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Abstract: Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation,
proliferation and outcome. This has led researchers to develop methods to detect and bioinfor-
matically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into
standard prognostic measures such as gene expression and clinical parameters, these could ad-
vance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing
methodologies, both experimental and computational, that have been applied to support the use of
alternative polyadenylation as cancer biomarkers.

Keywords: alternative polyadenylation; bioinformatics; 3′ focused RNA-seq; scRNA-seq;
cancer biomarkers

1. Introduction

Eukaryotic messenger RNA (mRNA) undergoes a highly regulated process of matu-
ration before nuclear export and protein translation. This involves 5′ end capping, RNA-
splicing and 3′ end cleavage and polyadenylation. Initially thought to be a static house-
keeping function, mRNA 3′ end formation has emerged as a major modulator of gene
expression with implications in multiple disease settings [1,2].

Alternative polyadenylation (APA) is a regulatory mechanism that allows the pro-
duction of coding and regulatory transcript isoforms from a single gene [3–6]. This occurs
due to the presence of alternative adenylation sites in the genome and leads to significant
transcriptome diversity. Nearly 70% of mammalian genes harbour multiple cleavage and
polyadenylation sites i.e., poly(A) sites [7–10]. These sites can cause differential expression
of mRNA transcripts by influencing their nuclear export, stability, subcellular localiza-
tion, interaction with microRNAs, RNA binding proteins (RBPs), long non-coding RNAs
(lncRNAs) and translation efficiency [11–15].

Two major types of APA events are described here; splicing-APA where protein
sequence is changed, and tandem APA where only the extent of non-coding, regulatory
information is altered (Figure 1). In the case of splicing-APA, the alternative poly(A)
sites reside in introns of the coding sequences, generating protein isoforms with distinct
Carboxy-termini. Such APAs are called coding region-APA (CR-APA) [16–18]. In the case
of tandem APA, the poly(A) sites reside in the 3′ UTRs resulting in transcript isoforms with
invariant protein-coding sequence but 3′ UTRs of different lengths. Such APAs are called
UTR-APA [16–18]. In this review, we discuss the implications of APA and investigate
the existing experimental and bioinformatic methods for detection, quantification and
identification (Figure 2). Finally, the emerging role of APA signatures as cancer biomarkers
will be explored.
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Figure 1. Alternative polyadenylation: (A) The schematic shows the 5′ end, coding sequences (grey boxes), 3′UnTranslated
Regions (3′ UTRs) and polyadenylation sites (blue arrows) in DNA. (B) Polyadenylation is the enzymatic extension of ∼200
Adenosine residues to the nascent mRNA, in this case the distal polyadenylation site was used. (B,C) In 3′ UTR-APA, choice
of the proximal cleavage and polyadenylation results in an mRNA with the same protein-coding potential but different 3′

UTR length. (D) When a poly(A) signal is recognised in the intronic region, protein isoforms with distinct Carboxy-termini
are generated in a process termed as CR-APA.

2. Implications of Alternative Polyadenylation

Since the discovery of APA in immunoglobulin M (IgM) and dihydrofolate reductase
(DHFR) genes in 1980 [19,20], it has become clear that APA is the norm rather than the
exception. At least 70% of human genes are subject to APA, and 3′ UTR changes are
often associated with physiological conditions including diseases such as cancer, immune
dysfunction, congenital heart disease and dysplasia [21]. Where genes have the capacity to
switch, short 3′ UTRs generally associate with undifferentiated proliferative cells (e.g., stem
cells) whereas the longer 3′ UTR isoforms are favoured in differentiated tissues [22–24].
It has been suggested that the majority of APA genes switch to short mRNA isoforms in
tumour cells [23–25]. Where there is an option to switch, mRNAs with longer 3′ UTRs can
cause reduced protein expression as a result of increased regulatory capacity. Whereas,
increased stability and translation of short 3′ UTR isoforms are some of the key functional
consequences suggested for APA; for example, due to loss of microRNA-mediated re-
pression [22,23]. APA-mediated evasion from microRNA repression can generate stable
oncogenic mRNA isoforms with shorter 3′ UTRs causing oncogenic activation [23]. It is
important to note, however, that there are many exceptions to this trend. For example,
the long-3′ UTR isoform of the tumour suppressor PTEN is the more stable isoform and
accounts for the bulk of its role in PI3K/AKT/mTOR signalling [26]. Albeit, the net con-
sequence of 3′ UTR shortening of PTEN still promotes tumour growth through reduced
tumour suppressive activity.

Dynamic APA regulation has been reported in different healthy tissue types [27]
in cellular proliferation, differentiation and development; in cancer cell transformation,
and phenotypic response to extracellular stimuli [5,23,28–37]. For example, selection of
a proximal poly(A) site resulting in 3′ UTR shortening has been shown to associate with
multiple cancers [25,38–41]. APA-mediated changes by CR-APA can diversify protein
function. For example, a switch from proximal to distal APA in the IgM gene, results in a
switch from a secreted to membrane-bound form of the antibody [42]. mRNAs with longer
3′ UTRs can be subject to increased regulation and reduced protein expression. This is due
to the inclusion of regulatory sequences such AU-rich and GU-rich sequences, RBP and
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miRNA target sites all of which can negatively impact mRNA stability and/or translation
efficiency [5]. As a result, shorter mRNA isoforms can escape regulation by loss of such sites
leading to increased RNA stability and enhanced protein expression [23,33]. In addition to
regulation in mRNA and it’s encoded protein, seminal work by Berkovits and Mayr (2015)
shows that 3′ UTRs can serve as a physical scaffold for ternary complex formation [13].
Alternative polyadenylation in long non-coding RNA has also been described and plays a
role in tumorigenesis [43].
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Figure 2. The triad of APA attributes: This review focuses on three attributes of genome-wide APA i.e., characterisation,
detection and curation of APA databases. Currently, conventional RNA-seq, 3′ focused seq and single-cell RNA-seq are the
main methods for APA characterisation. APA databases hold information relating to APAs and 3′ UTRs collated from a
wide array of inputs. Detection requires bioinformatic methods for statistical ranking. These methods are classified based
on prior knowledge from the databases or determined de novo.The bioinformatic methods for single-cell data analysis are
shown in red.

3. Next-Generation Sequencing Based Techniques for Characterisation of APA

Global profiling of APA first became possible through accumulation of expressed
sequence data in public databases and the development of high-content microarray. Bioin-
formatic analysis of expressed sequence tags (ESTs) and microarray studies helped detect
many APA events in the late 90 s [20,33,36,44–46]. Soon however, RNA sequencing (RNA-
seq), became the major method for transcription profiling [47]. With RNA-seq it became
possible to study the complete transcriptome by massively parallel short-read sequencing
of cDNA libraries, allowing differential analysis of the gene expression between samples.
Combined with biostatistics, this approach identified genes, and alternative isoforms of
genes [47,48]. One of the drawbacks of bulk full-length RNA-seq, however, is an overall
loss of read coverage of 5′ and 3′ ends of genes making it unreliable for detection of alter-
native transcriptional start-sites and APA [49]. Moreover, for many applications where
only differential expression was required, sequencing the full-length transcriptome was
unnecessary and costly. This motivated researchers to develop both 5′ and 3′ focused
sequencing methods to sequence the specific transcriptomic regions of interest.

3.1. 3′ focused RNA-seq Methods for APA Characterisation

Early studies for APA identification used Direct RNA-sequencing (DRS) [50] with the
Helicos platform, now replaced by Oxford Nanopore and PacBio (Table 1). These provide a
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quantitative view of APAs genome-wide, but are expensive and relatively low throughput.
However, given that only the reads mapped to the 3′ ends of mRNA are necessary for APA
detection, a more pragmatic approach was to sequence only the mRNA 3′ ends based on
classic 3′ RACE methods [51]. Most 3′ focused methods enrich RNA carrying a poly(A) tail
and include a variety of molecular biology methods to generate a library suitable for next
generation sequencing [17]. The resulting sequencing data are bioinformatically analysed
for identification of poly(A) sites and quantification of their differential usage. Current
commercial and bespoke approaches to transcriptome-wide characterisation of APA are
listed in Table 1.

Table 1. 3′ focused RNA-sequencing approaches suitable for APA detection and characterization.

Name Key Points Typical Input Sequence Target

PAIso-seq [52] PacBio based method to capture poly(A) site, length, splicing,
expression, PacBio is costly for the read coverage obtained, Low coverage 100 ng total RNA Full length mRNA,

Poly(A) tail included

Oxford Nanopore- Direct
RNA sequencing [53]

The Nanopore instrument is capable of full-length direct RNA seq, tail lengths can also
be extracted. Low coverage 500 ng poly(A)+ selected RNA Full length mRNA,

Poly(A) tail included

TAIL-seq [54] rRNA depletion and 3′ adaptor ligation, asymmetric paired end sequencing to
determine tail length

∼100 µg total RNA Poly(A) tail length,
Poly(A) site

mTAIL-seq [55] 3′ oligo(dT) splinted ligation approach to TAIL-seq, reduced input RNA required.
Paired-end sequencing.

1–5 µg total RNA Poly(A) tail length,
Poly(A) site

PAT-seq [56] Single end read approach, 3′ tagging by oligo templated RNA end extension 1 µg total RNA Poly(A) tail length,
Poly(A) site

PAL-seq [57]
Requires non-standard use of an Illumina instrument for tail length measurement by

biotinylated dTTP incorporation. 3′ end capture by splinted ligation
1–50 µg total RNA Poly(A) tail length,

Poly(A) site

Poly(A) seq [58]
Poly(A)+ RNA is captured with oligo(dT) conjugated magnetic beads, then 3′ adaptors

ligated 300 bp single end read. Samples sequenced on the Illumina NextSeq 500, 2 colour
sequencing instrument

5.1 µg total RNA Poly(A) tail length,
Poly(A) site

TED-Seq [59] 3′ adaptor ligation to Poly(A)+ RNA. Tail length is inferred from the size of the
templated sequence after precise library size selection

100 ng poly(A)+ RNA Poly(A) tail length,
Poly(A) site

3P-seq [4] Poly(A) tail removed by RNase H. Sequenced from the 3′ end to determine site usage,
adaptor addition by ligation to avoid internal priming

30 µg total RNA Poly(A) site

2P-seq [60] Poly(A) site detection by anchored oligo(dT) priming, sequencing from start of poly(A)
tail in reverse 15 µg total RNA Poly(A) site

3′-seq [30]
Poly(A) site detection by anchored oligo(dT) priming. Unique approach to
fragmentation by rate limited nick translation of double stranded cDNA 2 µg DNase treated RNA Poly(A) site

3′READS+ [37] Poly(A) tail is trimmed by RNase H, 3′ adapter ligation 0.1–15 µg total RNA Poly(A) site

3PC [61] Anchored oligo(dT) primer to detect poly(A) site, 5′ adaptor addition by circular ligation 100 µg total RNA Poly(A) site

3′T-fill [62]
Anchored oligo(dT) primer to detect poly(A) site, sequenced from 3′ end. 3′T-fill

reaction - dA homopolymer region at 3′ end filled with dTTPs on Illumina cBot cluster
station before sequencing

0.5–10 µg total RNA Poly(A) site

SAPAS [63] Anchored oligo(dT) primer to detect poly(A) site, 5′ adaptor addition by template
switching

10 µg total RNA Poly(A) site

PAS-seq [5] Anchored oligo(dT) primer to detect poly(A) site, template switching 5′ adaptor addition 0.5–1 µg poly(A)+ selected RNA Poly(A) site

IVT-SAPAS [64] in vitro transcription based amplification of cDNA for low input samples, poly(A) site
detection by anchored oligo(dT) annealing 200 ng total RNA Poly(A) site

PAPERCLIP [65]
RNA crosslinked, partially digested, and 3′ ends immunoprecipitated via Poly(A)

Binding protein, addresses internal priming issues, uses anchored oligo(dT) annealing
for end detection

NA, starting material is tissue/cells Poly(A) site

MACE [66] GenXPro commercial kit, barcodes transcripts with UMIs to deal with PCR duplication 0.05 ng total RNA Poly(A) site

Quant-Seq [67] Lexogen commercial kit, oligo(dT) annealing to detect 3′ ends, random forward priming
of 2nd strand cDNA adds 5′ adaptor

0.5–500 ng total RNA Poly(A) site

MAPS [68] 3′ end detection by anchored oligo(dT) priming, 5′ adaptor addition by random forward
priming of 2nd stand cDNA

1 µg total RNA Poly(A) site

TM3′seq [69] Fragmentation and 5′ adaptor addition combined in a single step. 3′ end detected via
annealing of oligo(dT) primer

200 ng total RNA Poly(A) site

PAC-seq [70] Click-chemistry approach to fragmentation and 5′ adaptor addition via reverse
transcription termination by 3-azido-nucleotides. 3′ end detected by oligo(dT) annealing

0.125–4 µg total RNA Poly(A) site

EnD-Seq [71] Targeted sequencing approach to 3′ end detection, 3′ adaptor ligation to total RNA, gene
specific multiplex PCR of cDNA

1.5 µg total RNA
Poly(A) site,

non-Poly(A) 3′ ends

In general, 3′ focused methods use oligo(dT) primers to target the poly(A) tail and
thereby enrich sequencing of Poly(A)+ mRNAs. The steps that result in inclusion of
sequencing adaptors, unique molecular identifiers (UMIs), size selection and library ampli-
fication are often varied between approaches. However, an RNA fragmentation step or
other means to limit sequencing libraries to the region directly upstream of poly(A) sites is
always included. Methods that use oligo(dT) primers bias away from ribosomal RNA and
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other non-poly(A) RNA during reverse transcription. Albeit, rRNA decay intermediates
carry poly(A)-tails and these can be abundantly detected. The use of oligo(dT) primers
can cause significant mis-priming at internal A-rich regions leading to false poly(A) site
identification. This can be addressed in silico by eliminating the putative poly(A) residues
in A-rich regions [37,72]. Approaches that use 3′ end ligation are less prone to mis-priming
than those where cDNA synthesis is driven from annealed oligo(dT) primers. Both in
silico and in vitro strategies have thus been developed to avoid the problem of internal
priming [5,73]. PAPERCLIP, which uses immune-purification of the poly(A)-binding pro-
tein is an alternative method for detection of mRNA 3′ ends [65,74]. While the methods
discussed here focus on APA and 3′ UTR isoforms, a subgroup of 3′ focused sequencing
methods additionally identify poly(A) tail length changes [54,56–58]. Finally, although di-
rect RNA sequencing is currently the least affordable technology, it is the only method that
can integrate APA with other mRNA processing events, such as alternative transcriptional
start-site and splice sites.

3.2. Single-Cell Methods for mRNA 3′ End Sequencing

High content research is experiencing a dramatic shift towards single-cell methods.
Single-cell RNA-seq (scRNA-seq) allows transcriptome-wide analyses of gene expression
in individual cells with high resolution [75] for discovery of novel cell types and their
developmental trajectories [76–78]. The single cell methods include early cell-barcoding
of samples which allows individual samples to be pooled and processed as a single sam-
ple. Early pooling (or early multiplexing) of samples significantly reduces the costs and
increases sequencing-throughput [69]. Another interesting feature of single-cell RNA-seq
methods is the use of UMIs, which allows detection of PCR duplicates while reporting
the unique transcript counts and thus, removes PCR amplification bias [79,80]. Most
scRNA-seq methods use 3′ tag-based approach to generate reads enriched at 3′ ends of
mRNA similar to the approaches described above (Table 1). Several laboratories have
already turned to scRNA-seq to study complex APA regulatory patterns in tissues and
organs [10,81–83].

There are two major methods of scRNA-seq library generation that allow APA detec-
tion: Micro-well based methods and Microfluidic droplet-based methods. In microwell-
based methods, cells are separated into microwells for barcode allocation and their tran-
scriptome is reverse-transcribed; whereas in microfluidic droplet-based methods, individ-
ual cells are separated using nanolitre-sized droplets containing reagents for UMI and
cDNA synthesis [84,85]. Each cell is lysed and mRNA 3′ ends are annealed to primers
containing UMI followed by RT reaction to generate the first cDNA strand. cDNAs are
pooled for library amplification and sequencing. The information from individual cells is
distinguished in silico based on the UMIs. The single cell approaches that allow detection
of APA are listed in Table 2.

We have broadly classified the APA characterisation techniques into three categories:
conventional RNA-seq, 3′ focused RNA-seq and scRNA-seq methods (Figure 2). In the
next sections, the bioinformatic tools available for 3′ UTR detection and databases to store
curated forms of this information are described.
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Table 2. Single cell RNA-sequencing approaches suitable for APA detection and characterization.

Name Overview Scale

CEL-seq [86]
3′ ends enriched by anchored oligo(dT) annealing including T7

promotor. cDNA amplified by in vitro transcription (IVT), amplified
RNA fragmented and ligated to adaptor.

Manually isolated single cells

CEL-seq2 [87,88] Application of CEL-seq to high throughput sequencing, UMI’s added to
reverse transcription oligo

Automated microfluidic sorting via Fluidigm
C1 into wells

MARS-seq 2.0 [89] 3′ end enrichment by anchored oligo(dT) annealing, included T7
promotor. cDNA amplified via IVT 384-well plate, FACS sorting

InDrop [80] Application of CEL-seq to droplet-based sequencing for higher
throughput Droplet sequencing, inDrop system, 1CellBio

Drop-seq [90]

3′ enrichment by oligo(dT) annealing RT, full length cDNA 5′ labelled
by template switching, oligo’s with common barcode bound to beads,
and separated into droplets. library prepared by Illlumina Nextera XT

DNA library prep kit

Droplet sequencing, custom instrument

10X Chromium [85]

3′ enrichment by anchored oligo(dT) annealing, oligo’s with common
barcode bound to beads, and separated into droplets; library

preparation with commercial kit GemCode Single-Cell 3′ Gel Bead and
library kit (now Chromium 10X)

Droplet sequencing, 10X genomics instrument

SCRB-seq [91]
3′ enrichment by anchored oligo(dT) primer, template switching

reaction for full length cDNA, library prepared by Illlumina Nextera XT
DNA library prep kit

384-well plate, FACS sorting

MAPS-seq [84]

3′ ends enriched by biotinylated oligo(dT) annealing, RNA transcripts
pulled down and samples pooled together using magnetic beads before
RT. Full length cDNA 5′ adaptor added via template switching, library

prepared by Illlumina Nextera XT DNA library prep kit

96-well plate, FACS sorting

BATSeq [92] Method specifically developed to detect APA. 3′ ends enriched by
oligo(dT) annealing. 2nd strand cDNA IVT amplified

FACS sorting

4. Bioinformatic Methods for Detection of Poly(A) Sites

Bioinformaticians have sought to extract poly(A) site usage information from se-
quencing data, either using inference from read coverage in conventional RNA-seq or by
quantitating read coverage data from the 3′ focused methods (Figure 3). Some of these
methods use known annotations from curated databases, whereas others identify peaks de
novo. In this section, the existing bioinformatic tools for the detection of poly(A) sites from
the sequencing data are discussed.

4.1. Databases for 3′ UTR and APA Storage and Retrieval

The rapid accumulation of high-throughput data paved the way for investigation of
RNA isoforms in a variety of physiological and pathological conditions [47,48]. RNA-seq
emerged as a reliable tool to study transcriptome diversity due to its quantitative detection
of alternative transcriptional start-site, splicing and APA events at nucleotide resolution.
Public databases were created to store experimentally determined poly(A) sites and 3′ UTR
variants. In this section, we review the existing databases that catalogue the 3′ UTRs in
various organisms [27,93–99].

The primary data were collected from EMBL annotation records (UTRdb), transcript
genome alignments in cDNA/ESTs (PACdb, PolyA_DB3, PolyA site track) inferred from
RNA-seq (TC3A, APAatlas) or curated from 3′ focused RNA-seq (APADB, APASdb, PolyA-
Site) (Table 3). Unfortunately, a number of useful resources have not been maintained (e.g,
PACdb [95], APASdb [96] and TC3A [99]) and/or have been incorporated into updated
resources. This leaves two main approaches for determination of global APA. (1) The
bioinformatic extraction from consortium resources such as the Ensembl database, or more
specifically GENCODE PolyA site track [100,101] which holds high-quality annotations for
coding and non-coding regions and pseudogenes in the human genome. Or, (2) The use
of specifically curated APA databases. The latter are collated from either direct 3′ focused
sequencing or by inference from RNA-seq. For example, APADB [97] reports poly(A)
sites for coding and non-coding transcripts in human, mouse and chicken and reports



Int. J. Mol. Sci. 2021, 22, 5322 7 of 18

the loss of predicted miRNA binding sites from MACE-seq data. Whereas, PolyASite
2.0 [98] contains the most up to date curation from a multitude of 3′ focused RNA-seq
methods, re-analysed by protocol-specific data pre-processing steps for consistency in APA
mining. Gene tracks can be downloaded for genome browser exploration. PolyA_DB3 [94]
provides information about the genomic locations of poly(A) sites and the surrounding cis
elements and a comparison of polyadenylation configuration between human and mouse
orthologs. UTRdb [93] curates 5′ and 3′ UTR sequences and provides information about
genome localisation and regulatory elements. It is integrated with UTRsite [93] which is
a collection of experimentally validated functional regulatory motifs in 5′ and 3′ UTRs
crosslinked with their protein partners. This integration allows users to retrieve data based
on genomic coordinates and/or genes associated with encoded proteins using GO terms,
PFAM domains, etc.

There is, however, still a relatively low availability of 3′ focused RNA-seq data. Many
cell, tissue and disease types are still missing, limiting the scope of these databases. To
overcome this limitation, APAatlas [27] provides a resource database of APA inferred
from RNA-seq data in the Genotype-Tissue Expression (GTEx) project [102] using the
DaPars [25] bioinformatic approach (see Section 4.2.2). A similar approach was recently
used to mine RNA-seq from The Cancer Genome Atlas (TCGA) [103] where the inferred
APA genes are provided in TC3A [99].

The annotation from these databases are useful for visualisation and interpretation of
APA genome browsers such as the UCSC Genome Browser [104] or the Integrated Genome
Browser [105]. Moreover, many tools for APA detection and quantification depend on
database annotations to guide bioinformatic analysis as discussed in the section below.

Table 3. Bioinformatic databases for 3′ UTR and APA storage and retrieval
.

Database Primary Data Collection Organism Last Updated URL

UTRdb [93] 5′ and 3′ UTR regions in
EMBL/GenBank records human, rodent, vertebrate, plant and fungi 2010 http://utrdb.ba.itb.cnr.it/

PACdb [95] cDNA/ESTs human, mouse, rat, dog, chicken, zebrafish,
fugu, fruit fly, mosquito, nematode,
Arabidopsis thaliana, rice and baker’s yeast

inaccessible http://harlequin.jax.org/
pacdb/

PolyA_DB
[72,94,106] aligned cDNA/ESTs human, mouse, rat, chicken and zebrafish 2018 http://polya-db.org/v3/

GENCODE
Poly (A) site

track
[100,101]

cDNA/ESTs human 2021

https://genome.ucsc.
edu/cgi-bin/hgTrackUi?

db=hg19&g=
wgEncodeGencodeV19

APADB [97] MACE-Seq human, mouse and chicken 2014 http://tools.genxpro.net/
apadb/

APASdb [96] SAPAS human (22 normal and cancer tissues), mouse,
zebrafish and some lancelet samples inaccessible http:

//mosas.sysu.edu.cn/utr

TC3A [99] RNA-seq in TCGA 32 human cancer types inaccessible http://tc3a.org/

APAatlas [27] RNA-seq in GTEx project >50 human normal tissue 2020 https:
//hanlab.uth.edu/apa/

PolyASite [98]

3′-Seq, 3′READS, DRS,
QuantSeq_REV, SAPAS,
PAPERCLIP, PolyA-seq,
PAS-Seq, A-seq, 3P-Seq,
DRS, 2P-Seq, PAT-seq

human, mouse and worm 2020 https:
//polyasite.unibas.ch/

4.2. Bioinformatic Methods for APA Detection and Quantification

The increasing interest in 3′ UTR dynamics, and the growth of associated technologies
required design of bioinformatic tools. Multiple approaches were designed to infer APA
from conventional RNA-seq, as well as tools to extract it from 3′ focused RNA-seq methods.
Some APA detection methods rely on prior knowledge, while others involve the de novo
detection of poly(A) sites.

http://utrdb.ba.itb.cnr.it/
http://harlequin.jax.org/pacdb/
http://harlequin.jax.org/pacdb/
http://polya-db.org/v3/
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGencodeV19
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGencodeV19
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGencodeV19
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGencodeV19
http://tools.genxpro.net/apadb/
http://tools.genxpro.net/apadb/
http://mosas.sysu.edu.cn/utr
http://mosas.sysu.edu.cn/utr
http://tc3a.org/
https://hanlab.uth.edu/apa/
https://hanlab.uth.edu/apa/
https://polyasite.unibas.ch/
https://polyasite.unibas.ch/
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4.2.1. APA Detection in RNA-seq Data Based on Prior APA Information

The section below provides a brief overview of the bioinformatic methods available for
inference of APA from read-coverage in RNA-seq data, where known APA sites are used
to guide analysis. The use of data-base derived APA information improves the accuracy of
in silico APA detection.

Mixture of ISOforms (MISO) [107] was the first reported tool for detecting previously
annotated 3′ UTR isoforms, using a probabilistic framework to quantify alternative splicing
(AS) and alternative polyadenylation. It identifies the differentially regulated AS/APA
isoforms from the expression levels and delivers the probability of the origin of a read from
a particular transcript isoform.

Ratio Of A Ratio (ROAR) [108] is an R-based program that identifies differential APA
site usage in RNA-seq. The algorithm defines two distinct 3′ UTRs in a gene, guided by
APA databases, one which is shared by both the short and long 3′ UTR isoform and the
other which is present only in the long 3′ UTR isoform. It scans the read-coverage for these
two 3′ UTR isoforms and computes the expression ratio (m/M) of reads falling in the two
regions. To compare between conditions, the ratio of two isoform-expression ratios (m/M)
is computed in different samples and is called the Ratio Of A Ratio. This ratio represents
the tendency of expression of a short isoform or a long isoform in a given condition. A
roar >1 indicates higher levels of short isoform (a roar <1 indicates higher levels of long
isoform) in the first condition. This method derives APA annotations from APASdb and
PolyA_DB2 [72].

Quantification of APA (QAPA) [9] uncovers APA from RNA-seq data by retrieval of
3′ UTR annotations in GENCODE Poly (A) site track [101] and PolyASite 2.0 [98] and use
these to construct an expanded reference library of annotated poly(A) sites and 3′ UTR
sequences. The sequences in this library are used to measure expression from RNA-seq
data and estimate relative abundance of alternative 3′ UTR isoforms. The method directly
estimates the absolute alternative 3′ UTR isoform expression from protein-coding genes.
Then it computes the relative expression of each 3′ UTR isoform among all isoforms to
assess APA.

3′ UTR Sequence Seeker (3USS) [109] is a web-server that analyses the transcript
assembly file and automatically identifies transcripts with alternative 3′ UTRs with respect
to the reference genome of choice. The 3′ UTRs are identified as the regions located
immediately downstream of the stop-codon. These are then compared with previously
annotated 3′ UTRs in public databases, iGenomes (https://sapac.support.illumina.com/
sequencing/sequencing_software/igenome.html) and GENCODE [100,101] to identify
novel 3′ UTRs and to detect length differences amongst existing and putative novel 3′

UTRs. It provides the nucleotide sequence of the 3′ UTR isoform along with their genomic
coordinates and the UTR length differences.

APA-Scan [110] identifies genome-wide UTR-APA events by utilizing the predicted or
experimentally verified poly(A) signals as reference for poly(A) sites estimating the 3′ UTR
read coverage from both aligned RNA-seq and 3′ end-seq data to identify potential poly(A)
sites. Then it pools all the aligned reads to identify peaks and cleavage sites in 3′ UTRs
which are considered as potential poly(A) sites. It performs a χ2-test on the experimentally
determined or predicted cleavage site in the 3′ UTR to compare APA between samples.

Significance Analysis of Alternative Polyadenylation using RNA-Seq (SAAP-RS) [111]
uses RNA-seq samples from bulk, single cell and 3′ focused (e.g., 3′ READS+ [10]) approaches
to identify APA events. The method calculates RNA-seq read counts upstream (UP) and
downstream (DN) of every poly(A) site identified from PolyA_DB3 database and performs
a statistical test to derive a p-value to compare the read distribution in UP and DN regions
between two samples. The relative expression difference (RED) of the APA isoforms is used
to identify genes with significantly altered 3′ UTR lengths between cell types.

APAlyzer [112] is a Bioconductor package for identification of APAs in 3′ UTR and
intronic regions by calculating the RNA-seq read density (RD) after splitting the transcript
3′ end regions based on the annotations derived from PolyA_DB3.

https://sapac.support.illumina.com/sequencing/sequencing_software/igenome.html
https://sapac.support.illumina.com/sequencing/sequencing_software/igenome.html
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Due to their dependence on incomplete information of poly(A) sites, MISO, ROAR,
3USS and APAlyzer may fail to detect uncharacterised APAs.

4.2.2. de novo APA Detection in RNA-seq Data

These are the bioinformatic methods that detect 3′ UTR switching events in RNA-seq
data without relying on prior knowledge. The methods use a variety of approaches, but
a majority of tools scan the read-coverage to detect “change-points”. A change point is a
critical point that marks the shift or transition in the depth of read-coverage (Figure 3). The
presence of more than one 3′ UTR isoform creates a “step-down” inferred as the change
points that define the APA boundaries.

CDS5' 3'

proximal p(A) distal p(A)

CDS
(A)n

Isoform 1

CDS
(A)n

de novo poly(A) peak calling in

3' focused RNA-seq

de novo read coveerage

in RNA-seq

Isoform 2

Change-point

CDS 3'
APA annotations

from public databases

A)

B)

D)

C)

Alternative

polyadenylation

5' cap

5' cap

5' cap

proximal p(A) distal p(A)

3' 5'

3'

3'

Figure 3. Detection of poly(A) sites: (A) Two polyadenylation sites, proximal and distal, result in expression of two
isoforms. B-D) Methods to determine the location of poly(A) sites: (B) de novo method to identify change-points in read-
coverage of RNA-seq data. (C) de novo method to identify poly(A) peaks in 3′ focused RNA-seq data. (D) combining
read-coverage data with poly(A) site coordinates from APA databases.

Dynamic analysis of Alternative PolyAdenylation from RNA-Seq (DaPars) [25] per-
forms de novo identification of APA in RNA-seq experiments. The method scans the
read-coverage and identifies a distal poly(A) site present at the end-point of the longest
3′ UTR among samples. It then seeks a model providing the best least-squares fit of the
read-coverage along the gene up to the identified distal site. This model consists of the
location of a proximal poly(A) site and the expression levels of the short and long isoforms
in each of the two conditions. This best model provides both the location of a proximal site
and the information required to calculate the "Percentage of Distal polyA site Usage Index"
(PDUI) for each condition.

Tool for Alternative Polyadenylation site AnalysiS (TAPAS) [113] deals with more
than two APA sites in genes as well as 3′ UTRs with intronic regions. The tool is based
on multiple change point inference model for finding change points in time series data,
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but applies more stringent filtration techniques to discard false APA sites. The method
is extended to identify APA sites that are differentially expressed across samples to infer
genes that undergo 3′ UTRs shortening/lengthening.

Global Estimation of The 3′ UTR landscape based on RNA-seq (GETUTR) [114] is a
Python-based method that uses RefSeq gene annotations to provides a landscape of 3′ UTR
and finds poly(A) sites by smoothing read-coverage to flatten the erroneous variations in
the RNA-seq signal. The smoothing technique may generate many false poly(A) sites.

Isoform Structural Change Model (IsoSCM) [115] is a standalone transcript assembly
tool that annotates mRNA 3′ ends based on multiple change-point analysis to generate
complete 3′ UTR assemblies. It uses a statistical model to infer change points in a gene
exhibiting a sharp increase or decrease in read-coverage and employs mathematical con-
straints to filter false APA sites. Although rare, introns occur in 3′ UTRs and regulate
gene expression [116,117]. Neither GETUTR nor IsoSCM consider intronic regions in their
analysis and miss 3′ UTRs that contain introns [113].

APAtrap [118] uses an approach different from change-point or poly(A) peak calling
(see Section 4.2.3). It extracts the known 3′ UTR from genome annotations for each gene
and extends it by a pre-defined length. A sliding window is used to scan the extended
region by 1bp increments to identify changes in read coverage. The location of 3′ UTR ends
is determined by considering the mean read coverage in the current window, the previous
window and the next window and a 3-step criterion is used to identify the precise 3′ ends.
The newly identified 3′ UTRs are compared with the original genome annotation to procure
novel 3′ UTRs, the 3′ end locations of which are then defined as the distal poly(A) sites. It
then applies a least-squares model on read-coverage depth to identify the precise positions
of poly(A) sites for each gene.

4.2.3. de novo APA Detection in 3′ Focused Data

For every protocol listed in Table 1, bioinformatic methods were employed for data
analysis. While some of them remain ad-hoc, others are available as stand-alone pipelines
or packages which are discussed in this section.

The first reported change-point model [119] is based on a likelihood ratio test that
detects any change in 3′ UTR length. It assumes the existence of two 3′ UTR isoforms
in a gene, with a proximal and a distal poly(A) site. It then captures the percentage of
read counts corresponding to each isoform, quantifies the expression ratio of the two
isoforms across two conditions, treatment and control. The method also assumes a constant
expression ratio of the two isoforms throughout the 3′ UTR and tests for changes in the
expression ratio. A change in this ratio marks the 3′ UTR switching event and the site
identifies as a poly(A) site. The Perl software can handle data from both RNA-seq and 3′

focused protocols and has been tested for SAPAS [63].
Different from change point models, the bioinformatic methods developed for 3′

focused RNA-seq identify poly(A) sites by peak-calling. Reads containing untemplated
poly(A) sequences when compared to a reference genome are identified as 3′ ends.

Tail Tools [56] is a suite of tools to process and analyse the reads rich in poly(A) tails. Tail
Tools measures differential gene expression, differential poly(A) tail length and differential 3′

end usage per gene. All the reads associated with each identified poly(A) peak are counted for
each sample. The weitrix Bioconductor package [120] assigns a “shift score” and an associated
precision weight to each gene with two or more APA sites relative to typical site usage. These
scores and weights can then be used with limma [121] and topconfects [122] for differential
testing. The topconfects package provides confidence bounds on the differential genes, thus
provides a ranked gene list in the order of confident effect size i.e., how much shift is observed
in the genes. Weitrix can handle data from both 3′ focused RNA-seq methods and from
single-cell RNA-seq experiments. Along with differential poly(A) site usage, it can also find
differential tail length, and introduces some exploratory features like finding components of
variation in data and identify genes with excess variation (or highly variable genes, HVGs).
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These additional tools can also be applied to other 3′ focused RNA-seq data such as Quant-seq
and 10X Genomics single-cell RNA-seq data.

PolyA-miner [8] creates a matrix of poly(A) sites (as rows) and samples (as columns)
from 3′ focused sequencing data to apply non-negative matrix factorization which captures
gene expression patterns. It first extracts all potential sample-wise poly(A) sites and pools
them to construct a poly(A) library and then extensively filters out false poly(A) sites and
maps the rest to their respective genes. The number of reads mapped gives the poly(A)
peak count for each gene. The method accounts for all APA changes between proximal,
intermediate and distal APA sites.

Application for mapping EnD-Seq data (AppEnD) [71] was reported along with EnD-
Seq protocol but can also process data from PAS-Seq and A-Seq protocols and has the
ability to automatically detect internally mis-primed A-tails, thus keeping only the true
polyadenylated 3′ ends. It outputs the transcript abundance ending at each nucleotide,
resulting in a positional distribution of last templated nucleotides.

Most of these tools only identify UTR-APAs. They rely on gene annotations from
reference genomes in ENSEMBL which provides annotations for 3′ UTRs [123], but these
are not differentiated by APA type. Independent of the reference genome annotations,
mountainClimber [124] locates change points in the RNA-seq read coverage data to identify
APA sites in coding and intronic regions and thus, differentiate between the two APA types.

4.2.4. APA Detection in 3′ Tag-Based Single-Cell RNA-seq Data

The 3′ focussed scRNA-Seq methods such as the popular 10X Chromium encouraged
the development of bioinformatic tools to resolve complexity and study APA dynamics in
single-cell data, which are discussed in this section.

Modeling and Visualization of dynamics of Alternative PolyAdenylation (MovAPA) [125]
is an R package to measure APA. It extracts poly(A) site annotations from multiple sources
like PolyASite2.0, PolyA_DB3, PlantAPAdb [126], APASdb, TAPAS, APAtrap, DaPars and
Cufflinks [127] to construct a library that stores expression levels, annotation, and sample
information of poly(A) sites from different samples which is then used for the downstream
analysis. While movAPA relies on prior poly(A) annotations, the following tools identify
poly(A) peaks or compute differential APA usage de novo.

BATBayes [92] uses a statistical framework to compare variability in 3′ UTR isoform
usage in homogeneous cell populations from BAT-seq data. The analysis identifies poly(A)
sites by UMI counting and only considers the two most abundant 3′ UTR isoforms for
each gene.

scAPA [128] is an R-script that combines various toolkits such as Samtools [129],
Bedtools [130], Homer, UMI_tools [131], etc. for their analysis. It uses Homer to detect
poly(A) site by peak-calling and uses mclust to separate overlapping peaks based on a
Gaussian mixture model. It employs featureCounts [132] to quantify peak usage in each
cell-type cluster and performs a χ2-test to detect dynamic APA events.

Sierra [81] applies the DEXSeq package [133], originally designed to detect differential
exon usage in bulk RNA-Seq data, to APA usage in pseudo-bulk samples. As DEXSeq
performs tests based on the negative binomial distribution, this method takes biological
variation into account, which many other methods fail to do.

scAPAtrap [82] employs peak-calling to detect potential poly(A) sites and integrates
poly(A) read anchoring where reads with A/T stretches are used to determine the precise
locations of the poly(A) sites, which other methods like scAPA and Sierra fail to do. It also
splits the overlapping peaks into smaller peaks and then employs the movAPA package to
compute APA.

scDAPA [134] computes the APA difference between samples or between cell-types
within the same sample. It doesn’t call poly(A) sites, instead, it employs a histogram-based
approach to divide the reads in 3′ ends into bins of the same width and computes a differ-
ence in the percentage of reads in each bin for a gene across two conditions. A Wilcoxon
rank-sum test measures the significance of the differential APA usage in these bins.
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5. The Repertoire of Cancer Biomarkers

The seminal study by Mayr and Sharp (2009) first showed the association of APA with
cancer. Since that time, APA has been reported in multiple studies of cancer proliferation
and transformation, as extensively reviewed by Gruber and Zavolan (2019) [39]. These APA
genes have the potential to be used as prognostic markers in predicting cancer progression,
risk stratification and even for developing personalised therapies[16,22,34,83,135–139].

Current prognostic tests rely on gene expression profiles [140,141]. But these may be
improved by incorporating APA. Several APA genes have been proposed as novel prognostic
biomarkers and some examples are shown in Table 4. These gene expression and APA
signatures could be combined with drug-sensitivity data, and clinical covariates such as
patient age, survival time, tumour stage, location and size to build a multivariate regression
model [137,138]. For example, a recent study used linear regression model to connect APA
events and drug sensitivity with clinical relevance, supporting their utility as biomarkers [137].

Table 4. APA genes as potential cancer biomarkers.

Cancer Gene Markers Signature APA Physiological Effects Molecular Role

Breast PRELID1 Shortening of 3′ UTR increased protein
expression

mitochondrial ROS
signalling [139]

Breast SNX3, YME1L1D, USP9X Shortening of 3′ UTR increased protein levels in
short isoform EGF signalling [22]

adult T-cell lymphoma,
large B-cell lymphoma,

stomach adenocarcinoma
PD-L1 gene (CD274) Shortening of 3′ UTR

PD-1/PD-L1-mediated
immune escape in cancer

development;
structural variants (SVs)

disrupt 3′ regulatory
region of PDL1

T-cell modulator;
PDCD1-mediated

inhibitory pathway [136]

Colorectal cancer IGF2BP1/IMP-1 Shortening of 3′ UTR
increased protein levels;

increased oncogenic
transformation

Modulates pathogenesis
[142]

TNBC,
lung,

esophageal,
bladder,

leukemia,
ovarian

N4BP2L2, WDHD1, ZER1,
ADGRL2, PRSS12, NPL,
SIK3, SYNGR1, SCL2A3,

UBE2G2
Shortening of 3′ UTR unfavourable prognosis

All are related to cancer
development:

cell cycle regulator and is
involved in PI3K/Akt

pathway;
tumour antigen [138]

TNBC
PPIC, ZCCHC14, RTN1,
PRCK8, CLIC2, CXCL8,

SMAD6
Lengthening of 3′ UTR

poor prognosis;
response elements (MREs)
in the lengthened 3′ UTR
leads to homologous gene
repression and competing

endogenous RNA
(ceRNA) resulting in
cancer progression;

more miRNA binding sites

TGF-Bpathway;
autocrine NF-ÎB/IL-8

(CXCL8) pathway
responsible for cell

migration;
aberrant pathways and
cancer progression [138]

TNBC (MB-231) Caspase 6, DFFA (ICAD),
DFFB (CAD), PARP1 Lengthening of 3′ UTR escape of apoptosis Caspase pathway [63]

TNBC (MB-231) cyclin D1, D2 Shortening of 3′ UTR promote cell cycling Mitotic cell cycle;
APC [63]

A 17-gene 3′ UTR-based classifier was reported that divided patients into high and
low risk groups, predicting risk in patients with triple-negative breast cancer (TNBC)
significantly better than the classical clinicopathological risk [138]. The prognostic model
in this study reported 10 APA genes that undergo 3′ UTR shortening and were associated
with poor prognosis. It also reported 7 APA genes that undergo 3′ UTR lengthening
and were associated with poor prognosis showing that APA-mediated gene regulation is
more complicated than was first thought. In an important caveat, this study found the
SMAD6 gene to be associated with poor prognosis in TNBC patients but that it favours
survival in lung cancer patients, indicating that the APA events are tumour-dependent.
The expression of APA genes detected by single-cell RNA-seq are now being shown to
correlate with clinical outcomes of early-stage breast cancer in a single-cell data [83]. They
report 53 cancer cell-specific APA genes with a distinct pattern of 3′ UTR shortening and
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an immune-specific APA signature with possible clinical utility in early stage breast cancer.
However, of the many potential clinically relevant APA genes that have been reported,
most have yet to be independently clinically validated.

In a disease setting like TNBC, which is highly aggressive and has a high recurrence
rate, the lack of hormone receptors means the targeted therapies are not applicable. As a
result, patients are treated with conventional radiotherapy or chemotherapy [143]. Better
treatment methods are required. APA markers or the mechanism that cause APA could be
used as targets for development of novel treatment therapies [144,145].

Based on current literature, APA appears to be associated with tumorigenicity in all
cancer patients. The time is therefore ripe to take these smaller scale research findings into
larger cohort studies to mine the full potential of APA as novel cancer biomarkers.

6. Conclusions

APA is an established mechanism for the generation of transcriptome diversity that
impacts basic cellular functions, cancer proliferation and transformation and ultimately
controls cellular fate. The development of bespoke RNA-seq technologies combined with
bioinformatic methods and curated databases have paved the way for the potential of APA
as cancer biomarkers to be tested at scale. These APA markers, if combined with standard
prognostic measures such as gene expression and clinical covariates may contribute toward
development of novel diagnostic tests and may facilitate personalised cancer therapies.
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