
Research Article
Marker Genes Change of Synovial Fibroblasts in Rheumatoid
Arthritis Patients

Lifen Liao,1 Ke Liang,2 Lan Lan,1 Jinheng Wang,1 and Jun Guo 3

1Department of Laboratory, Affiliated Hospital of Guilin Medical University, Xiufeng District, Guilin, 541001 Guangxi, China
2Department of Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Xiangshan District, Guilin,
541002 Guangxi, China
3Department of Hematology, Rizhao People’s Hospital, Donggang District, Rizhao, 276800 Shandong, China

Correspondence should be addressed to Jun Guo; konganzhi810@163.com

Received 27 February 2021; Revised 14 May 2021; Accepted 24 May 2021; Published 7 June 2021

Academic Editor: Tao Huang

Copyright © 2021 Lifen Liao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Rheumatoid arthritis (RA) is a chronic condition that manifests as inflammation of synovial joints, leading to joint
destruction and deformity. Methods. We identified single-cell RNA-seq data of synovial fibroblasts from RA and osteoarthritis
(OA) patients in GSE109449 dataset. RA- and OA-specific cellular subpopulations were identified, and enrichment analysis was
performed. Further, key genes for RA and OA were obtained by combined analysis with differentially expressed genes (DEGs)
between RA and OA in GSE56409 dataset. The diagnostic role of key genes for RA was predicted using receiver operating
characteristic (ROC) curve. Finally, we identified differences in immune cell infiltration between RA and OA patients, and
utilized flow cytometry, qRT-PCR, and Western blot were used to examine the immune cell and key genes in RA patients.
Results. The cluster 0 matched OA and cluster 3 matched RA and significantly enriched for neutrophil-mediated immunity and
ECM receptor interaction, respectively. We identified 478 DEGs. In the top 20 degrees of connection in the PPI network, the
key genes for RA were obtained by comparing with the gene markers of cluster 0 and cluster 3, respectively. ROC curve showed
that CCL2 and MMP13 might be diagnostic markers for RA. We found aberrant levels of CD8+T, neutrophil, and B cells in RA
fibroblasts, which were validated in clinical samples. Importantly, we also validated the differential expression of key genes
between RA and OA. Conclusion. High expression of CCL2 and MMP13 in RA may be a diagnostic and therapeutic target.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease
that affects joint synovial tissue, causing joint pain and disabil-
ity [1]. RA is characterized by infiltration of synovium with
inflammatory cells, hyperplasia of synovial fibroblasts, and pro-
gressive inflammation of the joint, leading to cartilage destruc-
tion, bone erosion, and disability [2, 3]. A large population
studies found that in RA patients, the mortality was increased
with years compared to the general population [4]. Within 10
years of RA onset, at least 50% of patients in developed coun-
tries are unable to take full-time jobs, probably due to the
resulting disability [5]. Patients with RA represent approxi-
mately 0.5%-1% of the world’s population and have regional
variations [6]. The prevalence is higher in women aged between
35 and 50 years than in age-matched men [7].

The etiology of RA is complex and includes not only
genetic and epigenetic factors but also smoking, infection,
microbiota, and others [8]. Although the etiology of RA is
not fully understood, its autoimmune properties have been
widely recognized. Autoreactive CD4+T cells will stimulate
macrophages and synovial fibroblasts to secrete cytokines,
including TNF, IL-1, and IL-17, which contribute to invasive
vasculitis through recruitment of immune cells and expan-
sion of synovial fibroblasts [9, 10]. In addition, RA has a
specific tissue response characterized by an aggressive proin-
flammatory phenotype of local fibroblasts with stromal regu-
latory, osteoclastogenic, and invasive properties [11]. In RA,
stable reprogramming of synovial fibroblasts disrupts their
protective regulatory processes, promotes their survival,
and increases their production of proinflammatory agents
and proteases [12]. Rheumatoid synovial fibroblasts are able
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to generate and support a sustained leukocyte infiltration
[13]. Therefore, a deep and extensive understanding of syno-
vial fibroblasts and their potential roles in the pathogenesis of
RA is of great importance for the prevention and treatment
of RA.

With the continuous development of medical standards,
conventional treatments can alleviate the condition of RA
patients, but cannot completely cure them [14]. Notably,
patient awareness of RA, the willingness to seek medical
treatment, the time to receive appropriate treatment, and
the diagnostic capability of physicians all influence the treat-
ment and prognosis of RA [15]. Early diagnosis and treat-
ment often delay and prevent joint deformities, improve the
quality and life span of patients, and are a prerequisite for
early detection of patients.

Therefore, it is very important to explore the pathogene-
sis of RA to develop accurate treatments and new drug tar-
gets. This study broadens the candidate list of therapeutic
targets for RA, as well as the underlying mechanisms of
inflammatory infiltration, by exploring the differences in
gene expression and the different biological functions
between RA and OA patients. It was further clarified that
chemokines and matrix metalloproteinases (MMPs) signal-
ing were involved in the pathological process of RA associ-
ated with immune cell infiltration.

2. Materials and Methods

2.1. Rheumatoid Arthritis Data Collection. Data used in this
study were obtained from the gene expression omnibus
(GEO) public database (https://www.ncbi.nlm.nih.gov/geo).
GSE109449 included gene expression profile of 192 single
synovial fibroblasts from 2 rheumatoid arthritis (RA)
patients and 192 single synovial fibroblasts from 2 osteoar-
thritis (OA) patients through single-cell RNA-seq (scRNA-
seq) based on GPL18573 [16].

GSE56409 included gene expression profile of fibroblasts
which were isolated from synovium, bone marrow, or skin
tissue samples of 12 rheumatoid arthritis patients and 6 oste-
oarthritis patients at the time of knee or hip replacement sur-
gery based on GPL570 of array [17]. The raw data was
processed and normalized using the Robust Multiarray Aver-
aging (RMA) methodology.

2.2. Processing of the scRNA-Seq Data. The quality control,
statistical analysis, and exploration of the scRNA-seq data
for GSE109449 were performed using the Seurat R package
[18, 19]. Principal component analysis (PCA) was used to
identify significantly available dimensions with a P value <
0.05. The uniform manifold approximation and projection
(UMAP) algorithm [20] was used for the visualization of
unsupervised clustering. The differential expression analysis
was used the limma R package [21, 22]. Set the filtering
threshold P value < 0.05. Different cell clusters were anno-
tated by the singleR package [23].

2.3. Enrichment Analysis. Biological process (BP) in Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis [24–27] of gene

markers of clusters was performed using Enrichr online tool
[28]. The P value < 0.05 was considered significantly
enriched.

2.4. Difference Analysis. Differential expression analysis
between RA and OA in GSE56409 was performed using the
limma R package [21, 29]. Genes with an |log2(FoldChange)|
>1 and P value < 0.05 were identified as differentially
expressed genes (DEGs).

2.5. Generation of Protein-Protein Interaction (PPI) Network.
The PPI network of common genes was identified through the
Search Tool for the Retrieval of Interacting Genes (STRING)
(http://string-db.org/) database. The combined score >0.7
was considered significant. The PPI network was visualized
by the Gephi software [30]. The PPI network genes were
ranked based on their degree of connectivity with other genes.

2.6. Identification of Immune Cell Infiltration. The marker
gene sets of different immune cell types were obtained from
Bindea et al [31]. We used the single-sample gene set enrich-
ment analysis (ssGSEA) in R package GSVA [32] to derive
the enrichment scores of each immune cell. The ssGSEA
applies gene signatures expressed by immune cell popula-
tions to individual samples. A threshold value of 0.05 was
established for P values < 0.05.

2.7. Sample Collection. Synovial tissue and peripheral blood
samples from 5 patients of RA and 5 patients of OA were
collected from the Nanxishan hospital of Guangxi Zhuang

Table 1: The primers of this study.

Genes Primers

GAPDH
F: 5′-TGACCGTCGGAGTCAGGGATTT-3′
R: 5′-GCCAACGAATTTGCCATGGGTGG-3′

ICAM1
F: 5′-TGCAAGAAGATAGCCAACCAAT-3′
R: 5′-GTACACGGTGAGGAAGGTTTTA-3′

CXCL1
F: 5′-AAGAACATCCAAAGTGTGAACG-3′
R: 5′-CACTGTTCAGCATCTTTTCGAT-3′

MMP1
F: 5′-AGATTCTACATGCGCACAAATC-3′
R: 5′-CCTTTGAAAAACCGGACTTCAT-3′

ITGA6
F: 5′-GTGCTTGCTCTACCTGTCGG-3′
R: 5′-GCTCCCGGGGTCTCCATATT-3′

MMP3
F: 5′-GGGTCTCTTTCACTCAGCCAACAC-3′

R: 5′-ACAGGCGGAACCGAGTCAGG-3′

CCL2
F: 5′-ACCAGCAGCAAGTGTCCCAAAG-3′
R: 5′-TTTGCTTGTCCAGGTGGTCCATG-3′

THBS1
F: 5′-TTTGACATCTTTGAACTCACCG-3′
R: 5′-AGAAGGAGGAAACCCTTTTCTG-3′

MMP13
F: 5′-CACTTTATGCTTCCTGATGACG-3′
R: 5′-TCTGGCGTTTTTGGATGTTTAG-3′
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Autonomous Region. All subjects read and signed the
informed consent form. The study was in conformance
with the guidelines of the 1975 Declaration of Helsinki
and was approved by the ethics committee of the Nan-
xishan hospital of Guangxi Zhuang Autonomous Region
(2021NXSYYEC-001).

2.8. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). The total RNA was isolated from synovial tissue
samples by using Trizol (Thermo, California, USA). After
uniform quality between groups, total RNA was reverse tran-
scribed to complementary DNA (cDNA) using PrimeScript™
RT Master Mix (TaKaRa, Tokyo, Japan). The qRT-PCR was
performed using the SYBR Green Master Mix (Thermo, Cal-
ifornia, USA) using cDNA according to the manufacturer.
The primer sequence of genes was shown in Table 1. Genes
were normalized to GAPDH. Relative expression of mRNA
was calculated through the 2–ΔΔCT method [33].

2.9. Western Blot. The synovial tissue samples of RA and OA
were lysed on ice for 40min in radio immunoprecipitation
assay (RIPA) buffer (Beyotime, Shanghai, China). Proteins
were loaded and separated by 10% SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred onto polyvi-
nylidene fluoride (PVDF) membranes. The membranes were
incubated with the primary antibodies (all antibodies were pur-
chased from Abcam) after blocking with skim milk. Protein
bands were then incubated with corresponding secondary anti-
bodies and detected by enhanced chemiluminescence (ECL)
reagents. GAPDH protein was used as an internal reference
protein.

2.10. Flow Cytometry. Peripheral blood samples were surface-
labeled with anti-CD19 FITC (BD, California, USA), anti-
CD3 PC5.5 (BD, California, USA), anti-CD8-PE antibody
(BD, California, USA), or anti-CD45 PC7 (BD, California,
USA) for 10min at room temperature. The red blood cells
in the blood were lysed with red blood cell lysate (BD, Cali-
fornia, USA), then washed with PBS twice, and detected on
the Dxflex Flow cytometry (Beckman, California USA). The
results were analyzed using the Kaluza v2.1.1 software.

2.11. Statistical Analysis. Data analysis was used SPSS 20.0
software. Data were presented as mean ± standard
deviations (SD) [34, 35]. Student’s t-test was used to compare
the differences between two groups [36]. The P value < 0.05
was considered statistically significant. Test level α = 0:05
(two-sided).

3. Results

3.1. The mRNA Signatures in Fibroblast of Synovial Tissue.
The article flow chart is shown in Figure 1. First, we analyzed
scRNA-seq data from fibroblasts of 2 RA and 2 OA patients
(GSE109449). Based on quality control and normalization
of the data, 31654 genes were found in the 384 cells
(Figure 2(a)). The number of detected genes was significantly
correlated with sequencing depth (Figure 2(b)). Among
31654 corresponding genes, the variant analysis revealed
2000 highly variable genes (Figure 2(c)). In addition, princi-
pal component analysis (PCA) results showed significant
separation between fibroblasts from RA and OA patients
(Figure 2(d)). To identify the available dimensions and
screen the related genes by PCA, we finally selected 13
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Figure 1: The flowchart of this study. Using single-cell sequencing data and transcriptome data to identify gene signatures and potential
diagnostic markers of RA patient. OA: osteoarthritis; PCA: principal component analysis; PPI: protein-protein interaction; RA:
rheumatoid arthritis; ROC: receiver operating characteristic curve; UMAP: uniform manifold approximation and projection.
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principal components (PCs) to travel further analysis (P
value < 0.05) (Figure 2(e)).

3.2. Cell Subpopulations in Fibroblast of RA and OA. To
determine whether fibroblast subpopulations differ between
RA and OA, we performed clustering analysis for the cells.
Through the uniform manifold approximation and projec-
tion (UMAP) algorithm, we clustered fibroblasts into 4 sepa-
rate clusters (Figure 3(a)). When these cell subpopulations
were compared with the clinical phenotypes, we found that
cluster 0 matched the OA group, and cluster 3 matched the
RA group (Figure 3(b)). Next, we performed differential
expression analysis, identifying 1561 marker genes in the
four clusters (Figure 3(c)). Gene markers of cluster 0 were
more highly expressed in OA than in RA, whereas gene
markers of cluster 3 were more highly expressed in RA than
in OA (Figure 3(d)). These clusters were annotated as cell
types based on the score by singleR. However, different clus-
ters were not annotated as different cell fibroblast subpopula-
tions for RA and OA (Figure 3(e)).

3.3. Different Biological Function of Cell Subpopulations. To
identify distinct biological roles for subpopulations of RA
and OA patient fibroblasts, we performed enrichment analy-
sis of gene markers of cluster 0 and cluster 3. It was found
that gene markers of cluster 0 were significantly enriched in
biological process (BP) of neutrophil activation involved in
immune response, neutrophil-mediated immunity, and neu-

trophil degranulation (Figure 4(a)). Gene markers of cluster
3 were significantly enriched in BP of extracellular matrix
organization, collagen fibril organization, and skeletal system
development (Figure 4(b)). KEGG enrichment results
showed that gene markers of cluster 0 were significantly
enriched in protein processing in protein processing in the
endoplasmic reticulum, glycolysis/gluconeogenesis, and pro-
teoglycans in cancer (Figure 4(c)). While gene markers of
cluster 3 were significantly enriched in focal adhesion, ECM
receptor interaction, and phagosome (Figure 4(d)).

3.4. Gene Expression in Fibroblasts of RA. Afterwards, we
obtained 478 differentially expressed genes (DEGs) using
gene expression data in fibroblasts from RA patients and
OA patients (Figure 5(a), Table S1). The 294 upregulated
DEGs and 184 downregulated DEGs were included
(Figure 5(b)). The PPI network of DEGs with interactions
was acquired through a string database (Figure 5(c)). We
screened the top 20 greatest degree genes of connection in
the PPI network as candidates (Table 2). Comparing with
the gene markers of clusters, we found that MMP3, ITGA6,
MMP1, and CXCL1were the intersection genes for cluster
0, and THBS1, CCL2, MMP13, and ICAM1 were the
intersection genes for cluster 3 (Figure 5(d)). Therefore, we
considered that these 8 genes might be associated with
arthritis and were defined as key genes. THBS1, CCL2,
MMP13, and ICAM1 may be potential markers for RA.
Among the differential results, THBS1, CCL2, MMP13,
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Figure 2: RA-related principal component genes were screened based on single-cell sequencing. (a) Quality control of synovial fibroblasts in
RA. There were 31654 genes in 384 cells. RA: rheumatoid arthritis; OA: osteoarthritis. (b) The depth of sequencing was significantly correlated
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Figure 3: Identification of four cell subpopulations for fibroblast. (a) The UMAP algorithm reduced the dimensionality of 13 PCs and
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colors from blue to yellow indicate the gene expression levels from low to high.
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ICAM1, MMP3, MMP1, and CXCL1 showed higher
expression in RA compared with OA, while ITGA6 showed
lower expression in RA (Figure 5(e)). Receiver operating
characteristic (ROC) curve results showed that CCL2 and

MMP13 had a good predictive diagnostic role for RA
(Figure 5(f)). CCL2 and MMP13 with the highest area
under the receiver operating characteristic curve (AUC)
values (AUC > 0:8).
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Figure 5: Identification of differentially expressed genes between RA and OA in GSE56409. (a) Heatmap of differential gene expression in RA
and OA. RA: rheumatoid arthritis; OA: osteoarthritis. Red are upregulation and blue are downregulation. (b) Volcano plot of differentially
expressed genes between RA and OA. Red are upregulation and blue are downregulation. (c) PPI network of differentially expressed
genes. The colors from blue to red, representing the greater degree to which genes are connected in the network. (d) Venn diagram of the
intersection among cluster 0, cluster 3, and the top 20 degrees in the PPI network. Then obtained eight key genes. (e) Differential
expression of key genes between RA and OA in GSE56409. RA: rheumatoid arthritis; OA: osteoarthritis. (f) ROC curve of key genes for
predicting diagnosis of RA. AUC: area under ROC curve.
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3.5. Immune Cell Changes in RA Patients. Immunoinflamma-
tion appeared in our enrichment results, especially cluster 0
which matched OA. To compare the differences in immune
responses between RA and OA patients, we quantified the
infiltration of immune cells according to the immune score
(Figure 6(a)). We found that B cells were significantly
decreased, and CD8+T cells and neutrophil were signifi-
cantly increased in RA compared to OA (Figure 6(b)). The
results of the correlation analysis with the key genes showed
that neutrophil was significantly associated with all of the key
genes (Figure 6(c)).

Importantly, we validated significant results of our anal-
ysis in blood or synovial tissue samples from RA and OA
patients. Using flow cytometry, we found that the levels of
CD8+T cells and neutrophil were significantly higher in RA
patients than in OA patients, while the levels of B cells were
significantly decreased (Figure 6(d)). QRT-PCR results
found that the mRNA levels of THBS1, CCL2, MMP13,
ICAM1, MMP3, MMP1, and CXCL1 were higher in RA
compared with OA, and ITGA6 was lower expressed in RA
(Figure 6(e)). The differential expression results of the genes
were also validated by Western blot experiments, except
ITGA6 (Figure 6(f)).

4. Discussion

Previous studies have highlighted fibroblasts as potential
therapeutic targets for RA [37]. In the present study, we
sought to identify cell subpopulations of RA patient fibro-
blasts by comparing the results of single-cell sequencing of
synovial tissue fibroblasts from RA and OA patients. And
describe the contribution of different cell subpopulations to

the molecular mechanisms of RA. Transcriptome data were
further combined to screen for potential fibroblast-specific
markers. Importantly, we utilized molecular experiments to
validate key results. These are particularly important, as such
biomarkers may contribute to the early diagnosis and early
treatment of the disease.

Unfortunately, we did not get different annotations
for the different cell subpopulations. Of the four subpop-
ulations identified, cluster 0 may be more representative
for OA, whereas cluster 3 may be representative for RA.
Gene markers for cluster 3 (MMP13, COMP, SLC40A1,
OGN, COL1A1, and TGFBI) play a significant role in
collagen, fibronectin, and laminin interactions that
increase fibroblast migration, invasion, and cell adhesion
[38–40]. In healthy joints, synovial fibroblasts form a
layer in synovial tissue with a thickness of one to two
cells [41]. In synovial tissue of RA patients, synovial
fibroblasts form thicker layers (15-20 cells thick), mainly
due to a higher proliferation rate, and the formation of
antiapoptotic properties [42]. In addition, these gene
markers are also major drivers of the inflammatory
response in RA patients and are identified as potential
markers for RA [5, 43]. The synovium is a major target
of inflammation in RA.

Here, we first recognize that distinct fibroblast subpop-
ulations differ in their molecular functions. Gene markers
for cluster 0 are mainly enriched in neutrophil-mediated
immunity, glycolysis/gluconeogenesis. Aberrant neutrophil
responses contribute to tissue damage and are associated
with arthritic pathological conditions [44, 45]. Aerobic gly-
colysis is manifested by inflammatory signals or rapid cell
division, reflecting systemic inflammation [46]. Marker
genes of cluster 3 were mainly associated with ECM recep-
tor interaction, collagen fibril organization. Activated
synovial fibroblasts produce multiple ECM remodelling
components, such as matrix metalloproteinases, cytokines,
and chemokines, which actively promote cellular resorp-
tion and infiltration of the joint, perpetuating and perpet-
uating joint inflammation [47]. Previous studies have
found that collagen fibril organization is associated with
the pathology of RA [48]. The presence of thinner fibers
and high concentrations of collagen cleavage products
have been associated with RA events [49].

Among the key genes we identified, chemokine ligand
2 (CCL2) and matrix metalloproteinases 13 (MMP13)
were predicted as potential diagnostic markers for RA.
Essential cytokines in the development of RA are IL-6,
and IL-6 activation of endothelial cells increases adhesion
molecule expression and CCL2 production [50]. CCL2
levels are increased in the plasma and synovial fluid of
RA patients, closely correlating with increased joint infil-
tration of immune cells, particularly macrophages [51].
Studies have shown that CCL 2 is an effective therapeutic
target for RA patients [52, 53]. MMP13 expression is
increased in synovial fibroblasts of RA patients [54]. Ele-
vated expression of MMP13 in RA patients may promote
fibroblast migration and invasion [55]. MMP13 is also an
effective therapeutic target for multiple drugs in RA
patients [56]. In contrast to OA patients, we observed

Table 2: Top 20 genes with the largest degree in the PPI network.

Genes Degree

IL6 60

CXCL8 40

CCL2 30

PTGS2 28

ICAM1 28

THBS1 27

CXCL1 25

CD34 25

NCAM1 24

KIT 22

MMP3 21

ITGB3 20

IL15 20

FGF13 20

ITGA6 18

MMP13 17

PGR 17

AR 17

CXCL9 17

MMP1 17

11BioMed Research International



G
SM

13
60

95
6

G
SM

13
60

95
7

G
SM

13
60

95
8

G
SM

13
60

95
9

G
SM

13
60

96
0

G
SM

13
60

96
1

G
SM

13
60

96
2

G
SM

13
60

96
3

G
SM

13
60

96
4

G
SM

13
60

96
5

G
SM

13
60

96
6

G
SM

13
60

96
7

G
SM

13
60

96
8

G
SM

13
60

96
9

G
SM

13
60

97
0

G
SM

13
60

97
1

G
SM

13
60

97
2

G
SM

13
60

97
3

G
SM

13
60

97
4

G
SM

13
60

97
5

G
SM

13
60

97
6

G
SM

13
60

97
7

G
SM

13
60

97
8

G
SM

13
60

97
9

G
SM

13
60

98
0

G
SM

13
60

98
1

G
SM

13
60

98
2

G
SM

13
60

98
3

G
SM

13
60

98
4

G
SM

13
60

98
5

G
SM

13
60

98
6

G
SM

13
60

98
7

Neutrophil

T cell CD4+

Myeloid dendritic cell

B cell

T cell CD8+

Macrophage

Group

Group
OA
RA

−2

−1

0

1

2

(a)

0.0

0.2

0.4

0.6

Im
m

un
e s

co
re

B 
ce

ll

T 
ce

l l
 C

D
4+

T 
ce

l l
 C

D
8+

N
eu

tr
op

hi
l

M
ac

ro
ph

ag
e

M
ye

lo
id

 d
en

dr
iti

c c
el

l

⁎⁎

⁎⁎

⁎

RA
OA

(b)

Figure 6: Continued.

12 BioMed Research International



−0.43−0.23 −0.6 −0.13−0.29−0.41 0.36 0.27 −0.48−0.35−0.24 0.3

0.38 0.44 0.14 0.36 0.62 −0.03 0.19 −0.12 0.55 0.17 −0.32

0.7 0.72 0.37 0.75 −0.44 0 0.12 0.79 −0.32 0.22

0.64 0.57 0.68 −0.45−0.22 0.46 0.64 −0.2 0.17

0.64 0.66 −0.5 −0.09 0.22 0.58 −0.45 0.37

0.64 −0.22−0.23 0.26 0.39 −0.4 0.24

−0.41−0.05 0.18 0.7 −0.23 0.13

−0.01−0.29−0.51 0 −0.13

−0.83−0.03−0.25 0.26

0.1 0.23 −0.17

−0.2 0.02

−0.86

ITGA6

ICAM1

CXCL1

MMP1

MMP3

MMP13

CCL2

B cell

T cell CD4+

T cell CD8+

Neutrophil

Macrophage

CX
CL

1

M
M

P1

M
M

P3

M
M

P1
3

CC
L2

B 
ce

ll

T 
ce

ll 
CD

4+

T 
ce

ll 
CD

8+

N
eu

tr
op

hi
l

M
ac

ro
ph

ag
e

M
ye

lo
id

 d
en

dr
iti

c c
el

l

−1.0

−0.5

0.0

0.5

1.0
Correlation

IC
A

M
1

(c)

101 102 103 104

CD19 FITC-A

RA
[lym] CD19 FITC-A / CD3 PC5.5-A

CD
3 

PC
5.

5-
A

105 106
101

102

103

104

105

106

C–+

C––

C++

B cell : 4.85%

101 102 103 104

CD19 FITC-A

OA
[lym] CD19 FITC-A / CD3 PC5.5-A

CD
3 

PC
5.

5-
A

105 106
101

102

103

104

105

106

C–+

C––

C++

B cell : 7.99%

101 102 103 104

CD8 PE-A

RA
[lym] CD8 PE-A / CD3 PC5.5-A

CD
3 

PC
5.

5-
A

105 106
101

102

103

104

105

106

B–+

B–– B+–

CD8+ : 22.94%

101 102 103 104

CD8 PE-A

OA
[lym] CD8 PE-A / CD3 PC5.5-A

CD
3 

PC
5.

5-
A

105 106
101

102

103

104

105

106

B–+

B–– B+–

CD8+ : 16.87%

101 102 103 104

CD45 PC7-A

RA
[Ungated] CD45 PC7-A / SSC-A

105 106
0

500

1000

1500

SS
C-

A
(1

03 )

2000

2500 Neutrophil : 48.26%

102 103 104

CD45 PC7-A

OA
[Ungated] CD45 PC7-A / SSC-A

105 106
0

500

1000

1500

SS
C-

A
(1

03 )

2000

2500 Neutrophil : 40.95%

(d)

Figure 6: Continued.

13BioMed Research International



upregulation of CCL2, MMP13 in RA patients, suggesting
potential novel targets.

Specifically, in the differential immune cell infiltration
results, we found that the levels of CD8+T cells and neutro-

phils were higher in RA fibroblasts than in OA patients,
whereas the levels of B cells were decreased. CD8+T cells
are activated in RA and produce a large number of chemo-
kines and proinflammatory cytokines [57, 58]. Neutrophil
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Figure 6: Changes of immune cell and key genes in RA patients. (a) Infiltration levels of immune cells in RA and OA. RA: rheumatoid
arthritis; OA: osteoarthritis. Red represents high infiltration and blue represents low infiltration. (b) The difference of infiltration for
immune cells in RA compared to OA. RA: rheumatoid arthritis; OA: osteoarthritis. (c) Correlations between immune cells and key genes
were analyzed through Pearson correlation. Node color from blue to red represents negative to positive correlation. × P > 0:05. (d) The
levels of CD8+T cell, neutrophils, and B cell in blood samples of RA and OA patients were detected by flow cytometry. (e) QRT-PCR was
used to detect the mRNA levels of key genes in synovial tissue of RA and OA patients. ∗∗P < 0:01, ∗∗∗P < 0:001. (f) Western blot was used
to detect the expression of key genes in synovial tissue of RA and OA patients.
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entry into the synovium is an important feature of the RA
inflammatory response, which is again fueled by an intricate
network of cytokines [59]. Neutrophils damage cartilage in
synovial fluid and damage surrounding tissues, leading to a
state of oxidative stress resulting from the release of reactive
oxygen species (ROS) and increasing inflammatory condi-
tions [60]. The number of total B cells in the blood of rheu-
matoid arthritis patients has been shown to be reduced
compared to healthy controls [61]. However, it has also been
shown that B cell depletion in RA patients is a potential ther-
apeutic intervention [62].

Some limitations are included in this study. The low
number of samples we analyzed may have biased the inter-
pretation of the results. Whether the identified potential tar-
gets have clinically significant will requires subsequent in-
depth exploration. Although we validated the differences in
key genes and immune cells between RA and OA, this has
some limitations for interpretation of validation results as
we failed to isolate fibroblast samples for experimentation.

5. Conclusion

Chemokine and matrix metalloproteinases (MMPs) signal-
ing plays an important role in RA pathogenesis, as several
chemokines and their receptors have been implicated in the
inflammatory response and immune infiltration in fibro-
blasts. Therefore, targeting chemokines and MMPs is a suit-
able approach for the diagnosis and treatment of RA,
especially CCL2, and MMP13. The significance of potential
target genes in RA disease is evaluated herein. This informa-
tion provides a solid background for the development of new
drugs or other treatments.
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