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Bias in perceptual decisions can be generally defined as an effect which is controlled

by factors other than the decision-relevant information (e.g., perceptual information in a

perceptual task, when trials are independent). The literature on decision-making suggests

two main hypotheses to account for this kind of bias: internal bias signals are derived

from (a) the residual of motor signals generated to report a decision in the past, and (b)

the residual of sensory information extracted from the stimulus in the past. Beside these

hypotheses, this study suggests that making a decision in the past per se may bias

the next decision. We demonstrate the validity of this assumption, first, by performing

behavioral experiments based on the two-alternative forced-choice (TAFC) discrimination

of motion direction paradigms and, then, we modified the pure drift-diffusion model

(DDM) based on the accumulation-to-bound mechanism to account for the sequential

effect. In both cases, the trace of the previous trial influences the current decision. Results

indicate that the probability of being correct in the current decision increases if it is in

line with the previously made decision even in the presence of feedback. Moreover,

a modified model that keeps the previous decision information in the starting point of

evidence accumulation provides a better fit to the behavioral data. Our findings suggest

that the accumulated evidence in the decision-making process after crossing the bound

in the previous decision can affect the parameters of information accumulation for the

current decision in consecutive trials.

Keywords: perceptual decision, bias, accuracy, drift-diffusion model, sequential effect

INTRODUCTION

Perceptual decisions and their outcomes can be related to each other as a sequence (Hanks et al.,
2011; Akaishi et al., 2014; Purcell and Kiani, 2016; Bornstein et al., 2017; Miller et al., 2017). This
ability to merge the advance knowledge about choice alternatives with current evidence to make
an appropriate decision is a hallmark of higher brain function (Cook and Maunsell, 2002; Roitman
and Shadlen, 2002; Gold and Shadlen, 2007; Ratcliff et al., 2007; Churchland et al., 2008; Kiani
et al., 2008; Heitz and Schall, 2012). Findings suggest that neural activities in brain areas involved in
decision making process contain the history of previous decisions (Boettiger et al., 2007; Serences,
2008; Summerfield and Koechlin, 2008, 2010; Basten et al., 2010; Fleming et al., 2010a,b; Forstmann
et al., 2010; Philiastides et al., 2010; Preuschhof et al., 2010; Scheibe et al., 2010; Mulder et al., 2012)
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(Akaishi et al., 2014) and do not return to the initial value
immediately after the time of decision (Cook andMaunsell, 2002;
Roitman and Shadlen, 2002; Gold and Shadlen, 2007; Ratcliff
et al., 2007; Churchland et al., 2008; Kiani et al., 2008; Heitz
and Schall, 2012). Furthermore, there is a preference in humans
to repeat their decision, especially when it was made about an
ambiguous stimulus (Brehm, 1956; Izuma and Murayama, 2013;
Akaishi et al., 2014), on the subsequent trial in the absence
of response feedback. This interaction between the history of
choices and sensory context, respectively called internal and
external signals, is thought to cause the biased decisions about
the sensory events (Albright, 2012; Awh et al., 2012; Carnevale
et al., 2012; Akaishi et al., 2014).

The mechanism of decision bias as one of the most
pervasive biases across many domains of cognitive science,
however, remains obscure (Glimcher, 2003; Lauwereyns, 2010;
Summerfield and Koechlin, 2010; White and Poldrack, 2014;
Hanks and Summerfield, 2017; Kim et al., 2017). Two main
hypotheses have been proposed to explain the reasons of this
bias, although to date, none of them have been adequately
supported. According to the first view, the residual of the sensory
information of the previous stimulus causes internal bias signals
(Becker, 2008; Pearson and Brascamp, 2008; Sigurdardottir et al.,
2008; Albright, 2012; Carnevale et al., 2012). Therefore, a strong
sensory signal in the previous trial affects the neural responses
(increment in the baseline activity) in the brain sensory areas and
the current decision is expected to be made under a larger bias.
In the alternative view, the residual of motor response-related
signals causes internal bias signals (Gold et al., 2008;Marcos et al.,
2013); however, contrary to the first impression, the strength of
the sensory signal in the previous trial does not seem to affect the
decision-biasing. Akaishi et al. also suggest that, in the absence
of response feedback, this bias is a mechanism to update the
likelihood of a choice to be made (Akaishi et al., 2014).

Given previous work, we propose the following hypothesis:
the residual decision evidence in the previous decision process
affects evidence accumulation in the current decision even
in the presence of feedback. We tested the validity of this
claim using behavioral experiments based on the two-alternative
forced-choice (TAFC) discrimination of motion direction and
computational modeling.We revealed that, firstly, the probability
of being correct in the current decision increases if it is in line
with the previous decision, showing a trace from the previous
trial on the current one. Secondly, this effect is evident in the
presence of the feedback, and is independent of the correctness of
the previous decision. Thirdly, excluding the strong stimuli from
our analysis amplifies the observed effect. This observation could
refer to the repulsive adaptation effect of these strong stimuli
(Kohn, 2007). These last two eliminate the effect of the previous
stimuli and merely include the decision.

Abbreviations: ms, millisecond; sd, standard deviation; BIC, Bayes Information
Criterion; CDF, Cumulative Distribution Function; CRT, Cathode Ray Tube;
DDM, Drift-Diffusion Model; GLM, Generalized Linear Model; PDE, Partial
Differential Equation; R2, R squared; SE, Standard Error; TAFC, Two-Alternative
Forced-Choice.

Finally, in order to shed light on the plausible mechanism
of the observed effect, we used one successful and the elaborate
variant of decision-making models called “drift-diffusion”
(Mazurek et al., 2003; Shadlen et al., 2006; Gold and Shadlen,
2007; Voss and Voss, 2007; Kiani et al., 2008; Voss et al., 2013;
Tohidi-Moghaddam et al., 2016; Lerche and Voss, 2017; Dully
et al., 2018). It has been shown that commitment to a choice is
a consequence of a gradual increase in the activity of neurons
selective for that specific choice. This gradual increment from
a baseline activity is well explained, in this accumulation-to-
bound model, by the accumulation of noisy evidence from a
starting point which varies depending on the different parameters
(Falmagne, 1965, 1968; Remington, 1969; Luce, 1986; Ratcliff
et al., 1999; Bogacz et al., 2006; Forstmann et al., 2010; Rorie
et al., 2010; Balci and Simen, 2014). In addition, improvement
in the activity reaches a stereotyped threshold at decision
end (Ratcliff, 1978, 2002; Bogacz et al., 2006; Ratcliff et al.,
2016) which corresponds to reaching a specified bound in this
model. Our results show that the model that keeps previous
decision information in the starting point of accumulation
provides a better fit to the behavioral data which support
the idea that the activity of decision maker neurons (Gold
and Shadlen, 2007) after crossing the bound, in the previous
decision, may affect the process of information accumulation
of those neurons for the current decision in consecutive
trials.

MATERIALS AND METHODS

Participants
In this experiment, six adult participants, three males
and three females, with normal or corrected-to-normal
vision participated. All the participants, except for
two of the middle authors, were unfamiliar with the
design of the experiment. They signed informed written
consent before attending the study. All experimental
protocols were approved by the Iran University of Medical
Sciences.

Visual Stimuli
Random dot motion stimuli are used in a large number of
perceptual decision-making studies. These stimuli are movies in
which some dots are randomly moving in different direction.
In each frame, white dots (2 × 2 pixel, 0.088◦ per side)
were displayed on a black background with a density of 16.7
dots/degree2/s (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). The stimulus contained three interleaved sets
of dots displayed on consecutive video frames. Each set was
relocated three frames (40ms) later while a fraction of dots
had a coherent continuous motion toward a direction, and the
rest of dots were resettled randomly. The stimulus strength
was specified by the fraction of dots which moved coherently.
Stimulus was presented using a psychophysics toolbox 3.0.12
(Brainard, 1997; Pelli, 1997) for MATLAB R2013a (MATLAB,
2013) on a computer with the operating system of Windows 7
(64-bit), Intel (R), Core (TM) i7, 16 GB internal storage, and
NVIDIA Quadro K2000 GPU card.
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Behavioral Task
All the experiments were carried out in a semi-dark and sound-
proof room. The participants were seated in an adjustable chair
at the distance of 57 cm from a cathode ray tube (CRT) display
monitor (19 inch, with an 800× 600 screen resolution, and 75Hz
refresh rate). An adjustable chin-rest had been appropriated to
support the participant’s chin and forehead. Each trial started
with a red fixation point (FP, 0.3◦ diameter) at the center of
the screen and two red choice targets (0.5◦ diameter) on the
right and left side of the fixation point (10◦ eccentricity). The
participants were asked to fix and maintain their gaze on the
fixation point throughout the trial. After a 200ms delay period,
the random dots stimulus was displayed within a 5◦ circular
aperture at the center of the screen for 120, 400, and 720ms.
The percentage of coherently moving dots was chosen from these
following values: 0, 3.2, 6.4, 12.8, 25.6, and 51.2%. At the end
of the stimulus presentation, a 120ms delay period occurred.
After the delay period, the Go signal cued the participants to
respond by eliminating the fixation point. The participants were
asked to report their decision, about the direction of motion,
within 1 second after the Go signal by pressing a left or right
key. Distinctive auditory feedback (e.g., beep) was delivered
for 100ms for correct responses, error responses, and missed
trials. The type of feedback was chosen randomly for trials
with 0% coherence. Trials have been separated by different gap
durations: 0, 120, or 1,200ms. Different gap durations were used
to demonstrate their different effects on our results, but there
was no significant difference between them, so we have pooled
the data of the three gaps in all analysis. The arrangement of
themotion direction, motion duration, gap duration, andmotion
strength varied randomly from trial to trial (Figure 1).

All possible types of trials were randomly interleaved in blocks
with 150 trials. The participants were instructed to perform the
experiments quickly and accurately to the possible extent. The
overall probability of being correct was shown on the screen at
the end of each block. Each participant performed one or two

sessions (each session had four blocks) per day until 3,600 trials
were collected. The participants completed at least one session
on each day for six consecutive days. The results were consistent
across all participants, but figures have collapsed the data across
participants.

Data Analysis
For the purpose of this study, we focused our analysis on specific
pairs of consecutive trials which will be explained along with their
reasons in the following. First of all, in order to demonstrate the
effect of previous stimulus strengths on the current decision, we
picked out the pair of trials in which the first (previous) trial
contained two groups of low (0 and 3.2%) and high (12.8 and
51.2%) motion strengths. This categorization is based on the
subjects’ performance. The performance in 0 and 51.2% is the
minimum (50%) and the maximum (100%), correspondingly.
The performance in 3.2% (∼65%) and 12.8% (∼85%) is 15%
far from the minimum and the maximum, correspondingly.
The second (current) trial consisted of low, middle and nearly
high motion strength values (3.2, 6.4, and 12.8%) where the
stimulus is not very strong. It also should be noted that in the
preliminary analysis, we observed the same results of previous
trials which had 25.6%, and 51.2% coherence. Furthermore, we
probed previous trials with three different motion durations to
illustrate the effect of previous stimulus durations on the current
trials with constant motion durations (120ms); however, no
significant difference was found. Accordingly, we have pooled the
data of the three motion durations of previous trials in further
analysis.

A variety of logistic regression models were used to
characterize the effect of different parameters on the probability
of correct choice. The following models are fitted by using the
generalized linear model (GLM) with binomial error structure.
We use Logit[P] as a short form of log( P

1−P ), and βi as fitted
coefficients.

FIGURE 1 | Motion discrimination paradigm. A fixation point (FP) and two targets were presented for 200ms. After that, the motion stimulus was shown for 120, 400,

and 720ms. The Go signal followed by a 120ms delay period cued participants to report their decision, within 1 s, by pressing two specific keys. Auditory feedback

was played for 100ms. The following trial began after a gap of 0–1.2 s (see Materials and Methods).
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FIGURE 2 | Psychometric function of all the trials; each data point presents

the performance of pooled data for all the three durations and two directions.

The curve is the fit of a logistic regression to the data (Equation 1). Error bars

indicate SE (Standard Error).

FIGURE 3 | Psychometric function of the current trials. Red and blue data

points depict performance of participants for the different and same decision

conditions, respectively. Black data points are pooled from these two

conditions. Curves are the fit of the logistic regression to the data (Equation 1

for black curve and Equation 2 for red and blue curves). Error bars indicate SE

(Standard Error).

The probability of a correct choice is defined by the following
(to fit the psychometric function in Figure 2 and for the black

curve in Figure 3):

Logit [Pcorrect] = β0 + βcCc (1)

whereCc is motion strength. To evaluate the effect of the previous
decision on the current choice accuracy, we fit the following:
(to fit the psychometric function of same and different decision
conditions in Figure 3):

Logit [PCorrect] = β0 + βsS+ βcCc, S =

{

0 different decision
1 same decision

(2)

where Cc is the motion coherence of the current trials and S
is an indicator variable for two successive decisions. The null
hypothesis is that the current choice accuracy for same and
different decision conditions are equal (H0: βs =0).

A modified version of Equation (2) was used to test whether
the current choice accuracy was influenced by correctness of the
previous trial:

Logit [PCorrect] = β0 + βsS+ βcCc + βeE,

S =

{

0 different decision
1 same decision

E =

{

0 incorrect previous trial
1 correct previous trial

(3)

where Cc is the motion coherence of the current trials. S
and E are the indicator variables for two successive decisions
and correctness of the previous trials, respectively. The null
hypothesis is that the current choice accuracy does not depend
on correctness of the previous trial (H0: βe =0).

To examine if the current choice accuracy was affected by two
groups of low (0% and 3.2%) and high (12.8% and 51.2%) motion
strengths of the previous trial, we altered Equation 2 as follows:

Logit [PCorrect] = β0 + βsS+ βcCc + βmM,

S =

{

0 different decision
1 same decision

,

M =

{

0 high motion strength in previous trial
1 low motion strength in previous trial

(4)

where Cc is the motion coherence of the current trials. S and
M are the indicator variables for two successive decisions and
motion strengths level of the previous trials, respectively. The null
hypothesis is that the current choice accuracy does not depend on
motion strengths level of the previous trial (H0: βm =0).

To assess the impact of the motion strength of the previous
trial on the current choice accuracy we used the following
regression:

Logit [PCorrect] = β0 + βpCp + βcCc (5)

where Cp and Cc are the motion coherence of the previous and
current trials, respectively. The null hypothesis is that previous
stimulus strength has no significant effect on current choice
accuracy (H0: βp =0).

We compared the accuracy in the same decision condition
(the blue curve in Figure 3) to the accuracy in different decision
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condition (the red curve in Figure 3) using logistic regression, as
follows:

Logit [Ps] = β + Logit [Pd] (6)

where Ps and Pd are the probability correct in the same decision
condition and different decision condition, respectively. The null
hypothesis is that the accuracies in both conditions are equal (H0:
β =0).

All statistical analyses were performed in R version 3.3.1 (The
R Foundation for Statistical Computing, www.R-project.org).
The statistical analyses outcomes are presented in the RESULTS
section.

Modeling
In order to investigate the mechanism of the last decision
impact on the current decision, we used the drift-diffusion
model (DDM) (Ratcliff, 1978; Ratcliff and McKoon, 2008) as
implemented by Voss et al. in a computationally efficient,
flexible and user-friendly program called fast-dm (Voss andVoss,
2007). Fast-dm estimated DDM’s parameters using the partial
differential equation (PDE) method through fast computations
to calculate the cumulative distribution function (CDF) and the
Chi-Square statistic (Voss et al., 2013; Lerche and Voss, 2017).

Undoubtedly, the diffusion model is a well-established model
in the perceptual decision literature (Gold and Shadlen, 2007;
Voss et al., 2013). This model consistently explains both neural
and behavioral responses, and its different parameters can explain
the process of commitment to a choice in the brain based on
an accumulation-to-bound mechanism (Mazurek et al., 2003;
Shadlen et al., 2006; Gold and Shadlen, 2007; Voss and Voss,
2007; Kiani et al., 2008). In the pure drift-diffusion model
(DDM), momentary sensory evidence in favor of one of the
choices starts to accumulate from a baseline point (z). Just after
the integrated evidence over time (guided by drift rate v) hits a
criterion level or bound (a), the decision process is terminated
(Ratcliff, 1978; Ratcliff and McKoon, 2008; Ratcliff et al., 2016).
Seven parameters that exist in the full DDM are divided into
three categories: (1) the decision process parameters (decision
bound a, mean baseline point z, and mean drift rate v), (2) the
non-decision process parameter (non-decision time tND ), (3) the
variability across-trial parameters (variability in stimulus quality
η, variability in baseline point sz, and variability in non-decision
time stND) (Ratcliff, 1978; Ratcliff and Tuerlinckx, 2002; Ratcliff
andMcKoon, 2008). According to the proposed hypothesis in the
present research, the previous decision can influence the current
decision process in three possible ways: (a) the previous decision
affects the rate of accumulated evidence (i.e., the drift rate, ν)
(Ashby, 1983; Ratcliff, 1985; Diederich and Busemeyer, 2006;
Bornstein et al., 2017), (b) it changes the mean baseline point of
evidence accumulation (z) (Edwards, 1965; Laming, 1968; Link
and Heath, 1975; Ratcliff, 1985; Voss et al., 2004; Bogacz et al.,
2006; Diederich and Busemeyer, 2006; Wagenmakers et al., 2008;
Bornstein et al., 2017), or (c) it shifts the decision threshold (a)
(Ratcliff and Rouder, 1998; Ratcliff and Smith, 2004; Bogacz et al.,
2006; Simen et al., 2006; Goldfarb et al., 2012). The diffusion
model along with a model comparison method (Smith and

Spiegelhalter, 1980; Kass and Wasserman, 1995; Liddle, 2007)
will be used to disentangle these three scenarios (Falmagne, 1965,
1968; Remington, 1969; Ratcliff, 1985; Luce, 1986; Ratcliff et al.,
1999; Ratcliff and Smith, 2004).

RESULTS

Behavior
Six human participants reported the perceived direction of
motion in trials with 120, 400 and 720ms duration (Figure 1).
The psychometric function for the participants is shown in
Figure 2. The psychometric function of current trials separated in
the three conditions is plotted in Figure 3. The first condition or
the so called same decision condition, blue data points, shows the
performance of current trials in which the participants have taken
a decision similar to the previous trial. In the second condition
or different decision condition, red data points, the participants’
decisions in current trials are different from those in the previous
trials. The third condition, black data points, is the performance
of all current trials, independent of the decision in previous trials.
Considering the black data points as a reference, an upward and
a downward shift is obvious in the psychometric function of the
same and different decision conditions, respectively. Generally,
it can be said that upward and downward shifts which occurred
in Figure 3 are independent of the current stimuli with low and
middle motion strength values (Equation 6, β = 0.27 ± 0.03,
p = 3.2 × 10−16, positive β indicates accuracies in the same
decision condition are higher than the accuracies in the different
decision condition). This shift is not evident in the strong stimuli
of the current trials (25.6 and 51.2%) because, in the salient
stimuli which are not ambiguous, the decision is more dependent
on the sensory information (Akaishi et al., 2014). Thus, detecting
any kinds of bias is much more difficult in such stimuli. As
a result, we focused our analysis on ambiguous stimuli in the
current trials.

This difference between psychometric functions of the same
and different decision conditions implies that not only does the
probability of being correct in a decision depend on the stimulus
strength, but also on the previous decision (Equation 2, βs=

0.25 ± 0.09, p = 5.8 × 10−8). Indeed, the probability of being
correct in the current trial will increase (decrease) if the reported
direction in the current decision and the chosen direction in the
previous trial are alike (different).

One may conclude that this difference in performance is the
effect of stimulus adaptation since the previous decision is itself
correlated to the previous stimulus. Interestingly, the reported
effect of the previous decision seems to be in contrast with
the repulsive effect of adaptation. Taking the repulsive effect
into account, we expect higher sensitivity for the perception of
leftward (rightward) motion when it comes after a rightward
(leftward) motion. As a result, the probability of being correct
should be higher in the different decision condition compared to
the same one. In what follows, we tried to elaborate on these two
probable contradictory effects through further analysis.

It is worth noting that in case there is an adaptation effect
in our paradigm, it should be stronger when the stimulus of the
previous trial has high motion coherence. In order to investigate
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FIGURE 4 | The performance of the current trials which includes motion

strengths of 3.2, 6.4, and 12.8% when their previous trials have high motion

strengths of 12.8, 25.6, and 51.2% in prev-High, and have low motion

strengths of 0 and 3.2% in prev-Low. Error bars indicate SE (Standard Error).

Wilcoxon rank-sum test is used to test the significance of the difference,

***p < 1E−3.

whether there is any adaptation effect in our data, we separated
trials with high and low motion strength in their previous trials
and compared the performance of the current trials in these two
conditions. As shown in Figure 4, the accuracy of trials which
preceded by high coherence stimuli is significantly lower than the
accuracy of those preceded by low coherence stimuli. This result
supports the presence of the adaptation and its strong effect in
trials preceded by high coherence stimuli. Therefore, to untwist
the same/different decisions effect from the sensory adaptation
effect, we separated high and low coherence stimuli from the
preceding analysis, and calculated how the same and different
decision conditions differ in performance.

Figure 5 illustrates the performance in current trials which
includes motion strengths of 3.2, 6.4, and 12.8%, when previous
trials have low motion strengths of 0 and 3.2% (Figure 5A,
Equation 2, βs= 0.65 ± 0.13, p = 4.3 × 10−22) and high
motion strengths of 12.8 and 51.2% (Figure 5B, Equation 2,
βs= −0.14 ± 0.13, p = 0.03). As shown in this figure, the
participants are significantly more likely to choose a correct
decision in the different decision condition when the coherence
of the previous trial is high, which is consistent with the repulsive
adaptation effect. Whereas, the Figure 5A shows that a correct
decision is more probable in the same decision condition when
stimulus coherence in the previous trial is low (Equation 4, βm=

0.28 ± 0.09, p = 1.5 × 10−9). Moreover, this observed effect
is significant even when previous trials have 0% coherence in
which all dots move randomly, and minimizes the adaptation
in any specific direction. However, as illustrated in Figure 6,
the probability of being correct is greater in the same decision

condition than in the different decision condition, even when
there is lack of coherent motion (motion strengths of 0%) in
the previous stimulus (Equation 2, βs= 0.98 ± 0.19, p = 2.2 ×

10−23). Therefore, decreasing the effect of stimulus adaptation
by excluding previous trials with high coherence stimulus seems
to strengthen the effect of the previous decision presented in
Figure 3.

Another salient point that may contribute to the current
decision accuracy difference between the same and different
decision conditions is the previous trial’s feedback. As stated
before, the feedback signal is different in the correct and incorrect
trials, and may result in the observed effect. Here in Figure 7, by
separating correct and incorrect previous trials in both the same
and different decision conditions, we attempted to eliminate
the influence of the feedback. As illustrated in this figure, the
correctness of the previous decision does not remove the effect
explained above (Equation 3, βe=−0.07± 0.1, p= 0.19). In other
words, similar decision trials are significantly more probable to
be correct than different decision trials, regardless of the previous
decision to be correct (Figure 7A, Equation 2, βs= 0.37 ± 0.17,
p= 3.3× 10−5) or incorrect (Figure 7B, Equation 2, βs= 1.06±
0.21, p= 3.6× 10−22).

Model Fits
As indicated previously, to investigate the underlying mechanism
of the previous decision’s effect on the probability of being correct
in the current choice, we used the drift-diffusion model (DDM).
Dependence of the model parameters on the previous decision
gave us the chance to examine the effect of the previous decision
on each parameter. To do so, besides the pure DDM, we ran three
modified versions of it, and fit these four models to the behavioral
data derived from experimental study to provide further intuition
into the nature of the observed effect.

The first model (modelp) is the pure DDM in which the only
dependent variable, drift-rate (v), depends on the current motion
strength. In the second model (modelv), as a modified DDM, v
depends on both current motion strength and previous decision
(same and different decision conditions). The third one (modelz)
is a drift-diffusion model in which the starting point of evidence
accumulation (z) is dependent on the previous decision, and
v depends on the current motion strength. The fourth DDM
(modela) modified by the dependence of the decision bound (a)
on the previous decision, as well as v is dependent on the current
motion strength.

Fitted parameters of each model are listed in Tables 1–4
(mean±SE across participants). For each participant’s details,
see Tables S1–S4. Here, s and d indices respectively stand for
the same and different decision conditions. As Table 2 shows,
based on the dependence of the drift-rate on both current motion
strength and previous decision, there are six different drift-
rates for three current stimulus coherences (3.2%, 6.4%, and
12.8%) and two conditions (same and different). Regarding the
parameters of the third model in Table 3, there are two different
starting points for the same and different decision conditions. As
presented in Table 4, modela has two different decision threshold
related to two different decision conditions.
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FIGURE 5 | The performance of the current trials with motion strengths of 3.2, 6.4, and 12.8%. (A) shows performance in the current trials when previous trials have

low motion strengths of 0 and 3.2%. (B) illustrates performance in the current trials when previous trials have high motion strengths of 12.8 and 51.2%. Error bars

indicate SE (Standard Error). Wilcoxon rank-sum test is used to test the significance of the differences, *p < 0.05, ***p < 1E−3.

FIGURE 6 | The performance of the current trials which includes motion

strengths of 3.2, 6.4, and 12.8% when their previous trials are 0%. Error bars

indicate SE (Standard Error). Wilcoxon rank-sum test is used to test the

significance of the difference, ***p < 1E−3.

As we expected from behavioral results, which indicated
the current decision had higher accuracy when the selected
direction was similar to the reported one in the previous trial
compared to when they were different, the drift-rate and starting
point obtained bigger values in the same decision condition in
comparison to the different decision condition provided that they
are dependent on the previous decision. On the contrary, the
decision threshold in the same decision condition is smaller than
its value in the different decision condition.

Models have been compared using the Bayes Information
Criterion (BIC) (Smith and Spiegelhalter, 1980; Kass and

Wasserman, 1995; Liddle, 2007) for the different model fits which
are exposed inTable 5 (mean± sd across participants). As shown
in this table, the overall quality of the fits was good (R2 > 0.83).
For details of subjective scores, see Tables S5–S9.

Furthermore, BIC values were compared using a Student’s
t-test. Accordingly, the modified DDM with the dependent
starting point, modelz, received the smallest BIC compared to the
modelp (p= 5.6× 10−3) andmodela (p= 3.2× 10−4). Except for
the first participant, all other five participants yielded the lower
BIC for modelz than modelv (see Tables S6, S7). However, the
comparison of overall BIC scores showed marginal significant
lower BIC for modelz compared to modelv (p = 0.051). After
excluding the first participant, the modelz led to a significant
lower BIC value than modelv (p = 0.03). Eventually, we chose
the modelz with the best explanation for how the current choice
accuracy is influenced by previous decision.

In that case, we have provided more insight into the
modelz through simulation. The modelz parameters were applied
to obtain model performance individually for each of the
conditions while the same order of the stimulus in the behavioral
experiment was used as an input to this model. As illustrated
in Figure 8, consistent with the behavioral results, the same
decision condition in the model resulted in the greater accuracy
of current trials compared to the different decision condition
(p= 2× 10−4).

In the latest step, we investigated the difference of the
dependent parameter in different conditions for the winner
model (modelz). As stated before, starting point gained higher
value in the same decision condition (z_s) compared to the
different decision condition (z_d), and it’s consistent across all
participants except participant 3 (for participants’ details, see
Tables S3). Focusing on the data of this participant, it seems
that participant 3 is influenced by the sensory adaptation effect
even in 3.2%. As shown in Figure S1, the accuracy of the current
trials is higher in the same decision condition compared to the
different decision condition only when previous trials have 0%
motion strengths in which all dots had random movements. The
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FIGURE 7 | The performance of the current trials which include motion strengths of 3.2, 6.4, and 12.8%. (A) is the performance of the current trials when their

previous trials are correct with low motion strengths (0 and 3.2%). (B) is the performance of the current trials when their previous trials are incorrect with low motion

strengths (0 and 3.2%). Error bars indicate SE (Standard Error). Wilcoxon rank-sum test is used to test the significance of the differences, ***p < 1E−3.

TABLE 1 | Fitted parameters (mean ± SE) of the pure DDM (modelp).

z 0.555 ± 0.015

a 0.681 ± 0.062

v3.2 0.321 ± 0.081

v6.4 0.780 ± 0.113

v12.8 1.855 ± 0.155

tND 0.178 ± 0.008

stND 0.116 ± 0.012

TABLE 2 | Fitted parameters (mean ± SE) of the second DDM (modelv).

z 0.551 ± 0.013

a 0.690 ± 0.610

v3.2_s 0.488 ± 0.104

v6.4_s 1.023 ± 0.136

v12.8_s 1.907 ± 0.195

v3.2_d 0.201 ± 0.058

v6.4_d 0.525 ± 0.100

v12.8_d 1.748 ± 0.147

tND 0.176 ± 0.008

stND 0.120 ± 0.011

effect of decision bias will be twisted with the effect of the sensory
adaptation through pooling the data of these two panels, and
that is why the starting point in the same decision condition is
not significantly higher than its value in the different decision
condition. The significance of the differences between z_s and z_d
was tested by the nonparametric bootstrap method (Efron and
Tibshirani, 1994; Hinkley, 1998). These differences were quite
significant (p < 1.7× 10−6) for every five participants.

DISCUSSION

Our results showed, in sequential perceptual decisions, the
probability of being correct in the current choice increases if it is
similar to the previous one and conversely decreases when they

TABLE 3 | Fitted parameters (mean ± SE) of the third DDM (modelz).

z_s 0.566 ± 0.014

z_d 0.540 ± 0.013

a 0.688 ± 0.061

v3.2 0.333 ± 0.070

v6.4 0.755 ± 0.105

v12.8 1.804 ± 0.135

tND 0.176 ± 0.008

stND 0.121 ± 0.011

TABLE 4 | Fitted parameters (mean ± SE) of the fourth DDM (modela).

z 0.553 ± 0.013

a_s 0.685 ± 0.064

a_d 0.688 ± 0.059

v3.2 0.324 ± 0.070

v6.4 0.758 ± 0.104

v12.8 1.806 ± 0.131

tND 0.176 ± 0.008

stND 0.120 ± 0.011

TABLE 5 | Model performance comparison via BIC and R2 metrics (mean ± sd

across participants).

Model Total parameters R2 BIC

Modelp 7 0.836 ± 0.111 −26.726 ± 6.113

Modelv 10 0.951 ± 0.026 −29.902 ± 5.570

Modelz 8 0.965 ± 0.016 −34.858 ± 3.267

Modela 8 0.843 ± 0.024 −25.406 ± 1.374

are different. Although many studies suggested that sequential
effects (Falmagne, 1965, 1968; Remington, 1969; Gold et al., 2008;
Goldfarb et al., 2012) on decision processes are due to the motor
response bias or sensory bias (Gold et al., 2008; Pearson and
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FIGURE 8 | Simulation and behavioral data for the previous decision effect on the current one in the same and different decision conditions. Either panel indicates the

performance of the current trials with motion strengths of 3.2, 6.4, and 12.8% when previous trials have low motion strengths of 0 and 3.2%. (A) is the simulation data

by modelz and (B) is the experimental data. Error bars indicate SE (Standard Error). Wilcoxon rank-sum test is used to test the significance of the differences,

*p < 0.05, **p < 1E−2, ***p < 1E−3.

Brascamp, 2008; Albright, 2012; Carnevale et al., 2012; Marcos
et al., 2013), Akaishi et al. showed that this decision history
effect cannot be defined through these biases, as well as it can
be explained by an autonomous learning rule to estimate the
likelihood of a choice to be made (Akaishi et al., 2014). Besides,
considering the fact that the firing rate of decisionmaker neurons
cannot meet their baseline activity immediately after the decision
(Cook andMaunsell, 2002; Roitman and Shadlen, 2002; Gold and
Shadlen, 2007; Ratcliff et al., 2007; Churchland et al., 2008; Kiani
et al., 2008; Heitz and Schall, 2012), we hypothesized that the
bound crossing in the previous decision provides information
which affects the state of decision variable in the subsequent
decision.

To verify this assertion, we presented the results of a
behavioral study of decision-making using 2AFC paradigm
based on randomly moving dots with fixed duration and short
interval time, focusing on sequences of two trials. To study the
potentially plausible mechanisms accounted for the variations in
the probability of correct due to the sequential effect (Falmagne,
1965, 1968; Remington, 1969; Ratcliff, 1985; Luce, 1986; Ratcliff
et al., 1999; Ratcliff and Smith, 2004), we extended the pure
DDM (Ratcliff, 1978, 2002; Ratcliff and Tuerlinckx, 2002; Bogacz
et al., 2006). In the extended versions of DDM, different free
parameters of themodel were depended on the previous decision.
We also indicated the model with dependent baseline has
the best explanation for the observed changes in participants’
performance for the same and different decision conditions.
The results supported our hypothesis that the state of decision
variable at the beginning of the information accumulation is
being affected by the decision in the previous trial.

It should be noted that, to avoid increasing the time between
consecutive decisions, we utilized fixed duration task which had
fixed period for each part of a trial and limited Go signal. Indeed,

we tried to prevent lengthening the time between previous
bound crossing and start of the current decision process for the
sake of preserving the previous decision effect. Nevertheless, we
recorded the response time (time elapsed from Go signal onset to
a hand key-press) besides the choice accuracy in our experiment.
As shown in Figure 9, response times decreased with increasing
strength of motions (Link, 1992; Roitman and Shadlen, 2002;
Ratcliff and Smith, 2004), and were used as the input data of
the models in addition to the current choice accuracy, current
stimulus strength, and previous decision although there was no
significant difference in them in different decision conditions due
to fixed duration task.

With respect to all results elaborated on this study, in a
comparative approach, we investigated the sequential effect on
the probability of being correct in the current decision in contrast
to what Akaishi et al. (2014) indicated the impact of the previous
decision on the choice repetition probability. In addition, they
did not use feedback in their experiments and declared that
the mechanism which is associated with making an incorrect
choice rather than recognition of an error is responsible for the
decision bias (Akaishi et al., 2014), whereas we claimed that
the decision, independent of the correctness and having positive
or negative feedback, affects the probability of being correct
in the next decision (as shown in Figure 7). Consequently, to
support this statement we did another analysis by separating
correct and incorrect previous trials with 0% motion strength in
both the same and different conditions. Actually, we duplicated
Figure 7 only for 0% coherent motion of previous trials (See
the Figure S2). In these trials, all dots had random movements
which prevented the sensory bias in any particular direction and
feedback was given randomly to the participants, independently
of whether they pressed the left or the right key. So, the
participants received positive feedback on 50% of the trials
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FIGURE 9 | Psychometric function of the current trials which includes motion

strengths of 3.2, 6.4, 12.8, 25.6, and 51.2%. Red and blue data points depict

response time of participants for the different and same decision conditions,

respectively. Black data points are pooled from these two conditions. Error

bars indicate SE (Standard Error).

(Figure S2A) and negative feedback on the other 50% of the trials
(Figure S2B). As demonstrated in Figure S2, similar decision
trials are significantly more probable to be correct than different
decision trials regardless of the previously received feedback.

Since there is a clear feedback after each trial one may
conclude that the main finding is due the win-stay lose-switch
strategy where subjects tend to repeat their decision after a
receiving a correct feedback and tend to switch their decision
after receiving a wrong feedback. However, as shown in Figure 7

same decisions have higher performance than different decisions
for both correct and wrong previous trials. Thus, the effect is not
due to the win-stay lose-switch strategy.

Our results can rule out the effect of sensory bias in three ways:
(1)We discussed that there is a sensory bias in our results but that
is in the opposite direction of our main effect.We showed that for
the strong previous stimulus the effect is diminished. Moreover,
the main effect is strongest when the previous stimulus is 0%
which is not expected due to a sensory bias. (2) In the modeling
part, we examined a model with different drift rates as a model
for sensory bias but it cannot better explain the data than the
other model. (3) We stated that the stimulus duration does not
change the main effect which is in contrast to our expectation of
the sensory bias.

Furthermore, we designed a control experiment to dissociate
the effect of the previous decision from the motor response
bias. In this experiment, the relationship between the decision
and motor response is altered pseudorandomly across trials.
Accordingly, one of the participants performed a version of the
main task in which the right and leftward arrows were used
above and below the fixation point as the choice targets (see
the Figure S3). The arrangement of these two arrows changed
pseudorandomly across trials. The participant was asked to
report her decision about the direction of motion by pressing
the upper and lower buttons, which arranged vertically and

correspond to the position of the arrows, with the right middle
and index fingers, respectively. Three thousand and six hundred
trials (in 4 blocks × 6 sessions) were collected. As shown
in Figure S4, the probability of being correct is significantly
larger in the same decision condition compared to the different
decision condition, even when the participant made a different
motor response to report her perceived motion direction. In
consequence, the motor response bias cannot account for the
previous decisions’ effect.

Although Equation 5, as a simple regression, illustrated that
the strength of the stimulus in the previous trial does not affect
the performance of current trial (Equation 5, βp= −0.003 ±

0.002, p = 0.017), separating high and low motion strengths
in previous trials demonstrated that the probability correct of
current trial is influenced by the previous decision. As a result,
it suggests that the sequential effect should be considered in the
perceptual decision-making tasks. For instance, the time between
consecutive trials should be adjusted properly to keep down the
previous decision effect. Two main contributions of the observed
sequential effect are emphasized here. First, it originated from
the previous decision which was made about the weak stimulus.
The analysis of previous trials which consisted of 0% motion
strength (Figure S2) showed that not only this sequential effect
cannot be defined by the sensory bias, but also it stems from
the previous decision which affects the parameters of evidence
accumulation in the current decision. Second, the feedback did
not play a key role in the effect of previous decisions, since the
changes of current decision parameters were independent of the
participants’ awareness of their correct and incorrect previous
decisions.
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