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A B S T R A C T

Purpose: The hippocampus plays a central role in cognitive and affective processes and is commonly implicated
in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM)
using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network de-
generation hypothesis (NDH) (Seeley et al., 2009) by identifying structural and functional covariance in this
hippocampal network.
Methods: To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain
(RtWB) meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and
neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant
gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM) to define edges
of structural covariance between nodes from VBM data as well as functional covariance using the functional task-
activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the
similarities and differences between the structural and functional covariance models.
Key findings: Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in
11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM
nodes with a significant structural-functional covariance correlation of r= .377 (p= .000049).
Significance: This novel method of studying network covariance using VBM and functional meta-analytic tech-
niques allows for the identification of generalizable patterns of functional and structural abnormalities per-
taining to the hippocampus. In accordance with the NDH, this framework could have major implications in
studying and predicting spatial disease patterns using network-based assays.

1. Introduction

The hippocampus is arguably the most well studied sub-cortical
region in both humans and animals due in large part to its functional
role in the cognition of learning and memory. When compromised,
symptoms of hippocampal dysfunction are distinguished by impair-
ments in memory, attention, emotion, spatial navigation, and executive
function. Pathologically, hippocampal disease is characterized by neu-
ronal degeneration progressing to structural atrophy detectable by
magnetic resonance imaging (MRI), as in the cases of Alzheimer's dis-
ease (AD) (Schröder and Pantel, 2016), mild cognitive impairment
(MCI) (Huijbers et al., 2015), mesial temporal lobe epilepsy (MTLE)

(Mumoli et al., 2013), and schizophrenia (Radulescu et al., 2014). In
terms of network topology, the hippocampus has been characterized as
a hub, exhibiting structural covariance with multiple other brain re-
gions, in keeping with its central role in multiple cognitive processes. It
has been suggested that metabolic demands of hubs make such struc-
tures selectively vulnerable to neuropsychiatric diseases (Goodkind
et al., 2015; Crossley et al., 2014), arguing for converging structural
and functional network abnormalities. Advances in resting state func-
tional MRI (fMRI) and sophisticated meta-analytic methodologies have
allowed researchers to exhaustively map and quantify functional cov-
ariance networks (Fox and Raichle, 2007; Smith et al., 2009; Crossley
et al., 2013). Nevertheless, our understanding of the relationships
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between functional and structural networks in the human brain, as can
be studied using MRI, remains in its infancy. In 2009, Seeley et al.,
postulated the “network degeneration hypothesis” (NDH), which pre-
dicts that disease atrophy patterns should recapitulate healthy func-
tional network architecture with recent studies beginning to address
this question in the context of disease-specific network changes (Lefort-
Besnard et al., 2018). Our aim in this study was to test the NDH meta-
analytically and trans-diagnostically using the hippocampus as the
central hub, thereby creating a hippocampal network model (HNM)
that should be applicable in multiple neuropsychiatric and systemic
disorders.

Structural and functional connectivity are two procedurally distinct,
but conceptually linked constructs, both exhibiting network properties.
Functional connectivity networks can be extracted by functional cov-
ariances, either at rest or during task performance, and exhibit inter-
connected sets of brain regions that interact to perform specific per-
ceptual, motor, cognitive, and affective functions (Bressler and Menon,
2010). Structural covariance networks are inferred from inter-regional
morphometric covariances across subjects (e.g. gray matter atrophy,
cortical thinning). The notion that structural covariance is fundamental
to functional network connectivity is based on the expectation that
functional processes can exert trophic influences that, over time,
modify gray matter volume enough to be detected as structural covar-
iance patterns (Seeley et al., 2009; Gong et al., 2012). Multiple com-
peting and converging hypotheses have been put forward to explain
disease-related structural covariance, these include: 1) transneuronal
spread, 2) nodal stress, 3) trophic failure, and 4) shared vulnerability
(Zhou et al., 2012). For this reason, structural covariance has been
extensively studied in the characterization of neurocognitive develop-
ment (Alexander-Bloch et al., 2013; Lerch et al., 2006), aging
(Marstaller et al., 2015; Montembeault et al., 2016), and in neurode-
generative disorders (Seeley et al., 2009; Spreng and Turner, 2013). The
NDH suggests a close relationship between structure and function
whereby abnormalities in structural covariance, functional covariance
and behavior will be mutually predictive in brain disorders.

Meta-analytic computation of functional covariance is well-estab-
lished (Smith et al., 2013; Crossley et al., 2013). In assessing functional
connectivity networks, activation likelihood estimation (ALE) is an
extensively validated technique used in meta-analyses that pools 3D
coordinates in stereotactic space from a number of like studies applied
to functional task-activation studies (Laird et al., 2005; Turkeltaub
et al., 2011). It achieves this by analyzing voxel-wise, univariate effects
across experiments and generates a probability distribution centered at
the respective coordinates. A natural extension of ALE, meta-analytic
connectivity modeling (MACM) is a study-wise multivariate approach
used to generate functional covariance networks from activation pat-
terns reported across a range of experimental neuroimaging tasks and
paradigms (Laird et al., 2009a; Robinson et al., 2010; Eickhoff et al.,
2010a). In MACM, an ALE score is generated for every voxel, which are
then converted into p values to identify areas of significance with scores
higher than empirically-derived null distributions (Turkeltaub et al.,
2011; Laird et al., 2005; Eickhoff et al., 2012). This technique has been
found to correspond well with numerous mathematical computational
formalisms including seed-based resting state (Jiang et al., 2015), in-
dependent components analyses (Smith et al., 2009), and graph theory
(Crossley et al., 2013). Although MACM and ALE have been validated
and replicated considerably in functional studies and, recently, using
structural data (Langner et al., 2014; Reid et al., 2016), the present
study aims to adopt these methods for investigating structural covar-
iance using a meta-analytical and trans-diagnostic approach with VBM.

Voxel-based morphometry (VBM) is a widely-used technique to
identify subtle, disease-related structural changes that cannot be easily
observed on visual analysis. VBM achieves this by standard space brain
registration and group-averaging, comparing gray matter densities be-
tween patients and controls, producing disease-specific atrophy pat-
terns computed in a univariate, voxel-wise manner. VBM studies have

reported regional gray matter atrophy and hypertrophy patterns in
thousands of peer-reviewed publications spanning over one hundred
diseases. Indeed, VBM studies constitute a large body of quantitative
literature reporting a vast number of areas of focal structural change in
the brain (Ashburner and Friston, 2000). Coordinate-based reporting
and whole-brain coverage are sine qua non for meta-analysis; VBM
meets both criteria. Using VBM, then, meta-analytic methods 1) can
compute convergent patterns of atrophy and hypertrophy in a cross-
study manner; 2) can compute structural covariance network, using
between-study, co-atrophy patterns. The multiple reports of VBM stu-
dies conducted within diseases and across diseases using a standardized
coordinate space makes it well suited for coordinate-based meta-ana-
lytic structural covariance analyses studies (Glahn et al., 2008; Fox
et al., 2014; Crossley et al., 2015).

A transdiagnostic approach, as opposed to disease-specific, for
studying structural covariance networks can most readily be achieved
through meta-analysis. In recent years, a growing literature of trans-
diagnostic neuroimaging has been used in the meta-analytic in-
vestigation of neuropsychiatric pathology. Numerous reports indicate
that diseases of the brain tend to exhibit patterns of convergence, both
structurally and functionally (Seeley et al., 2009; Crossley et al., 2013;
Goodkind et al., 2015; McTeague et al., 2016). This new approach –
grouping studies by neurobiological effects rather than by diagnostic
category – corresponds closely to the Research Domain Criteria (RDoC)
initiative set forth in 2010 to “create a new kind of taxonomy for mental
disorders by bringing the power of modern research and approaches in
genetics, neuroscience, and behavioral science to the problems of
mental illness.” (Insel et al., 2010). Clinical and neurobiological data
has also suggested that psychiatric disorders are more comorbid than
previously thought. They share common imaging and genetic markers,
and demonstrate alterations across neural networks that mediate cog-
nition and other mental processes (Etkin and Cuthbert, 2014). More-
over, there is much interest and support within the neuroscience
community in leveraging large brain imaging databases for the purpose
gaining deeper insight into neuroscientific phenomena (Crossley et al.,
2016; Bzdok and Yeo, 2017).

BrainMap (Fox et al., 1994; Fox and Lancaster, 2002) is a neuroi-
maging database of published neuroimaging experiments with co-
ordinate-based results in standard space. Its collection of functional
task-based activation and structural gray matter atrophy enables in-
vestigators to study human brain function and structure in healthy and
disease subjects meta-analytically. Its functional database currently
contains 3197 functional publications spanning over one hundred
paradigms with 15,834 experiments and 69,727 subjects. Additionally,
the VBM database contains 993 publications spanning over one hun-
dred diseases with 3150 experiments and 75,709 subjects (Laird et al.,
2012; Laird et al., 2009b). In our study, we utilized MACM, a study-
wise multivariate method to assess covariance across structural net-
works using BrianMap's VBM transdiagnostic literature (Eickhoff et al.,
2010b). Previously, MACM has been used to investigate functional
covariance between brain regions that are functionally connected
across task-activation experiments (Fox et al., 2005a; Robinson et al.,
2010; Laird et al., 2013). To our knowledge this paper is the first to
employ MACM to generate a structural covariance model using Brain-
Map's transdiagnostic VBM database. In our endeavor to test the NDH,
we believe that using the MACM method is well suited to investigate
anatomic/activation likelihood estimate correlations found between
structural and functional covariance models.

In this study, we computed a structural covariance model of the
hippocampus – the HNM – beginning with a region-to-whole brain
trans-diagnostic VBM meta-analysis (also known as a single-seed
MACM analysis). We identified 11 significant nodes using a rigorous
voxel-level family-wise error (FWE) of 0.01. These 11 nodes of interest
were then re-seeded into the BrainMap database as standardized
spherical ROIs to generate two MACM models: 1) structural covariance
(significant regions of gray matter density changes), from the VBM
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database, and 2) coactivation (significant blood-oxygen level de-
pendency signal changes in task studies), from the functional database
in the form of ALE values and p statistics. We hypothesized that using
MACM, nodes derived from our RtWB meta-analysis will reveal cov-
ariance patterns in the form of edges for both structural and functional
covariance analyses. Finally, in accordance with the NDH, we postu-
lated that our data-driven meta-analytic structural and functional
covariance models generated from the HNM will show a significant
degree of concordance.

2. Materials & methods

2.1. Region-to-whole brain (RtWB) meta-analysis

The BrainMap VBM database included, at the time the experiment
was conducted, a total of 980 VBM studies comprising 3091 experi-
ments and 74,013 subjects and spanning a total of 143 different ICD-10
codable neurological and psychiatric diseases (Supplementary Table 1)
as well as 23 non-ICD-10 classifications. We searched this database for
papers reporting hippocampal gray matter alterations using a region-
based approach, with the hippocampus as the region of interest.
Hippocampal volumetric masks, including both anterior and posterior
sections of the hippocampus, were derived from the Harvard-Oxford
Structural Probability Atlas (Jenkinson et al., 2012) and subsequently
binarized and transformed into Talairach space for further analysis. The
VBM database was searched using BrainMap's Sleuth 2.4 software (Fox
et al., 2005b) to identify voxel-wise associated clusters with the hip-
pocampal volumetric seed across all VBM studies (search performed on
15 April 2017). Sleuth search: Locations→ Talairach Image is Binarized
Hippocampus Volume Mask; Experiments→ Contrast is Gray Matter
(Fig. 1). The search criteria included experiments with gray matter
contrast and locations found to co-occur with the binarized hippo-
campal volumes. Although the vast majority of VBM studies address
changes in the form of gray matter atrophy (Controls > Patients), we
chose to include in our analysis all studies involved hippocampal
structural change, these include studies demonstrating both atrophy
and hypertrophy. Using a broad filter encompassing all structural
covariance studies present in the database serves to provide a more
robust and statistically powerful sampling of studies addressing hip-
pocampal structural covariance. The initial search yielded a total of 166
papers comprising 274 experiments, 10,695 subjects, and 3156 loca-
tions. We used additional manual filtering for data non-redundancy to
avoid within-lab and sample-specific bias, this brought down our
samples to 165 papers, 269 experiments, 10,653 subjects, and 3123
locations. According to Eickhoff et al. (2016), a cluster- or voxel-level
FWE correction presents the most appropriate method of statistical
inference. In addition, Eickhoff recommends at least 20 experiments be
included in an ALE meta-analysis to achieve sufficient statistical power
for reporting moderate effects. Our experiment exemplifies some of the
most conservative (voxel-level FWE) and robust (269 experiments)
parameters set forth by Eickhoff's recommendations.

An ALE map of the filtered workspace containing 269 experiments,
10,653 subjects, and 38 diseases was performed using GingerALE 2.3.6
(brainmap.org/ale/index.html) (Eickhoff et al., 2009) with the fol-
lowing parameters: voxel-level family-wise error (FWE) of 0.01,
threshold of 1000 permutations, and minimum cluster volume of
50mm3 (Table 1). Spatial concordance among the reported VBM foci
was computed with the modified anatomic likelihood estimation (ALE)
algorithm (Eickhoff et al., 2012). Previous methods papers (Eickhoff
et al., 2009; Turkeltaub et al., 2011) have described how to report
spatial uncertainty in VBM foci where ALE describes each VBM focus as
a Gaussian probability distribution. Three-dimensional Gaussian dis-
tributions were pooled in a voxel-wise manner first within experimental
contrasts and then across contrasts within a group to create a whole-
brain ALE probability cluster map. Each voxel was essentially assigned
a unique ALE value that represents the likelihood of experimental

effects, such as gray matter structural change in the case of VBM, pre-
sent within that voxel. ALE maps were also tested against a null dis-
tribution to reflect random spatial associations between different ex-
periments at a set threshold of permutations. Voxels that survived this
statistical threshold were then reported as ALE clusters reflecting sig-
nificance in meta-analytic convergence of peak voxels. These voxels
reflect significant changes in gray matter within and across experi-
ments. ALE also represents an analytic, data-driven technique in
creating the null-distribution used in statistical inference, and uses a
Monte-Carlo based approach to permit more accurate cluster-level in-
ference (Eickhoff et al., 2012).

2.2. Meta-analytic connectivity modeling

MACM investigates whole-brain connectivity patterns by assessing
the covariance between two or more nodes quantitatively using ALE,
with ALE values being defined as the probability estimate that an ac-
tivation (or “atrophy”) exists within a particular coordinate across ex-
periments (Robinson et al., 2010; Robinson et al., 2012). MACM ana-
lyses resulting in ALE maps have been validated with diffusion tensor
imaging (DTI) and connectivity atlases (CocoMac) (Robinson et al.,
2010) and have been demonstrated to be the meta-analytic equivalent
of resting-state functional connectivity maps (Laird et al., 2009b; Smith
et al., 2009). Further, MACM has also been validated as a method for
functional connectivity by recovering known, microscopically distin-
guishable compartments within a same brain region in a process known
as connectivity-based parcellation (Bzdok et al., 2013; Barron et al.,
2015). A step-by-step visualization of the MACM method is provided in

Fig. 1. Prisma table: Pipeline demonstrating inclusion criteria for VBM studies in-
corporating hippocampal gray matter density changes across BrainMap's VBM database.
* Binarized hippocampal 3D mask in Talairach space was derived from the Harvard-
Oxford Structural Probability Atlas (Jenkinson et al., 2012).
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Fig. 2.
Covariance between nodes can be measured as structural covar-

iance, using gray matter VBM contrasts, or as functional covariance,
using hemodynamic response contrasts from task-activation paradigms

in normal subjects. From our RtWB meta-analysis of the hippocampus,
which yielded an ALE map of 11 significant foci, or nodes, located
within 7 clusters reporting structural covariance transdiagnostically
(Table 1, Fig. 3), we proceeded to conduct a structural and a functional

Table 1
RtWB meta-analysis of BrainMap VBM database peak foci: voxel-level FWE 0.01, 1000 permutations, 50mm3 minimum cluster volume.

Description Size mm3 Weighted center (x, y, z) Hemisphere Lobe Region Sub-region

Node 1 - left anterior hippocampus (LAH) 13065a −26 −14 −14 Left cerebrum Limbic lobe Parahippocampus Hippocampus
Node 2 - left posterior hippocampus (LPH) 13065a −26 −34 −4 Left cerebrum Limbic lobe Parahippocampus Hippocampus
Node 3 - right anterior hippocampus (RAH) 10672a 24 −12 −14 Right cerebrum Limbic lobe Parahippocampus Hippocampus
Node 4 - right posterior hippocampus (RPH) 10672a 28 −32 −4 Right cerebrum Limbic lobe Parahippocampus Hippocampus
Node 5 - right MDN of thalamus (RMDN) 2659a 4 −18 12 Right cerebrum Sub-lobar Thalamus Med dorsal nucleus
Node 6 - left midline nucleus of thalamus (LMN) 2659a −6 −16 14 Left cerebrum Sub-lobar Thalamus Midline nucleus
Node 7 - right claustrum (RClaus) 464 36 6 4 Right cerebrum Sub-lobar Claustrum
Node 8 - left claustrum (LClaus) 292 −34 −8 0 Left cerebrum Sub-lobar Claustrum
Node 9 - left insula (LIns) 280 −34 16 2 Left cerebrum Sub-lobar Insula BA13
Node 10 - right caudate body (RCB) 173 10 12 8 Right cerebrum Sub-lobar Caudate Caudate body
Node 11 - left caudate head (LCH) 64 −6 6 −2 Left cerebrum Sub-lobar Caudate Caudate head

a Cluster containing two peak ALE foci: left anterior hippocampus and left posterior hippocampus, right anterior hippocampus and right posterior hippocampus, left MDN of the
thalamus and right midline nucleus of the thalamus. All (x, y, z) foci are reported in Talairach space. All tissue labels are derived from the Talairach Daemon.

Fig. 2. MACM pipeline: Pipeline showing a step-by-step process of using BrainMap and its corresponding software, Sleuth and GingerALE, to conduct a MACM analysis leading to the
development of a node-and-edge model. A) Derive nodes from peak foci using region-to-whole brain meta-analysis. (Other methods for identifying nodes are also eligible for MACM
analysis). B) Create spherical ROIs of nodes using peak foci coordinates. 8 mm diameter for VBM studies, 12mm diameter for functional studies and save as ROIs. C) Seed individual ROIs
in BrainMap's Sleuth 2.4 to search database and develop a workspace. Filter appropriately for VBM or functional database searches. Use consistent brain space (i.e. Talairach, MNI). D)
Perform ALE using GingerALE 2.3.6 using appropriate and consistent thresholds. E) Create workspace using Mango of spherical ROIs. Overlay raw ALE images derived from GingerALE
unto workspace and record ALE values from the centroid of each node to create a table. F) Repeat process using Uncorrected P output file from GingerALE and record P values from the
centroid of each node to create a table. G) Define appropriate statistical thresholds to correct the raw Uncorrected P value table. Presently, we used Bonferroni correction for multiple
comparisons threshold and to define the most robust paths. H) Create a node-and-edge model where nodes are spherical representations of peak structural variance or activation foci
(VBM or functional respectively). Dark edges represent bidirectional covariance, arrows represent unidirectional covariance.
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MACM experiment. We first performed a structural MACM (sMACM)
for each of the 11 reported nodes identified as the peak foci from the
RtWB meta-analysis (Table 1). Spherical 8 mm diameter ROIs were
created and centered on the coordinates of the peak ALE voxel at each
cluster. Each of the 11 ROIs was then seeded into the VBM database (a
separate analysis for each ROI) in a seed-to-whole brain (StWB) meta-
analysis (also known as a network MACM analysis), similar to how we
derived our nodes using a RtWB meta-analysis of the hippocampus. We
used the same criteria as the RtWB analysis for our seeds in Sleuth 2.4
whereby only gray matter contrasts and defined regions (spherical
ROIs) were used in the search. Manual filtering for data non-re-
dundancy was also performed for each ROI to avoid within-lab and
sample-specific bias for each search. The newly filtered workspace
containing the experiments and coordinates of studies reporting StWB
structural covariance (Table 2) were processed using GingerALE 2.3.6
(voxel-level FWE of 0.01, thresholded to 1000 permutations, and
minimum cluster volume of 50mm3). ALE values were derived for each
node in the HNM from each ROI's StWB meta-analysis and reported in a
seed-to-projection table of ALE values (Table 3). A seed-to-projection
coefficient (i.e. edge) is the ALE value obtained from the center voxel,
or center coordinate, of each HNM node from a seed node's ALE analysis
(e.g. If node 1 is the seed for an ALE analysis, a seed-to-projection

coefficient is obtained from the ALE value representing the center voxel
of nodes 2 through 11). Fig. 4 shows Bonferroni-corrected (.01) statis-
tical p values reported from the seed-to-projection Uncorrected P
output file from GingerALE. If reciprocal significance was present (i.e.
N1→N2 and N2→N1) then co-directionality of edges was determined
(Fig. 5).

This MACM strategy was replicated in the functional database to
produce a functional MACM of the 11 nodes derived from the VBM
hippocampal RtWB meta-analysis. One noteworthy difference between
the two MACMs is the sizes of the seeds used in the analysis. For the
functional MACM, 12mm diameter ROIs were used. The reason for this
is because a larger ROI is required to obtain comparable numbers of
coactivation clusters from the functional database in BrainMap. The
selection of 8mm diameter ROIs for sMACM and 12mm diameter ROIs
for fMACM were chosen to account for differences in cluster number
and size between the structural and functional database, allowing for
the balancing of ALE clusters between datasets using spatial filtering.
ROI diameters were thus obtained iteratively within lab through eval-
uating the number and location of the pertinent voxels against the VBM
and functional databases. As in the structural MACM, a non-redundancy
filtered table of StWB studies from BrainMap's functional dataset was
generated (Table 4), with its corresponding seed-to-projection ALE

Fig. 3. Hippocampi region to whole brain meta-analysis: Regions with specified peak foci showing significant structural covariance among trans-diagnostic VBM gray matter contrast
studies (voxel-level FEW 0.01, thresholded at 1000 permutations and minimum reported cluster volume of 50mm3). LAH= left anterior hippocampus, LPH= left posterior hippo-
campus, RAH= right anterior hippocampus, RPH= right posterior hippocampus, RMDN= right medial dorsal nucleus of the thalamus, LMN= left midline nucleus of the thalamus, R
Claus= right claustrum, L Claus= left claustrum, L Ins= left insula, RCB= right caudate body, LCH= left caudate head.

Table 2
Structural MACM workspace for 8 mm nodes.

Description Papers Subjects Experiments Locations

Node 1 - left anterior hippocampus (LAH) 21 1311 24 307
Node 2 - left posterior hippocampus (LPH) 13 1123 18 314
Node 3 - right anterior hippocampus (RAH) 20 1453 24 259
Node 4 - right posterior hippocampus (RPH) 13 935 14 141
Node 5 - right MDN of thalamus (RDMN) 9 835 12 177
Node 6 - left midline nucleus of thalamus (LMN) 13 800 15 181
Node 7 - right claustrum (RClaus) 12 943 13 153
Node 8 - left claustrum (LClaus) 9 836 13 301
Node 9 - left insula (LIns) 17 1594 20 278
Node 10 - right caudate body (RCB) 12 1140 12 137
Node 11 - left caudate head (LCH) 11 1168 14 382
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value table (Table 5). Our ability to perform both structural and func-
tional MACMs allows us to integrate whole-brain structural covariance
and whole-brain functional coactivation patterns from BrainMap in a
common numerical form of anatomic likelihood estimates. This allows
us to run statistics on the ALE matrices (Tables 3 & 5) comparing
structure and function.

2.3. Statistical analysis of functional and structural HNMs

A Pearson's correlation was used to evaluate the ALE seed-to-pro-
jection coefficients derived from the fMACM and sMACM of the 11
individual nodes from the hippocampal RtWB brain VBM meta-analysis.
We use a node-and-edge model as a framework to illustrate the degree
of covariance between the HNM nodes as determined by structural and
functional MACM analyses. A Pearson's r and r2 was calculated for each
seed-to-projection ALE values comparing functional and structural va-
lues (e.g. ALE coefficients from the node 1 seed to nodes 2–11 projec-
tions in sMACM analysis were correlated to ALE coefficients from the
node 1 seed to nodes 2–11 projections in fMACM analysis). In addition,
a Pearson's correlation was generated for the entire ALE coefficient
matrix comparing all projections from all nodes in the sMACM analysis
to all projections from all nodes in the fMACM analysis. 110 candidate
paths, or edges, were identified with p values from the original ALE

FWE-corrected analysis. Only paths meeting the significance threshold,
a Bonferroni-adjusted p of .01 were deemed significant. Paths that met
the Bonferroni correction threshold are thus represented as edges in the
node-and-edge models in Fig. 5.

2.4. Disease, behavior, and paradigm analysis

Disease, behavior, and paradigm class were analyzed using the 11
nodes from the hippocampal analysis (Fig. 6). We used Lancaster et al.'s
(2012) paradigm class analysis, which utilizes the BrainMap database
to isolate activation foci for each behavioral sub-domain. This tech-
nique compares activations from the functional database, or atrophies
from the VBM database, from within the ROI to the fraction expected
without regional behavior, as if activations were uniformly distributed
throughout the brain. Z-scores are generated for observed-minus-ex-
pected values for each behavior sub-domain, or disease sub-domain in
the case of VBM, with the operational threshold z-score of 3.0 as
comparable to a group p-value of .05. This analysis has been previously
validated in both the behavior domain and paradigm class analyses
(Lancaster et al., 2012). This study represents the first application of a
disease paradigm analysis using VBM to identify diseases that are likely
to be expressed in the specified regions of interest (Fig. 6).

Table 3
Structural MACM seed-to-whole brain (FWE p01) peak centroid ALE values – 8mm ROIs.

Projec�on ALE values

Seeds N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

N1 (LAH) .01403 .05461 .00723 .0128 .0054 .00675 .00035 .01187 .0043 .00094

N2 (LPH) .02246 .02029 .03482 .00754 .00842 .00232 .00244 .00512 .00988 .01018

N3

(RAH)

.04143 .01117 .01149 .00154 .00517 .00415 .0026 .00276 .00832 .00595

N4 

(RPH)

.00968 .02082 .00724 .00558 .01549 .00198 .0009 .00387 0 0

N5 

(RMDN)

.01371 .01086 .00945 .00591 .02623 .00688 .00005 .00055 .00522 .01722

N6 

(LMN)

.00454 .00448 .00093 .01939 .03209 .00041 .0073 .00061 .00187 .00561

N7 

(RClaus)

.01985 .00365 .01211 .00137 .00257 .00139 .00079 .01025 .01159 .01187

N8 

(LClaus)

.0176 .00503 .00895 .00395 .01211 .00879 .01093 .0017 .00374 .00294

N9 (LIns) .01058 .00439 .00523 .00412 .0048 .01493 .01988 .00026 .00432 .00093

N10 

(RCB)

.00413 .00084 .00386 0 .00667 .00262 .00167 .00049 .00113 .00707

N11 

(LCB)

.00851 .00619 .00906 .00095 .01468 .02224 .01174 .00244 .02453 .01704
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Fig. 4. Heat map of Bonferroni-corrected P values in sMACM and fMACM of sHNM: Histogram color values are reported in −log10 (p). Values greater than or equal to 2.04 are darkest
and represent regions of covariance with a Bonferroni-Corrected P≤ .01 (≤.00091) for 11 nodes. Values less than or equal to 1.30 are lightest and represent regions of least covariance
(p > .05).

Fig. 5. Node-and-Edge Diagrams of MACMs: Each diagram delineates paths from the Bonferroni-Corrected P values used in assessing inter-nodal covariance. Bolded lines represent bi-
directionality, indicating that variance in two nodes are predictive of variance in each other. Arrows represent uni-directionality, indicating that variance in one node is predictive of
variance in another, but not vice versa.

Table 4
Functional MACM workspace for 12mm nodes.

Description Papers Subjects Experiments Conditions Locations

Node 1 - left anterior hippocampus (LAH) 67 1071 76 207 1049
Node 2 - left posterior hippocampus (LPH) 35 486 38 105 517
Node 3 - right anterior hippocampus (RAH) 65 1133 80 164 1144
Node 4 - right posterior hippocampus (RPH) 36 607 41 91 685
Node 5 - right MDN of thalamus (RMDN) 120 2102 148 328 2635
Node 6 - left midline nucleus of thalamus (LMN) 94 1358 103 254 2012
Node 7 - right claustrum (RClaus) 75 1068 85 192 1444
Node 8 - left claustrum (LCLaus) 48 699 55 122 819
Node 9 - left insula (LIns) 214 3331 267 633 4235
Node 10 - right caudate body (RCB) 73 1092 80 186 1256
Node 11 - left caudate head (LCH) 66 1203 79 182 1045
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3. Results

3.1. Hippocampus region-to-whole brain meta-analysis

The ALE results from the hippocampus RtWB meta-analysis
(Table 1) shows 11 significant foci located within clusters representing
extra-hippocampal gray matter density alterations across diagnoses as
well as two distinct foci within each hippocampus (Fig. 3). For each
focus, we reported location of maximum ALE values as (x, y, z) co-
ordinates in Talairach space. The list of all 165 papers included in this
meta-analysis is presented in a Supplementary table.

3.2. Meta-analytic connectivity modeling

We obtained significant results using structural (Table 2) and
functional (Table 4) MACM of the resulting 11 ROIs from the HNM,
reported as regions from the Talairach-Daemon (Lancaster et al., 2000).
Two separate tables are reported for each MACM: ALE values from
BrainMap's structural VBM database (Table 2) and task-activation
functional database (Table 4) and Bonferroni corrected P .01 (Fig. 4).
These corrected p-values, which represent covariance statistics between
nodes and projections in Fig. 4, were used to generate the edges in our

node-and-edge model. Edges were deemed significant with a Bonferroni
correction threshold, if only one edge between two nodes was sig-
nificant, the connection was assigned as unidirectional (i.e. N1→N2
but not N2→N1); if both edges between two nodes were significant,
then the connection was deemed bidirectional (i.e. N1→N2 and N2→
N1) (Fig. 5). Fig. 5 illustrates the presence of a number of significant
nodes bearing structural bidirectional covariance properties. Among
these are between the left anterior hippocampus (LAH, N1) and left
posterior hippocampus (LPH, N2), LAH (N1) and right anterior hippo-
campus (RAH, N3), LPH (N2) and right posterior hippocampus (RPH,
N4), left midline nucleus of the thalamus (LMN, N6) and RPH (N4), and
left caudate head (LCH, N11) and right medial dorsal nucleus of the
thalamus (RMDN, N5). Similarly, significant nodes bearing functional
covariance bi-directional coactivation properties can be found between
the LAH (N1) and RAH (N3), LPH (N2) and RPH (N4), left claustrum
(LClaus, N8) and right claustrum (RClaus, N7), left insula (LIns, N9) and
RClaus, LIns and right caudate body (RCB, N10), LIns (N9) and RMDN
(N5), LIns (N9) and LMN (N6), LCH (N11) and RCB (N10), LCH (N11)
and LMN (N6), LMN (N6) and RCB (N10), LMN (N6) and RClaus (N7),
LMN (N6) and RMDN (N5), and RMDN (N5) and RClaus (N7). Sig-
nificant unidirectional paths are also reported in both structural and
functional MACM figures (Figs. 4 & 5).

Table 5
Functional MACM seed-to-whole brain (FWE p01) peak centroid ALE values – 12mm ROIs.

Projec�on ALE values

Seeds N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

N1 (LAH) .00976 .06361 .00716 .01459 .01571 .00628 .00672 .02593 .00552 .01125

N2 (LPH) .00975 .01893 .01809 .0084 .00947 .00338 .00082 .00567 .00236 .00717

N3 

(RAH)

.0699 .01512 .00896 .00459 .01134 .01111 .01543 .00911 .00662 .02106

N4 

(RPH)

.00681 .01748 .00754 .01054 .00701 .00567 .00394 .015 .00999 .01115

N5 

(RMDN)

.01561 .01534 .01576 .00489 .13813 .0562 .01643 .09809 .05815 .02364

N6 

(LMN)

.0221 .00731 .00631 .01082 .13615 .02388 .00581 .07941 .02271 .02435

N7 

(RClaus)

.0093 .00288 .0089 .00485 .03983 .01945 .01891 .05811 .01442 .00377

N8 

(LClaus)

.00282 .00076 .01379 .00056 .0068 .00631 .02641 .0123 .00719 .00446

N9 (LIns) .02258 .00317 .00559 .0088 .09499 .07074 .07888 .00656 .04675 .02149

N10 

(RCB)

.00548 .00115 .00404 .00813 .05963 .02721 .01343 .00595 .04699 .04322

N11 .01253 .00765 .01574 .0098 .0208 .01726 .00599 .00732 .02634 .03647

(LCB)
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3.3. Structural and functional correlation of HNM

The matrix correlation between sMACM and fMACM found a
moderate but significant correlation of r= .377 (p= .00005) as de-
fined by Cohen (1988) using Pearson Correlation. A similar finding was
generated using the Mantel (1967) Test for matrix correlations whereby
a moderate and significant correlation of r= .397 (p= .0013) was
identified. We also reported r2 to describe the variance explained
(14.2%) by the association of structure and function between the nodes
of the sHNM. The nodes, whose seed-to-projection ALE values demon-
strate the greatest and most significant correlations between structural
and functional covariance include: nodes 1 (left anterior hippocampus,
r= .942 and p=4.83× 10−5), 2 (left posterior hippocampus, r= .830
and p=4.83× 10−5), and 3 (right anterior hippocampus, r= .935
and p=7.34×10−5) (Table 6).

3.4. Disease, behavior, and paradigm analysis

The 4 most significant diseases identified in the nodes from the
RtWB meta-analysis include Alzheimer's Disease (AD), Mesial Temporal
Lobe Epilepsy (MTLE), Mild Cognitive Impairment (MCI), and
Schizophrenia. Likewise, an evaluation of these same 11 nodes using
the behavioral domain paradigm from BrainMap's functional cohort of
healthy subjects identified the emotional subdomains of fear and other
emotion, the cognition subdomains of attention, explicit memory, se-
mantic language, and other cognition, and the perception subdomain of
pain somesthesis (Fig. 6).

4. Discussion

The purpose of our study was to identify and define consistent gray

Fig. 6. Specific behavioral, paradigm class, and disease weightings on the structural hippocampal network model.
A. Structural characterization of sHNM based on Disease Classification meta-data of the BrainMap VBM structural database representing peak structural MACM disease classes.
B. Functional characterization of sHNM based on the Behavioral Domain and Paradigm Class meta-data of the BrainMap functional database representing peak functional MACM behavior
domains and task paradigms.
Only paradigms fulfilling the minimal threshold of z≥ 3.0 are reported.
*The designation “other” indicates an emotion experimental contrast that does not meet the eligibility criteria for pre-selected emotions in the BrainMap database: anger, anxiety, disgust,
fear, happiness, humor, sadness.
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matter structural abnormalities that co-exist with hippocampal atrophy,
and address the network degeneration hypothesis (NDH) by testing and
quantifying the correlation between structural and functional covar-
iance. Our analysis found that indeed, a moderate correlation exists
between meta-analytically derived structural and functional covariance
models of nodes derived from a structurally-driven hippocampal net-
work model (HNM). By applying the meta-analytic connectivity mod-
eling (MACM) pipeline procedure (Fig. 2) to our HNM using BrainMap's
voxel-based morphometry (VBM) and functional database, we were
able to validate our hypothesis, that MACM can be applied to the VBM
literature and generate structural covariance models using the trans-
diagnostic literature. Additionally, our resulting Pearson's correlation
analysis using ALE values obtained from the structural and functional
covariance networks of the HNM was found to support the NDH, es-
tablishing that the structural-functional relationship of interconnected
brain regions is topographically correlated.

We interpret these structural covariances as related to four of the
primary trophic influences outlined by Zhou et al., 2012. The trans-
neuronal spread mechanism begins in an epicenter, where neuronal
inclusions in the form of neurofibrillary tangles, cytoplasmic Lewy
bodies, iron accumulation, prion diseases, viral inclusions, a diverse
array of protein aggregates, etc. (Fornai et al., 2005) spread along ax-
onal pathways to other groups of neurons located in more distant re-
gions (Zhou et al., 2012; Ahmed et al., 2016). The nodal stress me-
chanism suggests that brain hubs (i.e., regions with high levels of
connectivity across the brain, more metabolic demand, and higher
blood flow) are selectively susceptible to damage from oxidative stress
and endothelial damage leading to impairments, such as a leaky blood
brain barrier (Crossley et al., 2014). The mechanism of trophic failure
involves the sub-cellular dysfunction of trophic factors, e.g. brain-de-
rived neurotrophic factor (BDNF), which is involved in dendritic and
axonal branching (Cohen-Cory et al., 2010). When trophic factor ex-
pression and regulation is impaired, trophic failure in the form of poor
cellular and synaptic maintenance impairs structural connectivity
(Fornito et al., 2015). Lastly, shared vulnerability is a mechanism
whereby similar neuronal cell types across the brain are susceptible to
disease-specific changes due to shared genetic and metabolic profiles
(Cioli et al., 2014). Because our study is trans-diagnostic, it is im-
possible to identify which mechanisms predominate as different dis-
eases exhibit differing and perhaps overlapping trophic influences.

4.1. HNM connectivity

The functional and structural association of the hippocampus to
multiple brain regions has been and continues to be an important area
of research interest. The identification of hippocampal atrophy in
normal aging as well as in diseases that differ in their symptomatology
has generated interest in identifying network models explaining the
associations between the hippocampus and other cortical and sub-
cortical structures. The goal of developing a comprehensive hippo-
campal network model has its roots in the use of structural and func-
tional biomarkers in specified brain regions that can be utilized to
investigate disease progression, treatment efficacy, and differences in
normal aging (Marstaller et al., 2015).

Hippocampal network connectivity has been studied in other es-
tablished networks, most notably the reward circuit (anterior cingulate
cortex, orbital prefrontal cortex, ventral striatum, ventral pallidum,
midbrain dopamine neurons, dorsal prefrontal cortex, amygdala, hip-
pocampus, thalamus, lateral habenular nucleus, pedunculopontine nu-
cleus, and raphe nucleus) (Haber and Knutson, 2010) and the default
mode network (posterior parietal cortex, precuneus, lateral temporal
gyrus, posterior cingulate cortex, hippocampus, and cerebellum) (Laird
et al., 2009a; Chang et al., 2015). Both networks provide empirically
based models for the study of diseases that alter these networks' prop-
erties. Network modeling and structural equation modeling has also
been used to predict behavioral and metabolic metrics using the reward

circuit and DMN respectively (Laird et al., 2009a; Park et al., 2015; Lin
et al., 2015).

Importantly, the most robust and well-described hippocampal con-
nectivity profile is that which occurs between the contralateral hippo-
campi, validated in this present study both structurally and functionally
(Fig. 5, Table 6). This association has long been established as both
hippocampi share direct inter-hemispheric connections via the hippo-
campal commissure (Spencer et al., 1987). This contralateral structural
connectivity can be observed using a visual sMACM of each hippo-
campus when seeded in the VBM database independently showing key
points of difference as well as overlap (Fig. 7). Moreover, there is ample
evidence that the hippocampus is a key component in networks relating
to both normal functioning and pathology. In our analysis, we used a
novel approach to answering the question of pathological significance
relating to hippocampal structural covariance.

The hippocampus itself is not a monolithic structure. It is subdivided
into histological regions (dentate gyrus, CA1-4, subiculum) and has
been shown to differ in structural and functional properties along the
longitudinal axis. Connectivity-based parcellation experiments of the
hippocampus have recently defined this anterior-posterior differentia-
tion of the hippocampus more precisely (Robinson et al., 2015). Other
meta-analytic methods have shown functional differences between
anterior and posterior hippocampal activation patterns (Chase et al.,
2015). Importantly, seeding the hippocampi as volumetric binarized
regions in the present VBM database yields not only extra-hippocampal
foci, but foci within the hippocampus itself. This lends credence to the
aforementioned studies identifying distinct anterior–posterior func-
tional and structural differentiation of the hippocampus in the form of
focal atrophy. We identified two distinct ALE foci (Fig. 3) in each
hippocampus that were subsequently regarded as independent nodes.

Indeed, our study also identifies several well-studied connections
between the hippocampus and other brain structures. We found, un-
surprisingly, that specific regions known to be structurally and func-
tionally connected to the hippocampus also appeared in our meta-
analysis: the claustrum, insula, MDN of the thalamus, and caudate.
Tracer studies in the macaque brain have previously identified claustral
projections to other subcortical structures found in our sHNM, specifi-
cally the dorsal thalamic nuclei, hippocampus, and caudate nucleus
(Mathur, 2014). Crossley et al. (2014) found through DTI meta-analytic

Table 6
sMACM to fMACM statistical comparison of node-to-whole-brain (node to all other nodes)
covariance using ALE values and sMACM to fMACM ALE matrix correlation.

sMACM to fMACM statistical comparisons

Seed-to-projection r r2 p

N1 (LAH) .942 .887 4.83e-5⁎

N2 (LPH) .830 .688 4.83e-5⁎

N3 (RAH) .935 .874 7.34e-5⁎

N4 (RPH) .379 .144 .280
N5 (RMDN) .347 .120 .326
N6 (LMN) .618 .382 .057
N7 (RClaus) −.096 .009 .792
N8 (LClaus) .143 .020 .694
N9 (LIns) .580 .336 .079
N10 (RCB) .579 .335 .080
N11 (LCB) .687 .472 .028

sMACM and fMACM ALE matrix statistical comparisons

Statistical test r r2 p

Pearson correlation .377 .142 4.89e-5⁎

Mantel test .397 .158 .001

⁎ Values that survive a Bonferroni correction for multiple comparisons (11) threshold
of .01, i.e. values< .00091.
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lesion mapping that there are a number of imaging connectome hubs
relating to anatomical locations of MRI lesions, to which the bilateral
hippocampi, thalamus, and insula belong. It has also been demon-
strated that blood-brain barrier (BBB) breakdown in the human hip-
pocampus, found to be correlated with normal aging as well as MCI, is
also strongly associated with breakdown of the BBB in the caudate
nucleus specifically (Montagne et al., 2015). The caudate-hippocampal
connection has also been validated with a VBM-ALE meta-analysis
study of gray matter atrophy in schizophrenia (Li et al., 2017). Tha-
lamo-hippocampal connectivity is another well-established association
in both animal and human models (Vertes et al., 2007; Barron et al.,
2013). With regards to the thalamus, specific thalamic nuclei have been
shown to be significantly associated with hippocampal pathology,
namely the pulvinar, anterior nucleus, and medial dorsal nucleus
(Rosenberg et al., 2009). This suggests that different subcortical struc-
tures may be differentially connected to the hippocampus by distinct
structurally-related mechanisms across a range of diseases.

Our sMACM analysis demonstrate that the most consistent struc-
tural change in gray matter density across diseases implicating the
hippocampus follows a distinct pattern involving regions previously
identified as being implicitly associated with the hippocampus.
Furthermore, our fMACM analysis supports the notion that structural
and functional network properties are significantly correlated (Sui
et al., 2014) (Table 6). This validation can serve the purpose of using
the present HNM and its nodes as biomarkers for the study of relevant
pathologies (e.g. AD, MTLE, MCI, Schizophrenia, aging, etc.).

4.2. Hippocampal pathology

Hippocampal pathology in Alzheimer's disease, mild cognitive im-
pairment, epilepsy, and schizophrenia has been long established.
Hippocampal volume loss is a common finding in imaging studies of
individuals with AD, MCI and, normal aging (Apostolova et al., 2012),
MTLE (Wei et al., 2016), and Schizophrenia (Koolschijn et al., 2010).
Moreover, other studies have demonstrated that systemic pathologies
like metabolic syndrome (Anand and Dhikav, 2012), type 2 diabetes
mellitus and obesity (Wu et al., 2008; Wang et al., 2014; Stranahan,
2015), and normal aging (Apostolova et al., 2012) also report hippo-
campal atrophy. Recent studies have ascertained that volume loss in the
hippocampus corresponds to neuronal cell death due in part to oxida-
tive stress introduced by a leaky blood brain barrier (Montagne et al.,
2015), along with sclerosis (Wei et al., 2016) and amyloid plaques and
Tau protein tangles (Apostolova et al., 2010), etc. It is for this reason
that a trans-diagnostically-driven HNM is justified as a tool to under-
stand structural network abnormalities in the presence of hippocampal
dysfunction.

This raises the question: what would the pattern of gray matter
atrophy look like if the hippocampus were seeded and constrained only
to specific diseases? We tested this by conducting a very similar RtWB
analysis as the original trans-diagnostic study. By constraining our re-
gional search to only the diseases that appear to be most strongly
correlated to the sHNM based on the disease paradigm analysis (Fig. 6)
and using a less stringent statistical threshold (Cluster-level 0.05, FDR

Fig. 7. Laterality of structural covariance between right and
left hippocampi: Regions in red are those that co-vary sig-
nificantly with the left hippocampus seeded in a RtWB
meta-analysis. Regions in blue are those that co-vary sig-
nificantly with the right hippocampus seeded in a RtWB
meta-analysis. Regions in yellow represent the overlapping
structures of the right and left hippocampus RtWB meta-
analyses. All analyses were conducted using a voxel-level
FEW 0.01, thresholded to 1000 permutations, and reporting
only minimal cluster volumes of 50mm3. Left Hippocampus
Specific Projections: left caudate head, left insula, left
claustrum. Right Hippocampus Specific Projections: right
caudate body, right claustrum (different focus than overlap
right claustrum). Overlap: left anterior hippocampus, left
posterior hippocampus, right anterior hippocampus, right
posterior hippocampus, right MDN of thalamus, left MDN of
thalamus, right claustrum (different focus than right hip-
pocampus specific projection).
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pN 0.05, with 1000 threshold permutations) we were able to identify a
number of significant regions of hippocampal structural covariance
within these top four diseases. Fig. 8 shows a visual comparison of the
hippocampal structural covariance patterns for these diseases in order
to illustrate that there are important similarities and differences across
diseases, workspaces are available as Supplementary data. We can
conclude from this analysis that there are certain network pathways
that are equally atrophogenic across diseases and co-vary significantly
with damage to the hippocampus, whether that is due to sclerosis,
plaques and tangles, or inflammatory infiltrates via a leaky BBB.
Whatever the disease pathogenic onset that leads to hippocampal cell
loss, our sHNM model clearly shows that hippocampal gray matter
density is markedly associated with at least 11 brain regions, which
together are known to be associated with attention, emotion, reward,
and memory, among others (Fig. 6).

4.3. Methodological considerations

Meta-analysis has been defined as the post hoc combination of

independently performed studies to better estimate a parameter of in-
terest (Fox et al., 2005a). Several meta-analytic methods have since
been developed. One of the earliest was the use of label-based meta-
analysis whereby an investigator would assign labels from multiple
studies and tally them without performing any statistical analysis
(Keller and Roberts, 2008). This method was heavily criticized for being
spatially imprecise and producing misleading results. With the advent
of coordinate-based meta-analysis, studies began reporting peak acti-
vation or atrophy regions using an x, y, z coordinate system in a stan-
dardized brain space (e.g. Talairach and MNI). This method offers a
statistically rigorous, and spatially precise alternative to the label-based
and image-based methods. Therefore, coordinate-based meta-analysis
makes it possible to use published peer-reviewed literature to conduct
large scale, multi-laboratory, multi-contrast, and multi-study meta-
analysis, as was done presently.

MACM is a tool that takes specific advantage of large volume of data
from multiple labs, contrasts, subjects, and paradigms. Although the
MACM technique has existed since Laird et al. (2009a), its use has been
limited to the study functional covariance. In recent years, it has been

Fig. 8. Hippocampal region-to-whole brain
within-disease meta-analysis: All RtWB within-
disease meta-analyses were conducted using
GingerALE's Cluster-Level 0.05 analysis with FDR
pN 0.05 at 1000 threshold permutations.
A. The hippocampus was seeded BrainMap's VBM
database constrained only to AD VBM studies. 11
significant foci were identified: left supramarginal
gyrus (lSMG), posterior cingulate cortex (PCC),
left middle occipital gyrus (lMOG), right insula
(rIns.) in two locations, left posterior hippocampus
(lpHip.), right posterior hippocampus (rpHip.), left
parahippocampus (lPH), right inferior temporal
gyrus (rITG), left insula (lIns.), rSTG (right su-
perior temporal gyrus), right hippocampus (rHip.),
and right amygdala (rAmyg.). Study consisted of
23 papers, 1350 subjects, 39 experiments, and 443
locations.
B. The hippocampus was seeded BrainMap's VBM
database constrained only to MCI VBM studies. 11
significant foci were identified: Anterior Cingulate
Cortex (ACC), right medial dorsal nucleus of the
thalamus (rMDN Thal.), right superior temporal
gyrus (rSTG), right medial frontal gyrus (rMFG),
right middle temporal gyrus (rMTG), right claus-
trum (rClaus.), left claustrum (lClaus.), right hip-
pocampus (rHip.), left hippocampus (lHip.), right
parahippocampus (rPH), and left uncus (lUnc.).
Study consisted of 14 papers, 995 subjects, 23
experiments, and 287 locations.
C. The hippocampus was seeded BrainMap's VBM
database constrained only to Schizophrenia VBM
studies. 6 significant foci were identified: left su-
perior temporal gyrus (lSTG), left middle temporal
gyrus (lMTG), left insula (lIns.), right caudate head
(rCH), right anterior hippocampus (raHip.), and
left anterior hippocampus (laHip.). Study con-
sisted of 15 papers, 1119 subjects, 20 experiments,
and 269 locations.
D. The hippocampus was seeded BrainMap's VBM
database constrained only to temporal lobe epi-
lepsy and mesial temporal lobe epilepsy VBM
studies. 9 significant foci were identified: left
medial dorsal nucleus of the thalamus (lMDN
Thal.), left claustrum (lClaus.), left posterior hip-
pocampus (lpHip.), left middle temporal gyrus
(lMTG), right hippocampus (rHip.), left anterior
hippocampus (laHip.), left amygdala (lAmyg.),
right anterior parahippocampus (raPH), and right
cerebellar tonsil (rCer. Tonsil). Study consisted of
18 papers, 1571 subjects, 44 experiments, and 461
locations.
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used to study functional covariance of specific brain regions such as the
caudate (Robinson et al., 2012), nucleus accumbens (Cauda et al.,
2011), insula (Cauda et al., 2012), left inferior parietal cortex (Müller
et al., 2013), and amygdala (Robinson et al., 2010); specific brain
processes such as emotion regulation (Kohn et al., 2014); and specific
diseases such as spinocerebellar ataxia (Reetz et al., 2012), MTLE
(Barron et al., 2013) and PTSD (Ramage et al., 2012) among others. To
our knowledge, this study is the first to use BrainMap's VBM database to
directly compare structural covariance with functional covariance using
the same methodology.

Our study takes advantage of seven years of new and refined data
uploaded into BrainMap since Robinson et al. (2010), providing greater
statistical power to MACM analyses. We applied inclusion filters for
whole-brain analyses and data non-redundancy. We conducted a RtWB
meta-analysis by seeding the hippocampus and searching through the
entire BrainMap VBM database to identify the most significant extra
and intra-hippocampal foci associated with change in hippocampal
gray matter density (Table 1 & Fig. 3). We used the Eickhoff et al.
(2012) algorithm, which employs a data-driven approach to create the
null-distribution used in statistical inference as well as a Monte-Carlo
based approach permitting more accurate cluster-level and voxel-wise
inferencing (Eickhoff et al., 2012). We then performed two separate
MACM analyses (Tables 2–5, Figs. 4 & 5), following the most up-to-date
approach as delineated in Langner et al. (2014) with minor improve-
ments to account for differences in VBM and functional data (Fig. 2).
These improvements to the meta-analytic process allows for a more
statistically robust method of performing MACM analyses to determine
both structural and functional covariance using coordinate-based meta-
analytic methods. Using this method, we have also demonstrated that
indeed, structural covariance and functional covariance are sig-
nificantly correlated (Table 6). Future studies will no doubt benefit
from using coordinate-based databases such as BrainMap to perform
MACM analyses to derive preliminary biomarkers and network models
as a strategy to inform studies using clinically-relevant resting state and
T1 primary data (Biswal et al., 2010).

4.4. Clinical purpose and dividends

Behavioral characteristics (Fig. 6) have been shown to correspond to
hippocampal function and dysfunction based on clinical behavior pro-
files of individuals with diseases of the hippocampus such as in Alz-
heimer's disease (Ballard et al., 2011) and schizophrenia (Tregellas
et al., 2014). The paradigm class activation studies identified in the
sHNM also validates the hippocampus' role in the reward circuit (Haber
and Knutson, 2010) and its involvement in other tasks involving
memory and attention (pain monitor-discrimination, face monitor-dis-
crimination, semantic monitor-discrimination, and passive viewing).
Furthermore, behavior characteristics are important features in the
evaluation and analysis of individuals with hippocampal pathology.

Future analyses will aim to apply the sHNM to both structural (T1
weighted images) and functional (resting state fMRI) primary data and
use statistical methods such as structural equation modeling, to define
path coefficients with greater accuracy. We further hypothesize that
structural equation modeling applied to primary data and restricted to
nodes of the sHNM will increase our understanding of hippocampal
pathology and introduce a novel approach to assessing its relationship
to cognition, behavior, metabolism, and aging. We believe that a tar-
geted analysis of the sHNM with primary data could subsequently bear
prospective clinical dividends on the per-patient level by giving in-
vestigators and clinicians an objective anatomically derived method of
assessing cognitive decline and improvement as it relates to disease
progression and treatment.

5. Conclusion

In our region-to-whole brain meta-analysis of the hippocampi, we

found consistent gray matter structural change across diseases in
BrainMap's VBM database in 11 specific brain regions, termed the
sHNM. These structures were found to show distinct patterns of struc-
tural and functional covariance using meta-analytic connectivity mod-
eling. Functional and structural ALE values derived from MACM were
found to be significantly correlated. Likewise, a paradigm analysis of
behavior domains and paradigm class activation studies show that the
sHNM corresponds to known hippocampal function in normal subjects
(emotion, memory, attention) and known hippocampal atrophy in
diseases subjects (AD, MCI, MTLE, schizophrenia). Our large sample
size of VBM studies allowed us to use more conservative statistical
thresholding in reporting the most significant ALE values in our struc-
tural and functional covariance studies. Hippocampal pathology is
commonly observed in animals and humans, suggesting that a com-
prehensive structural hippocampal network model could serve as a
clinically useful biomarker in the evaluation disease effects on cognitive
function. These questions await further investigations.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.01.002.
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