5.0	 (http://www.metab	oanal	yst.ca)	
for	 multivariate	 statistical	 analysis,	 principal	 compo-
nent	analysis	 (PCA),	partial	 least	 squares	discriminant	
analysis	 (PLS-	DA)	and	orthogonal	PLS-	DA	(OPLS-	DA)	
for	 determining	 the	 metabolites	 that	 most	 contributed	
in	discriminating	FM	patients	and	controls.	Using	varia-
ble	importance	in	projection	(VIP)	cut-	off	value	of	1,	we	
determined	 whether	 or	 not	 metabolites	 were	 potential	
FM-	relevant	signatures.	Random	forest	 (RF)	classifica-
tion	and	mean	decrease	accuracy	 (MDA)	were	used	 to	
further	 refine	 the	 features	 that	 could	 discriminate	 the	
metabolic	 changes,	 with	 out	 of	 bag	 (OOB)	 error	 of	 RF	
for	serum	and	urine	of	0.191	and	0.245,	respectively.	To	
increase	the	reliability	of	FM	prediction,	we	calculated	
the	receiver	operating	characteristic	(ROC)	curve	on	the	
basis	of	a	logistic	regression	model	to	determine	the	area	
under	 the	ROC	curve	 (AUC).	 IBM	SPSS	23.0	was	used	
to	analyse	correlations	between	clinical	parameters	and	
targeted	metabolites.	Descriptive	statistics	are	presented	

http://www.metaboanalyst.ca
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as	mean ± SD,	median	(range)	or	number	(percentage).	
Pearson	 correlation	 coefficients	 were	 used	 to	 estimate	
the	correlation	between	the	sng-		and	pain-	related	indi-
ces	and	levels	of	metabolites.	Pearson	correlation	anal-
ysis	 was	 used	 to	 evaluate	 the	 linear	 relation	 between	
the	 sng	 or	 pain	 score	 and	 metabolite	 levels	 after	 loga-
rithmic	 transformation.	 p-	values	 were	 used	 to	 test	 the	
null	 hypothesis	 of	 the	 correlation	 between	 the	 level	 of	
an	individual	metabolite	and	clinical	sng	or	pain	score.	
Student	t	test	was	used	to	compare	groups	as	appropri-
ate.	 All	 calculated	 p-	values	 were	 two-	tailed.	 p  <  0.05	
was	considered	statistically	significant.	For	proteomics,	
differences	were	evaluated	with	the	Student	t	test,	with	
p < 0.05	as	the	significance	threshold.

2.7 | Bioinformatics analyses

Ingenuity	 Pathway	 Analysis	 (IPA)	 Software	 (Ingenuity	
Systems),	MetaboAnalyst	5.0	(http://www.metab	oanal	yst.
ca)	 and	 ConsensusPathDB	 (CPDB)	 (http://cpdb.molgen.
mpg.de/)	 were	 employed	 to	 analyse	 biological	 pathway	
and	functional	annotation	of	metabolomics	or	proteomics	
data.

To	 identify	 key	 biosignatures	 and	 correlation	 net-
works	 from	 proteomics,	 metabolomics	 and	 lipidomics	
data,	integrative	analyses	were	used	with	Data	Integration	
Analysis	 for	 Biomarker	 discovery	 with	 the	 Latent	 cOm-
ponents	 (DIABLO)	 program	 implemented	 in	 MixOmics	
R	 Bioconductor	 packages	 (Singh	 et	 al.,	 2019).	 DIABLO	
builds	 a	 classification	 framework	 with	 co-	expressed	 (or	
correlated)	variables	from	multi-	omics	data	sets	with	the	
multivariate	 dimension	 reduction	 technique,	 which	 is	 a	
modification	of	 the	sGCCA	algorithm	(Tenenhaus	et	al.,	
2014).	 Candidate	 metabolites	 and	 proteins	 with	 at	 least	
30%	difference	in	level	between	SG	and	PG	in	FM	patients	
were	selected	for	DIABLO	analyses,	with	the	component	
number	 of	 two	 in	 the	 maximal	 distance,	 and	 three-	fold	
cross-	validation	repeated	50	times.

3 |  RESULTS

3.1 | Metabolomic and lipidomic 
profiling of urine and serum from FM 
patients

We	 recruited	 55	 participants,	 including	 30	 patients	
(male/female  =  1/29)	 and	 25	 healthy	 controls	 (male/
female  =  1/24).	 The	 mean	 age	 was	 52.07  ±  1.97	 and	
51.17  ±  1.76  years,	 respectively,	 with	 no	 significant	 dif-
ference	 between	 the	 two	 groups	 (Table	 1).	 The	 PCA	
and	 OPLS-	DA	 score	 plots	 from	 multivariate	 analysis	 of	

untargeted	 metabolomics	 in	 urine	 and	 serum	 and	 lipid-
omics	in	serum	are	in	Figure	S1a	(urine)	and	S1b	(serum).	
A	trend	of	inter-	group	separation	in	the	PCA	score	plots	
revealed	 the	 separation	 between	 controls	 and	 FM	 pa-
tients.	OPLS-	DA	plots	 showed	 two	clusters	clearly	 sepa-
rated,	thus	suggesting	that	urine	and	serum	metabolomes	
and	lipidomes	differed	between	FM	patients	and	controls.

3.2 | Identification of potential 
metabolites with discriminative features

Student	 t	 test	 analysis	 of	 patients	 and	 controls	 showed	
significantly	 different	 levels	 of	 35	 and	 28	 metabolites	 in	
serum	and	urine	(Tables	S1	and	S2).	Then,	by	combining	
VIP	and	ROC	analyses,	we	selected	six	serum	metabolites	
(isoleucine,	 l-	norleucine,	 diethylthiophosphate	 [DETP],	
tryptophan,	 PC(20:1(11Z)/18:0)	 and	 SM(d18:1/18:0))	
and	 three	 urine	 metabolites	 (hypoxanthine,	 DETP	 and	
4-	guanidinobutanoic	 acid)	 as	 the	 most	 contributing	 me-
tabolites	 that	 simultaneously	 fulfilled	 the	criteria	of	VIP	
>1,	p < 0.05	and	AUC > 0.75.

To	complement	the	limitations	of	traditional	VIP	anal-
ysis,	we	performed	RF	analysis.	The	top	15	ranked	differ-
ential	metabolites	in	the	respective	models	were	selected	
according	 to	 MDA,	 which	 denoted	 the	 percentage	 de-
crease	 in	 accuracy	 when	 the	 trial	 was	 performed	 in	 the	
absence	of	the	metabolites	(Figure	S2).

Finally,	 we	 integrated	 the	 metabolomic	 results	
(Figure	S1)	for	serum-		and	urine-	derived	metabolites	for	
FM	 patients	 (Tables	 S1	 and	 S2).	 Potential	 FM-	relevant	
biosignatures	 were	 isoleucine,	 DETP,	 tryptophan,	
PC(20:1(11Z)/18:0)	 and	 SM(d18:1/18:0)	 in	 serum	 and	
hypoxanthine,	 DETP,	 and	 4-	guanidinobutanoic	 acid	 in	
the	urine	(Table	2).	Notably,	DETP	was	the	common	me-
tabolite	in	urine	and	serum.	Levels	of	hypoxanthine	and	
SM(d18:1/18:0)	were	higher	 in	FM	patients	 than	control	
and	levels	of	4-	guanidinobutanoic	acid,	isoleucine,	DETP,	
tryptophan	and	PC(20:1(11Z)/18:0)	were	lower	in	FM	pa-
tients	than	control.	In	addition,	pairwise	correlation	anal-
ysis	demonstrated	that	the	level	of	DETP	correlated	with	
the	 level	 of	 tryptophan,	 isoleucine	 and	 SM(d18:1/18:0)	
and	 the	 level	 of	 isoleucine	 significantly	 correlated	 with	
levels	of	tryptophan	and	SM(d18:1/18:0)	(Figure	1).

3.3 | Identification of potential proteins 
as biomarkers in FM patients

We	 selected	 eight	 proteins,	 including	 complement	 C1q	
C	 chain	 (C1qC),	 protein	 S100-	A7	 (S100A7),	 serpin	 B3	
(SERPINB3),	 galectin	 7	 (LGALS7),	 lymphatic	 vessel	 en-
dothelial	hyaluronan	receptor	1	(LYVE1),	fibrinogen	alpha	

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
http://cpdb.molgen.mpg.de/
http://cpdb.molgen.mpg.de/
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chain	(FGA),	fibrinogen	beta	chain	(FGB)	and	fibrinogen	
gamma	chain	(FGG)	with	remarkable	differential	expres-
sion	between	FM	patients	and	controls.	Specifically,	levels	
of	S100A7,	SERPINB3,	LGALS7,	FGA,	FGB	and	FGG	were	
lower	in	FM	patients	than	controls	and	those	of	C1qC	and	
LYVE1	 were	 higher	 (Figure	 2).	 S100A7,	 SERPINB3,	 ga-
lectin	7	and	LYVE1	were	first	reported	here	as	potential	
biomarkers	in	FM	patients.

3.4 | Integration of metabolic and 
proteomics network for FM

To	correlate	the	FM-	related	metabolite	changes,	we	next	
used	the	MetaboAnalyst	to	elucidate	the	affected	metabolic	
pathways	between	FM	patients	and	controls.	As	shown	in	
Figure	3a,	 several	metabolic	pathways	were	altered	 (im-
pact	>0.1,	p < 0.05)	in	FM	patients,	including	d-	glutamine	
and	 d-	glutamate	 metabolism,	 sphingolipid	 metabolism,	
aminoacyl-	tRNA	 biosynthesis,	 cysteine	 and	 methionine	
metabolism,	 glycine,	 serine	 and	 threonine	 metabolism,	
tryptophan	metabolism	and	galactose	metabolism.

Furthermore,	we	combined	the	differentially	expressed	
metabolites	in	serum	and	urine	(Tables	S1	and	S2)	and	de-
termined	the	possible	molecular	mechanisms	by	using	IPA	
network	 algorithm.	 The	 IPA	 network	 analysis	 exhibited	
significant	perturbation,	including	in	free	radical	scaveng-
ing	and	lipid	metabolism	networks	(Figure	3b),	as	well	as	
amino	acid	metabolism	and	molecular	transport	networks	
(Figure	3c).	Nine	hub	spots,	ICAM1,	cyclic	AMP,	AMPK,	
L-	serine,	 L-	glutamic	 acid,	 nitric	 oxide,	 NF-	κB	 complex,	
IL-	2	and	IL-	10	were	identified	in	these	two	metabolomic	
networks.	 Subsequently,	 we	 used	 CPDB	 to	 integrate	 the	
proteomics	results	with	hub	spots	of	metabolic	networks	
to	 construct	 relationship	 networks	 between	 proteomics	
and	metabolomics	(Figure	3d).

3.5 | Distinguishing sng- dominant and 
pain- dominant in FM patients

In	 this	study,	we	 indicated	 that	sngception	can	be	evalu-
ated	accurately	and	reliably	using	a	designed	questionnaire	
and	recorded	in	clinical	FM	diagnosis	(Chang	et	al.,	2020b).	

T A B L E  2  Potential	metabolomic	candidates	in	FM

Metabolites HMDB ID FM/control p value VIP score AUC value

Urine Hypoxanthine HMDB0000157 1.782 ± 0.241 0.0104 1.9699 0.7509

Diethylthiophosphatea HMDB0001460 0.603 ± 0.115 0.0424 1.9671 0.7540

4-	Guanidinobutanoic	acid HMDB0003464 0.587 ± 0.113 0.0411 4.5964 0.7668

Serum SM(d18:1/18:0) HMDB0001348 1.294 ± 0.093 0.0122 1.9189 0.7640

Tryptophan HMDB0000929 0.862 ± 0.035 0.0433 1.5268 0.7500

Isoleucine HMDB0000172 0.804 ± 0.042 0.0088 1.0986 0.7506

PC(20:1(11Z)/18:0) HMDB0008300 0.679 ± 0.069 0.0389 1.1639 0.7593

Diethylthiophosphatea HMDB0001460 0.476 ± 0.117 0.0034 1.2454 0.8446

Note: Data	are	mean ± SD	unless	indicated.
Abbreviations:	AUC,	area	under	the	receiver-	operating	characteristic	curve;	VIP,	variable	importance	in	projection.
aIntersection	of	FM	patient	serum	and	urine.

F I G U R E  1  Heat	map	of	correlations	
amongst	all	selected	potential	
metabolomic	biomarker	candidates.	
Spearman's	correlation	heat	map	showing	
the	correlation	amongst	all	selected	
potential	metabolomic	and	lipidomic	
biomarkers.	Colour	intensity	represents	
the	magnitude	of	correlation.	Red	
represents	positive	correlations,	and	the	
green	represents	negative	correlations.	
* p < 0.05;	**	p < 0.01
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We	analysed	the	parameters	of	the	clinical	questionnaire,	
P-	VAS,	S-	VAS,	WPI,	WSI,	P-	VAS × WPI	and	S-	VAS × WSI	
(Table	S3),	 to	 identify	 important	parameters	contributing	
to	the	grouping	of	PG,	SG	and	NG.	Correlation	analysis	re-
vealed	 that	 P-	VAS	 was	 significantly	 correlated	 with	 WPI	
and	P-	VAS × WPI,	whereas	S-	VAS	was	significantly	corre-
lated	with	WSI	and	S-	VAS × WSI.	However,	P-	VAS	showed	
no	marked	correlation	with	S-	VAS,	WSI	or	S-	VAS × WSI.	
Likewise,	 S-	VAS	 showed	 no	 marked	 correlation	 with	

P-	VAS,	WPI	and	P-	VAS × WPI	(Figure	4a).	These	results	
suggest	 no	 correlation	 between	 pain	 and	 sng	 sensation.	
The	 data	 set	 from	 the	 clinical	 questionnaire	 was	 further	
processed	 by	 PCA	 and	 PLS	 analyses	 to	 generate	 an	 un-
biased	 overview	 of	 the	 major	 clinical	 differences	 (Figure	
4b).	According	to	VIP	(VIP > 1),	the	most	significant	dis-
criminatory	parameters	between	the	three	groups	were	S-	
VAS × WSI	(VIP = 2.13)	and	P-	VAS × WPI	(VIP = 1.01)	
(Figure	 4c).	 Consequently,	 we	 defined	 the	 value	 of	

F I G U R E  2  Potential	proteomics	biomarkers	in	fibromyalgia	(FM).	Graphs	show	serum	proteins	with	a	significant	change	in	expression	
between	FM	patients	and	healthy	controls	for	C1qC,	S100A7,	SERPINB3,	LYVE1,	LGALS7,	FGA,	FGB	and	FGG.	The	plot	shows	expression	
levels	on	the	y-	axis	and	their	group	on	the	x-	axis.	Values	for	all	individual	cases	are	shown	as	dots.	Horizontal	lines	are	median,	box	edges	
are	interquartile	range	and	whiskers	are	range
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S-	VAS × WSI	as	the	‘sng	score’	and	P-	VAS × WPI	as	the	
‘pain	score’.	We	then	used	S-	VAS × WSI	and	P-	VAS × WPI	
to	build	a	scatter	diagram	for	confirmation.	The	result	sub-
stantially	 divided	 FM	 patients	 into	 three	 groups	 (Figure	
4d).	WPI	was	significantly	lower,	and	S-	VAS	and	WSI	were	
significantly	higher	for	SG	patients	than	all	patients.	WPI	
was	significantly	higher	and	S-	VAS	was	significantly	lower	
for	PG	patients	than	all	patients.	PG	and	SG	patients,	both	
exhibited	significant	differences	in	WPI,	S-	VAS	and	WSI,	
with	much	higher	P-	VAS	and	WPI,	as	well	as	lower	S-	VAS	
and	WSI	in	the	PG	than	SG	group.	S-	VAS	was	significantly	
lower	 in	 NG	 than	 SG	 group	 and	 significantly	 higher	 in	
the	NG	 than	SG	group	 (Table	1).	Besides,	we	 found	 that	
recruited	FM	patients	could	be	divided	into	three	groups:	
(1)	sng-	dominant	(SG)	patients,	approximately	one-	third	of	
patients;	 (2)	 pain-	dominant	 (PG)	 patients,	 approximately	
two-	thirds	of	patients	and	(3)	no-	dominant	patients	(NG,	
both	sng	and	pain),	the	few	remaining	patients.

3.6 | Metabolomics profiling analyses 
based on clinical manifestations

Following	our	grouping,	we	further	examined	the	differ-
ences	in	differentially	expressed	metabolites	amongst	the	
PG,	SG	and	NG	groups.	We	found	27	and	20	metabolites	
in	serum	(Table	S4)	and	urine	(Table	S5)	with	markedly	
differential	expression	amongst	control,	PG,	SG	and	NG	
groups.	Subsequently,	we	focused	on	PG	and	SG	groups.	
In	serum,	10	of	27	metabolites	showed	remarkable	differ-
ences	in	levels	between	PG	and	SG	groups.	Levels	of	andros-
tenedione,	prostaglandin	D2	(PGD2),	SM(d18:1/25:1)	and	
SM(d18:1/26:1)	were	higher	in	PG	but	lower	in	SG	patients	
compared	with	controls.	Levels	of	PC(18:2(9Z,12Z)/20:0),	
PC(18:1(9Z)/20:1(11Z)),	 PC(20:2(11Z,14Z)/18:0)	 and	
PC(20:2(11Z,14Z)/18:1(9Z))	 were	 lower	 in	 SG	 patients	
than	controls,	with	no	significant	change	in	PG	patients.	
Levels	 of	 lactate	 and	 Cer(d18:1/22:1)	 were	 higher	 in	 SG	

F I G U R E  3  Summary	of	pathways	related	to	FM	and	metabolomics–	proteomics	interaction	network	analysis.	(a)	Network	pathways	
identified	by	using	MetaboAnalyst.	Metabolites	were	inferred	in	FM	patients	from	changes	in	serum	and	urine	levels	of	intermediates	
during	substance	metabolism.	Network	analysis	of	differentially	expressed	metabolites	annotated	in	the	Ingenuity	database	involved	using	
ingenuity	pathway	tools	(www.ingen	uity.com).	The	plot	shows	logarithm	p	values	on	the	y-	axis	and	their	impact	factors	on	the	x-	axis.	
(b)	Free	radical	scavenging	and	lipid	metabolism	networks.	(c)	Amino	acid	metabolism	and	molecular	transport	networks.	(d)	Use	of	
ConsensusPathDB	to	analyse	the	interaction	networks	of	proteomics	and	hub	spots	from	ingenuity	pathway	analysis

http://www.ingenuity.com
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but	 not	 PG	 patients	 than	 controls	 (Table	 S4).	 In	 urine,	
levels	 of	 cotinine,	 lactate	 and	 2-	methylmaleate	 were	 in-
creased	in	SG	but	decreased	in	PG	patients,	and	the	level	

of	carnitine	was	decreased	in	SG	but	increased	in	PG	pa-
tients	(Table	S5).	Lactate	was	the	common	metabolite	in	
serum	and	urine;	its	level	was	high	in	SG	but	low	or	with	

F I G U R E  4  Distinction	of	different	FM	phenotypes.	(a)	Correlation	heat	map	showing	the	correlation	amongst	all	parameters	from	the	
clinical	questionnaire.	*	p < 0.05;	**	p < 0.01.	(b)	Principal	component	analysis	(PCA)	and	partial	least	squares	discriminant	analysis	(PLS-	
DA)	score	plots	were	based	on	clinical	questionnaire	data	for	pain	(green),	sng	(blue)	and	other	(orange)	groups.	(c)	Variable	importance	
in	projection	analysis	based	on	the	weighted	coefficients	of	the	PLS-	DA	model	used	to	rank	the	contribution	of	parameters	of	the	clinical	
questionnaire	to	the	discrimination	between	the	pain	and	sng	groups	in	FM	patients.	(d)	Scatter	diagram	of	different	phenotypes	of	FM	
patients
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no	change	in	PG	patients,	with	a	significant	difference	be-
tween	PG	and	SG	groups	(p < 0.0105).

3.7 | Correlation between differentially 
expressed metabolites and sng or pain scale

Levels	 of	 some	 metabolites	 showed	 a	 significant	 correla-
tion	with	sng	or	pain	scores	(Table	S6).	We	next	integrated	
Tables	S4–	S6,	 and	multiple	 correlation	analysis	 showed	a	
positive	correlation	(p < 0.05)	between	sng	score	and	lev-
els	of	 lactate	(γ = 0.545)	and	2-	methylmaleate	(γ =	0.505)	
as	 well	 as	 a	 negative	 correlation	 (p <  0.05)	 between	 pain	
score	and	level	of	cotinine	(γ = −0.441)	in	urine	(Table	3).	
Moreover,	sng	score	was	negatively	correlated	(p < 0.05)	with	

levels	of	SM(d18:1/25:1)	(γ = −0.594)	and	SM(d18:1/26:1)	
(γ = −0.608)	and	positively	(p < 0.05)	with	level	of	lactate	
(γ = 0.612)	in	serum.	Level	of	PGD2	showed	a	strong	posi-
tive	correlation	(γ = 0.499)	with	pain	score	(Table	3).

3.8 | Changed protein levels in pain and 
sng clinical manifestations

In	 accordance	 with	 the	 above	 analysis,	 we	 investigated	
changes	in	protein	levels	between	PG	and	SG	groups.	We	
found	18	proteins	with	significant	differential	expression	
in	both	groups	(p < 0.05,	VIP > 1,	AUC > 0.75);	levels	of	
nine	were	correlated	with	sng	or	pain	scores	on	Pearson	
correlation	 analysis.	 Sng	 score	 was	 positively	 correlated	

T A B L E  3  Potential	metabolomic	candidates	for	distinguishing	FM	subtypes

Metabolites HMDB ID

Sng- dominant group (SG) Pain- dominant group (PG) No- dominant sensation group (NG)

VIP (SG vs PG) AUC (SG vs PG)

Pearson correlation 
with sng VAS × WSI 
(γ1)

Pearson correlation 
with pain VAS × WPI 
(γ2)FM/control

p value   
(vs control) FM/control

p value   
(vs control)

p value   
(vs SG) FM/control p value (vs control)

Urine Lactatea HMDB0000190 1.579 ± 0.153 0.0915 0.753 ± 0.133 0.0811 0.0105 0.928 ± 0.222 0.8535 1.253 0.774 0.557** −0.165

2-	Methylmaleate HMDB0000634 1.372 ± 0.149 0.4245 0.782 ± 0.082 0.5232 0.0018 1.152 ± 0.079 0.8491 1.128 0.811 0.505** −0.183

Cotinine HMDB0001046 1.576 ± 0.272 0.0137 0.930 ± 0.043 0.6829 0.0470 2.737 ± 0.877 0.0001 1.128 0.754 0.176 −0.441*

Serum Lactatea HMDB0000190 1.399 ± 0.121 0.0441 0.958 ± 0.066 0.6860 0.0143 1.002 ± 0.218 0.9881 1.294 0.781 0.612* −0.146

SM(d18:1/25:1) —	 0.625 ± 0.059 0.0426 1.683 ± 0.241 0.0071 0.0044 2.398 ± 0.718 0.0012 1.678 0.823 −0.594* −0.166

SM(d18:1/26:1) HMDB0013461 0.744 ± 0.106 0.4176 1.321 ± 0.151 0.2103 0.0159 1.527 ± 0.503 0.2948 1.160 0.766 −0.608* 0.011

Prostaglandin	D2 HMDB0001403 0.558 ± 0.171 0.1194 1.643 ± 0.296 0.0475 0.0282 1.151 ± 0.353 0.6399 1.013 0.768 −0.065 0.499*

Note: Data	are	mean ± SD	unless	indicated.
Abbreviations:	AUC,	area	under	the	receiver-	operating	characteristic	curve;	VIP,	variable	importance	in	projection.
a	Intersection	of	FM	patient	serum	and	urine.
*p	value	<	0.05.
**p	value	<	0.01.

T A B L E  4  Potential	proteomic	candidates	for	distinguishing	different	FM	subtypes

Protein full name
Abbr. 
name

Sng- dominant group (SG) Pain- dominant group (PG)
No- dominant sensation 
group (NG)

VIP (SG vs PG) AUC (SG vs PG)
Pearson correlation   
with sng VAS × WSI (γ1)

Pearson correlation with 
pain VAS × WPI (γ2)

Log2  
(FM/control)

p value   
(vs control)

Log2   
(FM/control)

p value   
(vs control)

p value
(vs SG)

Log2 (FM/
control)

p value (vs 
control)

Prenylcysteine	oxidase	1 PCYOX1 0.48 0.0028 0.13 0.3458 0.0178 0.50 0.6678 2.34 0.80 0.4619** −0.2449

Inter-	α-	trypsin	inhibitor	heavy	chain	H4 ITIH4 0.71 0.0466 0.02 0.9491 0.0180 0.09 0.5553 1.35 0.78 0.4195* −0.1658

Profilin-	1 PFN1 0.67 0.0456 −0.16 0.4406 0.0024 0.52 0.0327 1.36 0.81 0.3595* −0.2504

Leucine-	rich	alpha-	2-	glycoprotein LRG1 −0.48 0.0728 0.18 0.3661 0.0027 −0.12 0.9681 1.91 0.86 −0.5444** 0.1765

Complement	C8	gamma	chain C8G −0.62 0.1093 0.16 0.1653 0.0038 0.05 0.7766 2.24 0.77 −0.2678 0.5335**

Complement	C8	alpha	chain C8A −0.18 0.433 0.30 0.020 0.0020 0.03 0.8966 1.95 0.77 −0.2750 0.5065**

Ceruloplasmin CP −0.24 0.148 0.26 0.078 0.0020 −0.19 0.2934 1.41 0.84 −0.3181 0.4044*

Cadherin	5 CDH5 −0.30 0.002 0.16 0.381 0.0110 −0.06 0.7195 1.27 0.86 −0.2240 0.3664*

Dopamine	β-	hydroxylase DBH 0.44 0.1342 −0.27 0.3482 0.0103 −0.05 0.5959 2.03 0.82 0.2661 −0.4836**

*p < 0.05;	**p < 0.01.
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with	 levels	of	PFN1	(γ = 0.3595),	PCYOX1	(γ = 0.4619)	
and	ITIH4	(γ = 0.4195)	and	negatively	with	level	of	LRG1	
(γ = −0.5444)	(Table	4).	In	addition,	pain	score	was	posi-
tively	 correlated	 with	 levels	 of	 C8A	 (γ  =  0.5065),	 C8G	
(γ = 0.5335),	CDH5	(γ = 0.3664),	and	CP	(γ = 0.4044)	and	
negatively	with	level	of	DBH	(γ = −0.4836)	(Table	4).

3.9 | Correlation between differentially 
expressed metabolites and proteins levels 
in PG and SG

Finally,	 we	 explored	 possible	 key	 features	 discriminat-
ing	PG	and	SG	in	FM	with	the	metabolomics,	lipidomics	

and	 proteomics	 data	 sets.	 Here	 we	 used	 the	 DIABLO	
program,	 an	 integrative	 method	 for	 searching	 multi-	
omics	 molecular	 features	 for	 phenotype	 discrimina-
tion	(Singh	et	al.,	2019)	and	found	17	key	features	(five	
proteins,	 seven	 lipids	 and	 five	 metabolites).	 Except	 for	
patient	13,	 these	key	features	could	divide	FM	patients	
into	 PG	 and	 SG	 phenotypes	 with	 unsupervised	 hierar-
chical	clustering	(Figure	5a).	We	also	explored	the	cor-
relation	network	between	these	key	features	(Figure	5b).	
Levels	 of	 PGD2,	 SM(d18:1/26:1)	 and	 SM(d18:1/25:1)	
were	 positively	 correlated	 with	 CP	 level	 and	 those	 of	
SM(d18:1/26:1)	and	SM(d18:1/25:1)	positively	correlated	
with	C8A	 level.	Lactate	 level	was	negatively	correlated	
with	CP	level.

T A B L E  3  Potential	metabolomic	candidates	for	distinguishing	FM	subtypes

Metabolites HMDB ID

Sng- dominant group (SG) Pain- dominant group (PG) No- dominant sensation group (NG)

VIP (SG vs PG) AUC (SG vs PG)

Pearson correlation 
with sng VAS × WSI 
(γ1)

Pearson correlation 
with pain VAS × WPI 
(γ2)FM/control

p value   
(vs control) FM/control

p value   
(vs control)

p value   
(vs SG) FM/control p value (vs control)

Urine Lactatea HMDB0000190 1.579 ± 0.153 0.0915 0.753 ± 0.133 0.0811 0.0105 0.928 ± 0.222 0.8535 1.253 0.774 0.557** −0.165

2-	Methylmaleate HMDB0000634 1.372 ± 0.149 0.4245 0.782 ± 0.082 0.5232 0.0018 1.152 ± 0.079 0.8491 1.128 0.811 0.505** −0.183

Cotinine HMDB0001046 1.576 ± 0.272 0.0137 0.930 ± 0.043 0.6829 0.0470 2.737 ± 0.877 0.0001 1.128 0.754 0.176 −0.441*

Serum Lactatea HMDB0000190 1.399 ± 0.121 0.0441 0.958 ± 0.066 0.6860 0.0143 1.002 ± 0.218 0.9881 1.294 0.781 0.612* −0.146

SM(d18:1/25:1) —	 0.625 ± 0.059 0.0426 1.683 ± 0.241 0.0071 0.0044 2.398 ± 0.718 0.0012 1.678 0.823 −0.594* −0.166

SM(d18:1/26:1) HMDB0013461 0.744 ± 0.106 0.4176 1.321 ± 0.151 0.2103 0.0159 1.527 ± 0.503 0.2948 1.160 0.766 −0.608* 0.011

Prostaglandin	D2 HMDB0001403 0.558 ± 0.171 0.1194 1.643 ± 0.296 0.0475 0.0282 1.151 ± 0.353 0.6399 1.013 0.768 −0.065 0.499*

Note: Data	are	mean ± SD	unless	indicated.
Abbreviations:	AUC,	area	under	the	receiver-	operating	characteristic	curve;	VIP,	variable	importance	in	projection.
a	Intersection	of	FM	patient	serum	and	urine.
*p	value	<	0.05.
**p	value	<	0.01.

T A B L E  4  Potential	proteomic	candidates	for	distinguishing	different	FM	subtypes

Protein full name
Abbr. 
name

Sng- dominant group (SG) Pain- dominant group (PG)
No- dominant sensation 
group (NG)

VIP (SG vs PG) AUC (SG vs PG)
Pearson correlation   
with sng VAS × WSI (γ1)

Pearson correlation with 
pain VAS × WPI (γ2)

Log2  
(FM/control)

p value   
(vs control)

Log2   
(FM/control)

p value   
(vs control)

p value
(vs SG)

Log2 (FM/
control)

p value (vs 
control)

Prenylcysteine	oxidase	1 PCYOX1 0.48 0.0028 0.13 0.3458 0.0178 0.50 0.6678 2.34 0.80 0.4619** −0.2449

Inter-	α-	trypsin	inhibitor	heavy	chain	H4 ITIH4 0.71 0.0466 0.02 0.9491 0.0180 0.09 0.5553 1.35 0.78 0.4195* −0.1658

Profilin-	1 PFN1 0.67 0.0456 −0.16 0.4406 0.0024 0.52 0.0327 1.36 0.81 0.3595* −0.2504

Leucine-	rich	alpha-	2-	glycoprotein LRG1 −0.48 0.0728 0.18 0.3661 0.0027 −0.12 0.9681 1.91 0.86 −0.5444** 0.1765

Complement	C8	gamma	chain C8G −0.62 0.1093 0.16 0.1653 0.0038 0.05 0.7766 2.24 0.77 −0.2678 0.5335**

Complement	C8	alpha	chain C8A −0.18 0.433 0.30 0.020 0.0020 0.03 0.8966 1.95 0.77 −0.2750 0.5065**

Ceruloplasmin CP −0.24 0.148 0.26 0.078 0.0020 −0.19 0.2934 1.41 0.84 −0.3181 0.4044*

Cadherin	5 CDH5 −0.30 0.002 0.16 0.381 0.0110 −0.06 0.7195 1.27 0.86 −0.2240 0.3664*

Dopamine	β-	hydroxylase DBH 0.44 0.1342 −0.27 0.3482 0.0103 −0.05 0.5959 2.03 0.82 0.2661 −0.4836**

*p < 0.05;	**p < 0.01.
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4 |  DISCUSSION

FM	is	a	complex	disease	with	unknown	pathogenesis	and	
diverse	somatic	complaints	existed	amongst	FM	patients.	
Muscle	 sng	 is	an	especially	common	complaint	and	 is	a	
distinguishable	 symptom	 from	 pain	 (Kawashita	 et	 al.,	
2020;	Lin	et	al.,	2018).	In	this	study,	we	applied	the	Revised	
Fibromyalgia	Impact	Questionnaire	with	an	Integration	of	
Soreness	Assessment	(FIQR-	S),	which	was	developed	for	
delineating	 clinical	 conditions	 of	 sng	 sensation	 amongst	
FM	patients	(Chang	et	al.,	2020a,	2020b),	to	divide	the	FM	
patients	into	three	subtype	groups	(PG,	SG	and	NG).	We	
found	 that	 amongst	 FM	 patients,	 about	 one-	third	 were	
sng-	dominant	 (SG),	 two-	thirds	 pain-	dominant	 (PG)	 and	
the	few	remaining	no-	dominant	(NG,	both	sng	and	pain).	

These	observations	were	similar	to	previous	research	(Lin	
et	al.,	2018).	In	addition,	we	performed	integrated	multi-	
omics	approaches	to	identify	the	potential	metabolic	and	
proteomic	signatures	associated	with	the	FM	patients	as	
well	 as	 the	 FM	 subtypes.	 To	 our	 knowledge,	 this	 is	 the	
first	 multi-	omics	 study	 to	 differentiate	 FM	 based	 on	 the	
symptoms	 such	 as	 sng	 and	 pain.	 We	 anticipate	 that	 our	
study	might	provide	valuable	insights	for	identifying	FM	
and	might	be	used	as	potential	disease-	relevant	targets	for	
developing	subtype-	specific	treatments.

According	 to	 our	 untargeted	 metabolomic	 and	 lipi-
domic	 results,	 potential	 biomarkers	 for	 FM	 were	 hypox-
anthine,	 DETP	 and	 4-	guanidinobutanoic	 acid	 in	 urine,	
and	 isoleucine,	 tryptophan,	 DETP,	 SM(d18:1/18:0),	 and	
PC(20:1(11Z)/18:0)	 in	 serum.	 Several	 researchers	 have	

F I G U R E  5  Multi-	omics	analyses	
of	key	features	for	classifying	different	
FM	phenotypes.	(a)	A	heat	map	of	
unsupervised	hierarchical	clustering	of	
multi-	omics	signatures,	selected	by	using	
the	DIABLO	program,	showing	that	
FM	patients	can	be	divided	into	pain-	
dominant	(PG)	and	sng-	dominant	(SG)	
phenotypes.	(b)	Network	visualization	of	
the	key	features	from	DIABLO	(absolute	
Pearson's	correlation	>0.5	or	<	−0.5).	
Rectangular	and	hexagonal	boxes	
represent	metabolites/lipids	and	proteins,	
respectively.	The	red-	lined	boxes	denote	
significant	changes	(p < 0.05)	between	PG	
and	SG	groups.	Coloured	lines	between	
boxes	represent	Pearson's	correlation.	Cer,	
ceramide;	LPC,	lysophosphatidylcholine;	
PC,	phosphatidylcholine;	PI,	
phosphatidylinositol;	SM,	sphingomyelin
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reported	 an	 increased	 level	 of	 kynurenine,	 an	 interme-
diate	 in	 the	 major	 pathway	 for	 tryptophan	 degradation	
(Hackshaw	 et	 al.,	 2013;	 Nemeth	 et	 al.,	 2005),	 and	 de-
creased	 levels	 of	 serotonin	 (5-	hydroxytryptamine,	 5-	HT)	
and	 tryptophan,	 in	 serum	 of	 FM	 patients	 (Heils	 et	 al.,	
1996;	Hrycaj	et	al.,	1993;	Schwarz	et	al.,	1999;	Wolfe	et	al.,	
1997).	 Previous	 studies	 have	 also	 demonstrated	 that	 gut	
microbiota	 (such	 as	 Bifidobacterium,	 Eubacterium,	
Blautia,	Faecalibacterium,	Bacteroides,	 etc.)	disorder	and	
deterioration	result	in	low	tryptophan	absorption,	which	
leads	 to	 low	 serotonin	 synthesis	 in	 FM	 patients	 (Clos-	
Garcia	et	al.,	2019;	Lattanzio,	2017;	Minerbi	et	al.,	2019).	
Some	 gut	 microbiota	 (such	 as	 Bifidobacterium,	 Blautia,	
Streptococcus,	 Lactobacillus,	 and	 Akkermansia)	 also	
could	 affect	 serum	 branch-	chain	 amino	 acids	 (BCAAs,	
including	 isoleucine,	 leucine	 and	 valine)	 levels	 (Clos-	
Garcia	et	al.,	2019;	Hsu	et	al.,	2021;	Malatji	et	al.,	2019).	
Furthermore,	 patients	 with	 FM	 had	 significantly	 lower	
serum	 levels	 of	 isoleucine	 than	 normal	 controls	 (Maes	
et	 al.,	 2000).	 These	 results	 are	 in	 accordance	 with	 our	
data.	Our	 former	study	also	revealed	 lower	serum	levels	
of	isoleucine	in	the	intermittent	cold	stress	(ICS)-	induced	
FM	mice	(Hsu	et	al.,	2019).	Moreover,	here	we	first	iden-
tified	 DETP,	 4-	guanidinobutanoic	 acid,	 SM(d18:1/18:0)	
and	 PC(20:1(11Z)/18:0)	 as	 potential	 biomarkers	 for	 FM.	
DETP	 levels	 are	 correlated	 with	 organophosphate	 expo-
sure.	 Urinary	 levels	 of	 DETP,	 dimethylthiophosphate,	
dialkylphosphates	 and	 free	 3-	phenoxybenzoic	 acid	 were	
found	lower	in	organic	than	conventional	food	consumers	
(Baudry	et	al.,	2019).	Also,	reports	showed	that	DETP	lev-
els	might	be	related	to	organophosphate	exposure.	People	
exposed	 to	 increased	 organophosphate	 levels	 showed	 a	
higher	level	of	DETP	or	other	organophosphate	metabo-
lites	in	urine	than	others	(Hernandez	et	al.,	2019;	Whyatt	
&	Barr,	2001).	However,	we	 found	 lower	DETP	 levels	 in	
FM	 patients	 than	 controls.	 We	 still	 need	 more	 evidence	
to	 support	 it.	 Furthermore,	 4-	Guanidinobutanoic	 acid	 is	
a	common	urinary	metabolite	and	an	arginine	metabolite	
involved	in	the	metabolism	of	arginine	and	proline	(creat-
inine	pathway)	(Hong	et	al.,	2013;	Romagnoli	et	al.,	2014).	
A	lower	level	of	4-	guanidinobutanoic	acid	in	FM	patients	
than	controls	was	detected	in	this	study.	Previous	studies	
have	shown	that	a	low	level	of	arginine	is	associated	with	
pain	 severity	 in	 both	 adults	 and	 children	 (Atzler	 et	 al.,	
2016;	Bakshi	&	Morris,	2016;	Shell	et	al.,	2016).

IL-	6	 and	 fibrinolysis	 proteins	 (F2,	 GP5,	 FGA,	 FGB,	
FGG,	GP1BA,	THBS1	and	THBS2)	were	previously	found	
significantly	 lower	 in	 FM	 patients	 than	 controls	 (Han	
et	 al.,	 2020).	 Levels	 of	 complementary	 proteins	 (C4A,	
C1S,	 CFAH,	 CO7,	 CO2,	 C1qC	 and	 CO9),	 IL-	1	 receptor	
accessory	 protein	 and	 immunoglobulin	 gamma	 Fc	 re-
gion	 receptor	 III-	A	 and	 B,	 involved	 in	 coagulation	 and	
inflammation,	were	significantly	increased,	mainly	in	FM	

patients	(Garcia	Rodriguez	&	Abud,	2020;	Han	et	al.,	2020;	
Ramirez-	Tejero	et	al.,	2018;	Wahlen	et	al.,	2020).	These	re-
sults	were	similar	 to	our	 findings.	Furthermore,	we	also	
found	 that	 galectin	 7,	 SERPINB3,	 S100A7	 and	 LYVE1	
could	be	novel	biomarkers	for	FM.	Amongst	them,	LYVE1,	
also	 known	 as	 cell-	surface	 retention	 sequence	 binding	
protein-	1	 (CRSBP-	1),	 is	 one	 of	 the	 most	 specific	 lymph-
oedema	and	 lymphatic	vessel	markers	 (Liu	et	al.,	 2017).	
Patients	 with	 lymphoedema	 frequently	 experience	 FM,	
arthritis,	carpel	tunnel	syndrome	and	neck	and	shoulder	
dysfunction	 (Ridner	 &	 Dietrich,	 2008),	 which	 might	 ex-
plain	the	higher	LYVE1	level	in	FM	patients	than	controls	
in	our	data.	Our	network	analysis	findings	agree	with	prior	
studies	reporting	a	high	level	of	NF-	κB,	inducing	NF-	κB-	
dependent	pro-	inflammatory	cytokine	generation,	in	FM	
patients	 (Cordero	et	al.,	2013;	Ruster	et	al.,	2005).	These	
results	 also	 agree	 well	 with	 a	 recent	 investigation	 indi-
cating	 altered	 energy,	 lipid	 and	 amino	 acid	 metabolism	
in	 FM	 patients	 (Menzies	 et	 al.,	 2020).	 Indeed,	 oxidative	
stress	with	lipid	peroxidation	induced	by	reactive	oxygen	
species	may	be	a	relevant	event	in	the	pathogenesis	of	FM	
(Cordero	et	al.,	2010,	2011;	Hung	et	al.,	2020).

We	 found	 no	 significant	 difference	 in	 lactate	 levels	
in	 serum	 and	 urine	 between	 FM	 patients	 and	 controls.	
However,	 lactate	 level	 was	 significantly	 higher	 in	 the	
SG	 group	 than	 in	 controls.	 Accumulating	 evidence	 has	
demonstrated	 a	 notable	 correlation	 between	 blood	 lac-
tate	level	and	post-	exertional	muscle	soreness	and	fatigue	
(Blohm	 et	 al.,	 2020;	 Gleeson	 et	 al.,	 1998).	 In	 addition,	
blood	lactate	level	was	significantly	correlated	with	mus-
cle	damage	after	exercise	(Manojlovic	&	Erculj,	2019).	The	
increased	lactate	level	in	SG	patients	is	intriguing	because	
it	could	offer	a	molecular	diagnosis	of	the	sng	phenotype	
of	FM	and	might	suggest	a	unique	disease	status	of	FM	re-
quired	for	different	therapeutic	strategies.	Previous	stud-
ies	 have	 demonstrated	 increased	 ITIH4	 levels	 in	 serum	
after	functional	over-	reaching,	which	was	correlated	with	
muscle	damage	and	fatigue	(Merritt	et	al.,	2019;	Nieman	
et	 al.,	 2018).	 We	 found	 that	 urine	 cotinine	 levels	 could	
distinguish	 SG	 and	 PG	 patients.	 Cotinine	 is	 one	 of	 the	
routinely	used	biomarkers	for	detecting	tobacco	smoke	ex-
posure	and	green	tobacco	sickness	(GTS)	(Benowitz	et	al.,	
2017;	Cezar-	Vaz	&	Cargnin,	2019),	including	nausea,	vom-
iting,	weakness,	dizziness,	headache,	 insomnia,	abdomi-
nal	pain	and	muscle	soreness	and	loss	of	appetite	(Fotedar	
&	Fotedar,	2017).	However,	whether	 these	patients	were	
smokers	 or	 their	 occupation	 was	 related	 to	 tobacco	 pro-
duction	 is	 unknown.	Thus,	 cotinine	 levels	 in	 urine	 may	
have	nothing	to	do	with	their	FM	status	but	may	indicate	
that	SG	patients	are	more	likely	to	be	smokers,	or	the	co-
hort	was	too	small.	This	needs	further	proof.

Long-	term	 exercise	 (≥	 60  min)	 reduces	 leptin	 level	
in	 plasma	 (Kraemer	 et	 al.,	 2002),	 and	 a	 lower	 level	 of	
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leptin	decreases	Sphingomyelin	(SM)	and	ceramide	lev-
els	(Boini	et	al.,	2017).	Besides,	SM	level	was	found	de-
creased	 during	 recovery	 after	 exertion	 compared	 with	
at	rest,	and	SM	level	reduction	may	be	associated	with	
muscle	 soreness	 (Bergman	 et	 al.,	 2015).	 SM	 is	 also	 a	
major	lipid	component	of	low-	density	lipoprotein	(LDL)	
and,	 together	 with	 PC,	 forms	 the	 polar	 surface	 of	 the	
lipoproteins	 (Craig	 et	 al.,	 1995;	 Deevska	 et	 al.,	 2012).	
Moreover,	 PCYOX1,	 which	 is	 a	 pro-	oxidant	 enzyme	 of	
LDL,	 hydrolyzes	 prenylcysteines	 to	 cysteine	 and	 a	 C-	1	
aldehyde	of	the	isoprenoid	moiety	and	lead	to	some	SMs	
reduction	(Herrera-	Marcos	et	al.,	2018).	These	findings	
may	 explain	 the	 high	 level	 of	 PCYOX1	 and	 low	 levels	
of	SM(d18:1/25:1)	and	SM(d18:1/26:1)	in	the	SG	group	
and	 a	 significant	 negative	 correlation	 with	 the	 sng	
score.	Further	studies	are	needed	to	determine	how	SM	
may	 regulate	 sngception	 and	 how	 it	 is	 associated	 with	
PCYOX1	expression.	Interestingly,	serum	levels	of	PGD2	
were	higher	in	the	PG	group,	but	lower	in	the	SG	group,	
compared	with	controls.	When	tissues	are	injured,	pros-
taglandin	 H2	 (PGH2)	 is	 produced	 by	 invading	 neutro-
phils	 and	 macrophages	 and	 metabolized	 into	 PGE2,	
PGD2,	 PGI2	 or	 TXA2	 by	 means	 of	 specific	 synthases,	
then	 these	 prostaglandins	 promote	 neuronal	 pain	 sig-
nals	(Jang	et	al.,	2020).	It	is	also	worth	noting	that	PGD2	
signalling	via	the	PGD2	receptor	2	(DP2)	signalling	path-
way	from	microglia	to	neurons	is	a	triggering	factor	for	
mechanical	allodynia	in	neuropathic	pain	(Kanda	et	al.,	
2013).	Therefore,	PGD2	levels	showed	a	significant	posi-
tive	correlation	with	pain	scores.	We	also	found	that	CP,	
cadherin	 5,	 C8A,	 C8B	 and	 C8G	 exhibited	 a	 significant	
positive	correlation	with	pain	scores.	A	previous	inves-
tigation	 showed	 that	 complementary	 proteins	 and	 CP	
were	strongly	correlated	with	pain	 intensity	 in	chronic	
widespread	 pain	 (Wahlen	 et	 al.,	 2018).	 Based	 on	 our	
knowledge,	PGD2	could	induce	pain	signals	(Jang	et	al.,	
2020;	Kanda	et	al.,	2013;	Kawabata,	2011),	hence	PGD2	
level	 was	 positively	 correlated	 with	 CP	 level.	 Overall,	
levels	of	lactate,	2-	methylmaleate,	PGD2,	C8G	and	DBH	
may	have	substantial	potential	to	discriminate	amongst	
PG,	SG	or	NG	groups	in	FM.

The	 results	 and	 interpretation	 of	 this	 study	 have	
the	 following	 limitations:	 (1)	 Selection	 bias:	 because	
all	 participants	 were	 recruited	 from	 clinics	 of	 physical	
medicine	and	rehabilitation	or	neurology,	patients	with	
minor	symptoms	might	not	be	included	in	this	research.	
(2)	From	the	clinical	criteria	used	for	selecting	FM	pa-
tients,	 we	 consider	 the	 group	 representative	 of	 FM,	 in	
general;	however,	 the	control	group	was	 from	a	health	
check-	up	clinic,	and	we	did	not	attempt	to	match	partic-
ipants	based	on	characteristics,	lifestyle,	conditions	and	
treatments	 (e.g.,	 sex,	 smoking,	 diabetes,	 hypertension,	
chronic	 metal	 poisoning,	 hypercholesteremia	 or	 other	

diseases),	which	may	have	an	impact	on	an	individual's	
metabolome	and	lipidome.	Further,	we	did	not	adminis-
ter	the	ACR	2011	criteria	on	the	healthy	controls,	so	cer-
tain	undiagnosed	FM	in	the	Control	group	is	possible.	(3)	
Although	large	numbers	of	patients	and	control	groups	
are	advocated	in	studies,	from	our	experience	with	un-
targeted	metabolomic	and	 lipidomic	studies,	groups	of	
selected	cases	of	20	would	suffice	in	a	pilot	study;	in	the	
future,	more	FM	patients	need	to	be	recruited	for	valida-
tion.	(4)	In	this	study,	we	did	not	control	for	medications	
in	 the	 FM	 or	 control	 group,	 which	 could	 be	 addressed	
in	the	future	investigations.	(5)	Also,	we	did	not	control	
for	recent	exercise	(especially	important	for	lactate	and	
Sphingomyelin	 results),	 dietary	 intakes,	 fasting	 status,	
etc.,	 which	 may	 have	 significant	 effects	 on	 short-	term	
metabolites.	 (6)	 Diethylthiophosphate	 (DETP)	 may	 be	
associated	 with	 organophosphate	 exposure.	 However,	
lower	 DETP	 was	 found	 in	 FM	 patients,	 which	 need	 to	
be	clarified.

5 |  CONCLUSION

Combined	 clinical	 diagnosis,	 questionnaire	 and	 analysis	
of	selected	biomarkers	 in	a	 first	screening	could	achieve	
a	 more	 accurate	 diagnosis	 of	 FM	 and	 its	 subtypes.	 The	
identified	biomarkers	could	be	used	to	determine	FM	clas-
sification:	PG,	SG	or	NG.	We	also	provide	a	novel	perspec-
tive	 that	sng	and	pain	are	distinct	sensations.	Moreover,	
sng	and	pain	might	share	certain	common	mechanisms,	
whereas	 other	 mechanisms	 may	 be	 dissimilar.	 These	
metabolites	 and	 proteins	 might	 provide	 valuable	 in-
sights	for	identifying	FM	and	might	be	used	as	potential	
disease-	relevant	 targets	 for	 developing	 subtype-	specific	
treatments.	These	 insights	and	applications	merit	 future	
validation	with	larger	FM	populations	and	discrimination	
between	sng	and	pain.
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