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Despite FDA approval of nine new drugs for patients with
acute myeloid leukemia (AML) in the United States over
the last 4 years, AML remains a major area of unmet
medical need among hematologic malignancies. In this
review,we discuss the development of promising newmo-
lecular targeted approaches for AML, including menin in-
hibition, novel IDH1/2 inhibitors, and preclinical means
to target TET2, ASXL1, and RNA splicing factor muta-
tions. In addition, we review progress in immune target-
ing of AML through anti-CD47, anti-SIRPα, and anti-
TIM-3 antibodies; bispecific and trispecific antibodies;
and new cellular therapies in development for AML.

Acute myeloid leukemia (AML) is a genetically diverse
myeloid neoplasm and the most common form of acute
leukemia in adults, with >20,000 new cases in the United
States in 2021 (Shallis et al. 2019; National Cancer Insti-
tute-Surveillance 2021, https://seer.cancer.gov/statfacts/
html/amyl.html). With a 5-yr relative survival of only
29.5% between 2011 and 2017, there continues to be a
high clinical need for novel and more effective therapies
in both the frontline and relapsed/refractory (R/R) setting
(National Cancer Institute-Surveillance 2021, https://seer
.cancer.gov/statfacts/html/amyl.html).
Thanks to a better understanding of the molecular path-

ophysiology of AML, AML treatment is becoming increas-
ingly individualized based on molecular features enabling
improved risk stratification and more targeted therapies
(Papaemmanuil et al. 2016; Döhner et al. 2017). In contrast
to the genetically agnostic treatment with conventional
cytotoxic chemotherapy, seven out of the nine novel ther-
apies that have been approved for the treatment of newly
diagnosed or R/RAML since 2017 act via amolecularly de-
fined target (Fig. 1; Castaigne et al. 2012; Stein et al. 2017;

Stone et al. 2017; DiNardo et al. 2018, 2020a; Cortes et al.
2019a; Perl et al. 2019; Wei et al. 2020). However, despite
the introduction and success of these novel agents for
AML therapy, areas of unmet need persist. These include
the fact that there are still limited treatment options for
many patients with R/R AMLwho do not harbor currently
targetablemutations. Additionally, noneof the recently ap-
proved therapies are curative except for the small minority
of patients who proceed to allogeneic hematopoietic cell
transplant (allo-HCT) (Bewersdorf et al. 2021a).
Several novel therapeutic approaches—including menin

inhibitors inMLL1 (or KMT2A)-rearranged andNPM1mu-
tant AML, harnessing synthetic lethality in patients with
loss-of-function mutations (e.g., TET2, RUNX1, and other
DNMT3Amutations), and splicingmodulators—are in var-
ious stages of clinical development (Issa et al. 2021). Addi-
tionally, the immune landscape within the bone marrow
microenvironment in AML is becoming increasingly char-
acterized, and immuneescapemechanismshavebeen iden-
tified as a potential cause of disease relapse, leading to the
development of various immunotherapeutic approaches
such as immune checkpoint inhibitors, bispecific antibod-
ies, and cellular therapies (Bewersdorf et al. 2020; Sallman
et al. 2020b; Vadakekolathu et al. 2020b; Uy et al. 2021).
This review focuses on how recent insights into the patho-
genesis of AML are informing molecularly targeted thera-
peutics based on genomic alterations in AML as well as
cellular and immunotherapeutic approaches.

Advances in the molecular pathogenesis enable
individualized treatment of AML patients

Thanks to advances in diagnostic technologies, molecular
testing based on next-generation sequencing is becoming
an increasingly routine part of management of AML pa-
tients and has implications for prognostication and treat-
ment selection (Papaemmanuil et al. 2016; Döhner et al.
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2017). While the standard of care for newly diagnosed
AML patients eligible for intensive chemotherapy has re-
mained induction and consolidation chemotherapywith a
cytarabine/anthracycline combination, the addition of
the FLT3 inhibitormidostaurin in patientswith FLT3mu-
tations or of gemtuzumab ozogamicin in patients with
CD33-positive, favorable risk AML has improved out-
comes (Castaigne et al. 2012; Stone et al. 2017; Tallman
et al. 2019). Additionally, combining the BCL2 inhibitor
venetoclax with either hypomethylating agents (azaciti-
dine and decitabine) or low-dose cytarabine has signifi-
cantly improved the outcomes of older patients and
those ineligible for intensive chemotherapy in random-
ized placebo-controlled clinical trials compared with ei-
ther azacitidine or low-dose cytarabine alone (DiNardo
et al. 2020a; Wei et al. 2020). Generally well-tolerated
oral inhibitors of mutant FLT3 and IDH1/2 have also
been approved for patients with R/R AML (Fig. 1; Stein
et al. 2017; DiNardo et al. 2018; Perl et al. 2019). Several
ongoing clinical trials seek to further increase the re-
sponse rate and extend the durability of responses by the
addition of targeted therapies to either intensive chemo-
therapy or venetoclax-based combinations. Preclinical
studies have suggested synergy between FLT3 inhibitor-
mediated down-regulation of the antiapoptotic mediator
MCL1 and enhanced sensitivity to BCL2 inhibition by
venetoclax, lending support to combining FLT3 inhibitors
with hypomethylating agents and venetoclax in AML pa-
tients with FLT3 mutations (Ma et al. 2019; Singh Mali
et al. 2021). Similarly, conventional cytotoxic chemother-
apy such as idarubicin and cytarabine has been shown to
suppress MCL1 and to synergize with venetoclax in mu-
rine AML models (Teh et al. 2018). While early results
from single-arm clinical trials appear promising, larger,

randomized clinical trialswith longer follow-up are neces-
sary, and adverse events (especially myelosuppression) re-
main a concern (Daver et al. 2020; Lin et al. 2020; Reville
et al. 2020; DiNardo et al. 2021a; Maiti et al. 2021).

Besides identifying a potential therapeutic target, molec-
ular testingmay also have the potential to guide therapy se-
lection in AML patients. For example, TP53 mutations
occur in 10%–15% of patients with AML and are enriched
in patientswith therapy-relatedAMLorother adverse prog-
nostic features such as complex or monosomal karyotypes
(Rücker et al. 2012; Papaemmanuil et al. 2016). Additional-
ly,TP53mutations have been shown to confer a higher rate
of resistance to conventional cytotoxic chemotherapy but
to potentially bemore susceptible to treatment with hypo-
methylating agents (Kadia et al. 2016; Welch et al. 2016).
WhetherTP53mutations could serve as amarkerof adverse
“genomic fitness” in AML patients that would provide the
rationale forusingvenetoclax-based combinations inother-
wise chemotherapy-eligible patients requires additional
studies. It is important to note that TP53 mutations are
alsoassociatedwith lower response rates tovenetoclax/aza-
citidine and constituted one of the few patient subgroups
that do not experience a statistically significant survival
benefitwith venetoclax/azacitidine comparedwith azaciti-
dine alone (hazard ratio [HR]: 0.76; 95% CI: 0.40–1.45).
However, this was a likely underpowered subgroup analy-
sis, which should be interpreted cautiously. TP53 muta-
tions also retained their adverse prognostic impact in
AML patients treated with decitabine/venetoclax in a re-
cent phase II trial (median overall survival [OS]: 5.2 mo vs.
19.4mo; HR: 4.67; 95%CI: 2.44–8.93; P<0.0001) (DiNardo
et al. 2020a,b,d; Kim et al. 2021).

Given that the majority of AML patients does not har-
bor amutation in FLT3, IDH1, or IDH2, novel therapeutic

Figure 1. Time line of FDA-approved ther-
apies for the treatment of acute myeloid
leukemia (AML). (HMA) Hypomethylating
agent.
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strategies for patients harboring the large number of other
AML-associated genetic alterations are needed and are
discussed in the sections below.

Novel molecularly targeted therapies in AML

Menin inhibitors

Although leukemogenic translocations of the mixed-line-
age leukemia (MLL, also known as lysine methyltransfer-
ase 2A [KMT2A]) gene on chromosome 11q23 are found
more frequently in infants, 10% of adult AML patients
also harbor this genetic alteration (Krivtsov and Arm-
strong 2007). KMT2A rearrangements are also common
in patients with mixed-lineage (biphenotypic) leukemias
and have been associated with a variable, context-depen-
dent prognosis (Caligiuri et al. 1998; Krivtsov and Arm-
strong 2007; Issa et al. 2021). KMT2A encodes an
essential regulator of HOX genes via methylation of his-
tone H3 lysine residue 4 (H3K4) (Chen et al. 2006; Krivt-
sov and Armstrong 2007). Although menin was initially
described as a tumor suppressor in the context of multiple
endocrine neoplasia type I, subsequent studies have estab-
lished menin’s requirement in the maintenance of
KMT2A-rearranged AML (Chandrasekharappa et al.
1997; Yokoyama et al. 2005; Chen et al. 2006).
Oncogenic fusions of KMT2A occur with >90 different

partners, several of which influence leukemia phenotype
and prognosis (Meyer et al. 2018). Such rearrangements
havealso beenassociatedwith emergenceof therapy-relat-
ed AML following treatment with topoisomerase II inhib-
itors such as etoposide (Super et al. 1993). Compared with

other AML subtypes, AML with KMT2A rearrangements
is characterized by fewer co-occurring genetic alterations,
highlighting the role of the KMT2A rearrangement as a
driver of leukemogenesis and underscoring this oncogenic
fusion as a potentially promising target (Andersson et al.
2015; Bill et al. 2020).
While KMT2A rearrangements only affect a minority of

AML patients, NPM1 mutations constitute one of the
most common genetic abnormalities in adult AML, af-
fecting up to 30% of patients (The Cancer Genome Atlas
Research Network 2013; Papaemmanuil et al. 2016). Mu-
tations in NPM1 have also been associated with the up-
regulation ofHOXA genes, similar to gene expression pat-
terns observed in patients with KMT2A rearrangements
(Mullighan et al. 2007; Andreeff et al. 2008). These find-
ings have led to the hypothesis that AML patients with
NPM1 mutations might also benefit from menin inhibi-
tion. Figure 2 illustrates the pathogenesis of KMT2A-rear-
ranged and NPM1 mutant AML and the role of menin
inhibition in this context.
Small molecules inhibiting the interaction of menin

with KMT2A by binding to the KMT2A binding pocket
have been developed and successfully tested in preclinical
models (Shi et al. 2012; Borkin et al. 2015). Similarly,
menin inhibitors showed antileukemic activity in mouse
and patient-derived xenograft (PDX) models ofNPM1mu-
tant AML (Klossowski et al. 2020; Uckelmann et al. 2020).
Based on those encouraging preclinical findings, several
early phase trials have been initiated. KO-539 is an oral in-
hibitor of the menin–KMT2A protein–protein interaction
that is currently being tested in a phase I/II trial
(NCT04067336). While data on the efficacy and safety

Figure 2. Known and novel epigenetic targets
for the treatment of acute myeloid leukemia
(AML). AML-associated genetic alterations in
IDH1, IDH2,TET2,andASXL1,aswell aschro-
mosomal rearrangements in MLL1 (KMT2A),
alter histone post-translational modifications
and/or DNAcytosinemodifications and repre-
sent exciting therapeutic targets. AML-associ-
ated mutations in NPM1 enforce cytoplasmic
localization of the mutant NPM1 (NPM1c)
and result in up-regulated HOXA gene cluster
expressionvia amechanismthat is not entirely
clear. Menin inhibitors have demonstrated
promising efficacy and safety in ongoing
phase I/II trials for MLL-rearranged and
NPM1 mutant AML. In addition, it is known
that KMT2A translocations alter the enzy-
matic activity of KMT2A from a histone H3
lysine 4 (H3K4) methyltransferase to gain
the ability to methylate H3K79 via associa-
tion with the H3K79 methyltransferase
DOT1L. As such, DOT1L inhibitors continue

to be evaluated for KMT2A-rearranged AML. IDH1/2 mutations alter the enzymatic activity of IDH1/2 to generate the oncometabolite
2-hydroxyglutarate (2-HG) from isocitrate and reduce levels of α-ketoglutarate (α-KG). This alteration in α-KG levels impacts numerous
α-KG-dependent enzymes, including TET2 and the Jumonji family of histone lysine demethylases (JHDM). Currently, IDH1 and IDH2
inhibitors are FDA-approved. A number of methods are being tested to boost TET2 enzymatic activity in AML patients with haploin-
sufficient TET2 mutations (including increasing levels of the TET2 cofactor vitamin C). Finally, recent data identify that certain ASXL1
mutations promote the activity of the H2AK119 deubiquitinase BAP1. As such, the first class of BAP1 catalytic inhibitors has been
developed very recently.
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are limited to date, KO-539 showed biologic activity
among six patients with R/R AML (including one patient
who achieved a measurable residual disease [MRD]-nega-
tive complete remission [CR]) (Wang et al. 2020). Of note,
patients enrolled in this trial were not required to have
KMT2A rearrangements or NPM1 mutations. SNDX-
5613 is another orally available menin–KMT2A binding
inhibitor that has demonstrated single-agent activity in
PDX models of NPM1 mutant AML (Krivtsov et al.
2019). This agent is currently being tested in a phase I/II
trial in patients with R/R AML with KMT2A rearrange-
ment or NPM1 mutations. Preliminary data from 45 pa-
tients with KMT2A-rearranged or NPM1 mutant AML
presented in abstract form showed an overall response
rate (ORR) of 44%with 22%CR or CRwith partial hema-
tologic recovery (CRh) (Stein et al. 2021). However, safety
and efficacy data are still immature, and longer follow-up
is needed. Table 1 provides an overview of selected ongo-
ing clinical trials of menin inhibitors in AML.

Potential options to enhance the therapeutic efficacy of
menin inhibitors include the combination with FLT3 or
DOT1L inhibitors; both of which have shown efficacy in
preclinical models (Kuhn et al. 2015; Dafflon et al. 2017;
Dzama et al. 2020). However, such combinations have
not been tested clinically to date. Additionally, biomark-
ers predicting response to menin inhibition as well as
the impact of co-occurring mutations are areas of ongoing
research needs.

Novel IDH1/2 inhibitors

Mutations in IDH1 or IDH2 occur in 8%–12%of AML pa-
tients and have been shown to promote leukemogenesis
by the production of the oncometabolite 2-hydroxygluta-
rate (Fig. 2; The Cancer Genome Atlas Research Network
2013; Chan et al. 2015). The IDH1 inhibitor ivosidenib
and the IDH2 inhibitor enasidenib have been approved
for the treatment of R/R AML patients with IDH1 or
IDH2 mutations, respectively, based on single-arm phase
I/II studies. Both agents demonstrated overall response
rates (ORR) of 40% and median duration of response of
∼6mo (Stein et al. 2017; DiNardo et al. 2018). While these
results are promising in a pretreated patient population,
efforts to both improve the response rates and duration
by combination with synergistic agents and use them in
the first-line setting have been launched (Dinardo et al.
2020c; Lin et al. 2020; Roboz et al. 2020; Stein et al.
2020a). Additionally, substantial progress has been made
in the identification of resistance mechanisms to IDH in-

hibitors. Studies have identified co-occurring RAS path-
way mutations as being associated with decreased
IDH1/2 inhibitor response aswell as the emergence of sec-
ond site mutations within IDH1/2 and isoform switching
between IDH1/2 mutations (Amatangelo et al. 2017;
Intlekofer et al. 2018; Choe et al. 2020).

Several second-generation IDH inhibitors have been de-
veloped and demonstrated mixed results. BAY1436032
has shown in vitro and in vivo activity against various
IDH1 mutations and also demonstrated changes in
DNAmethylation patterns (Chaturvedi et al. 2017). How-
ever, in a phase I clinical trial, BAY1436032 yielded an
ORR of 15% and median duration of response of 3.0 mo
among 27 AML patients with IDH1 mutations (Heuser
et al. 2020). This compound is not going to be developed
further for the treatment of AML given this limited
efficacy.

FT-2102 (olutasidenib) is another IDH1 inhibitor in
clinical development for IDH1 mutant AML (Caravella
et al. 2020). As a single agent, FT-2102 showed an ORR
of 41% (18% CR) among R/R AML patients with IDH1
mutations enrolled in a phase I study (NCT02719574)
(Watts et al. 2019). Vorasidenib (AG-881) is a combined
IDH1 and IDH2 inhibitor that is currently being tested
in low-grade IDH mutant glioma and could eventually
be studied in AML as well (Mellinghoff et al. 2021). Final-
ly, LY3410738 is a novel covalent IDH1-R132 inhibitor
that has increased potency against IDH1-R132 mutations
and has activity against common second site IDH muta-
tions thanks to its binding outside of the dimer interface,
which is a known resistance mechanism to first-genera-
tion IDH inhibitors. LY3410738 is currently being studied
in a phase I clinical trial but no results are available to date
(Stein et al. 2020b). Figure 2 illustrates the pathogenesis of
IDH1/2 mutant AML and mechanism of action of ap-
proved and novel IDH1/2 inhibitors.

Based on changes inDNAmethylation observed follow-
ing treatment with IDH1/2 inhibitors, combination with
the hypomethylating agent azacitidine could have combi-
natorial efficacy. Preclinical experiments supported this
potential synergy, showing substantial antitumor activity
of azacitidine plus BAY1436032 against leukemic stem
cells (Chaturvedi et al. 2021). This synergy has also been
explored in early phase clinical trials. In a phase I trial of
23 newly diagnosed IDH1mutantAMLpatients ineligible
for intensive induction chemotherapy (NCT02677922),
the combination of ivosidenib and azacitidine led to an
ORR of 78.3% (95% CI: 56.3%–92.5%) and CR rate of
60.9% (95% CI: 38.5%–80.3%) (DiNardo et al. 2021b).

Table 1. Ongoing trials of menin inhibition in AML

Agent NCT Phase Patient population

KO-539 NCT04067336 I/II R/R AML; independent of cytogenetic and molecular characteristics
JNJ-75276617 NCT04811560 I AML and ALL patients with KMT2A or NPM1 mutations refractory to

or ineligible for all standard therapies
DSP-5336 NCT04988555 I/II R/R AML or ALL with MLL rearrangement or NPM1 mutations (phase

I enrollment independent of cytogenetic or molecular characteristics)
SNDX-5613 NCT04065399 I/II R/R AML or ALL with MLL rearrangement or NPM1 mutations
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Responses appeared durable and deep in a subset of pa-
tients, with 10 out of 14 patients achieving IDH1 muta-
tion clearance by PCR and a 12-mo OS estimate of
82.0% (95% CI: 58.8%–92.8%) (DiNardo et al. 2021b).
The combination of azacitidine and ivosidenib has also
been evaluated in a randomized, placebo-controlled phase
III trial (AGILE; NCT02677922), which randomized 146
newly diagnosed AML patients with IDH1 mutations
who were not eligible for intensive chemotherapy. Medi-
an OS (24 mo vs. 7.9 mo; HR=0.44 [95% CI: 0.27–0.73];
P= 0.0005) and CR rate (47.2% [95% CI: 35.3%–59.3%]
vs. 14.9% [95% CI: 7.7%–25.0%]; P< 0.0001) were both
superior with ivosidenib + azacitidine compared with pla-
cebo + azacitidine (Montesinos et al. 2021). Similar pre-
liminary results have been presented from a phase I/II
trial (NCT02719574) of the combination of FT-2102
with azacitidine in patients with myelodysplastic syn-
dromes (MDS) (Cortes et al. 2019b; Watts et al. 2019). Ad-
ditionally, results from a phase I/II trial of ivosidenib plus
venetoclax with or without azacitidine in newly diag-
nosed and R/R AML patients with IDH1 mutations have
demonstrated an ORR of 78% (Lachowiez et al. 2020). Ta-
ble 2 provides an overviewof ongoing clinical trials of IDH
inhibitors in AML.

RNA splicing as a novel therapeutic target in AML

Mutations in genes encoding RNA splicing factors such as
SF3B1, SRSF2, U2AF1, and ZRSR2 are encountered fre-
quently in patients with AML, especially in those with
an antecedent MDS (Inoue et al. 2016; Chen et al. 2021).

RNA splicing is a tightly regulated process during which
nucleotide segments are enzymatically removed from pre-
cursor messenger RNA (pre-mRNA) and the remaining
nucleotides are ligated to form the mature mRNA (Chen
et al. 2021). This process is essential for regulation of
gene expression, and alternative splicing is a major con-
tributor to proteome diversity.
SF3B1 mutations are the most common splicing muta-

tions in hematologic malignancies and define a distinct
subtype of MDS (MDS with ringed sideroblasts) (Papaem-
manuil et al. 2011; Malcovati et al. 2020). While SF3B1
mutations in MDS have been associated with a favorable
prognosis, U2AF1 and SRSF2 mutations are enriched in
high-risk MDS and AML and confer an adverse prognosis
(Thol et al. 2012; Bejar et al. 2015; Ohgami et al. 2015).
Mutations in genes encoding RNA splicing factors affect
a wide variety of transcripts and signaling pathways via
differential splicing such as DNA damage response, epige-
netic regulation, and immune signaling (Chen et al. 2021).
It therefore remains to be fully elucidated what specific
aberrant splicing events lead to the development of mye-
loid neoplasms, and SRSF2, SF3B1, andU2AF1mutations
are not felt to be leukemogenic in isolation based on var-
ious murine knock-in models (Chen et al. 2021).
Based on the finding that splicing factor mutations are

often mutually exclusive, it has been proposed that cells
with splicing factor mutations are dependent on the nor-
mal function of the residual wild-type splicing factors
(Lee et al. 2016, 2018). Thus, using pharmacologic inter-
ference with splicing could lead to synthetic lethality
and constitute a potent, novel therapeutic approach to

Table 2. Ongoing trials of IDH1 or IDH2 inhibition in AML

Agent Specific regimen NCT Phase Patient population

Enasidenib Enasidenib monotherapy NCT04203316 II Pediatric R/R IDH2 mutant AML patients
Enasidenib monotherapy following allo-HCT NCT03728335 I IDH2 mutant AML in remission following

allo-HCT
Enasidenib monotherapy following allo-HCT NCT04522895 II IDH2 mutant AML, MDS, or CMML in

remission or relapse following allo-HCT
Enasidenib +CPX-351 NCT03825796 II R/R IDH2 mutant AML patients
Enasidenib + venetoclax NCT04092179 I/II IDH2 mutant AML patients
Enasidenib or ivosidenib + decitabine/
cedazuridine + venetoclax

NCT04774393 I/II R/R AML or MDS with IDH1 or IDH2
mutation

Enasidenib or ivosidenib vs. placebo +
induction and consolidation chemotherapy

NCT03839771 III Newly diagnosed AML or MDS with IDH1
or IDH2 mutation

Ivosidenib Ivosidenib + combination chemotherapy NCT04250051 I R/R IDH1 mutant AML patients
Ivosidenib +CPX-351 NCT04493164 II IDH1-R132 mutant AML patients or MDS
Ivosidenib NCT02074839 I IDH1 mutant advanced hematologic

malignancies
Ivosidenib + venetoclax ± azacitidine NCT03471260 I/II IDH1 or IDH2 mutant myeloid neoplasms

FT-2102 FT-2102 ± azacitidine NCT02719574 II R/R IDH1-R132 mutant AML patients
SH1573 SH1573 NCT04806659 I R/R IDH2 mutant AML patients
HMPL-306 HMPL-306 NCT04272957 I IDH1 or IDH2 mutant R/R myeloid

neoplasms
HMPL-306 NCT04764474 I IDH1 or IDH2 mutant R/R myeloid

neoplasms
LY3410738 LY3410738 monotherapy NCT04603001 I IDH1 or IDH2 mutant R/R myeloid

neoplasms
SLE24/
MEN1703

SLE24/MEN1703 monotherapy NCT03008187 I/II IDH1 or IDH2 mutant R/R AML
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splicing factor mutant AML and MDS. Several com-
pounds binding to the SF3b complex have been developed
and reviewed in detail recently (El Marabti and Abdel-
Wahab 2021).

Figure 3 provides an overview of potential therapeutic
approaches for splicing factor mutant AML. Among these
compounds, H3B-8800 is the agent furthest along in clin-
ical development. H3B-8800 is an orally bioavailablemod-
ulator of the SF3b complex that has been shown to
preferentially kill spliceosome mutant cells in vitro
(Seiler et al. 2018). However, data from a subsequent phase
I clinical trial (NCT02841540) that enrolled 84 patients
with AML, MDS, or CMML independent of the presence
of splicing mutations were disappointing, with no com-
plete or partial responses per 2006 IWG response criteria
reported, although 15% of patients achieved red blood
cell transfusion independence (RBC-TI) (Steensma et al.
2021). Treatment withH3B-8800was generally well toler-
ated, with diarrhea, nausea, fatigue, and vomiting being
the most common treatment-related, treatment-emer-
gent adverse events (Steensma et al. 2021). While these re-
sults are disappointing at first glance, it is important to
note that this trial enrolled a genetically and clinically
diverse patient population and that patients with SF3B1
mutations achieved higher rates of RBC-TI than SF3B1
wild-type patients (Steensma et al. 2021). Further studies
are needed to identify predictive biomarkers and to opti-
mize treatment schedules.

Besides SF3b binding agents, RBM39 degraders repre-
sent another class of drug candidates that target splicing.
RBM39 is an accessoryRNAsplicing factor that can be tar-
geted by aryl sulfonamide molecules (e.g., indisulam) that
markRBM39 for proteasomal degradation leading to splic-
ing defects (Han et al. 2017; Chen et al. 2021). AsRBM39 is
required for the survival of various types of cancer cells, in-
cluding splicing factor mutant leukemias, degradation of
RBM39 has been shown to have antileukemic effects in
preclinical models (Wang et al. 2019). Indisulamwas stud-
ied in a phase II trial in combination with idarubicin and
cytarabine in patients with R/RAML orMDS and demon-
strated an ORR of 35%. However, this trial was not re-
stricted to patients with splicing factor mutations and
did not use biomarkers such as DCAF15 for patient selec-
tion (Han et al. 2017; Assi et al. 2018). Other RBM39-de-
grading compounds such as E7820 are currently in
clinical trials and are specifically enrolling patients with
splicing factor mutant AML or MDS (NCT05024994).

Finally, targeting RNA splicing via inhibiting enzymes
that place post-translation modifications on splicing fac-
tors has emerged as another potentially clinically viable
means to target splicing factor mutant leukemias. The
furthest approach of this category is protein arginine
methyltransferases (PRMT) inhibitors. PRMT inhibitors
interfere with the arginine methylation of splicing factors
required for various steps of the splicing process, leading
to the preferential killing of splicing factor mutant leuke-
mia cells (Fong et al. 2019). Several PRMT5 inhibitors are
being tested in clinical trials (e.g., NCT03886831 and
NCT03614728) but no results have been published to
date. Attempts to increase the response rate to single-
agent splicingmodulators are ongoing and include combi-
nation with azacitidine (NCT03614728). Additionally,
the combination with venetoclax or immune checkpoint
inhibitors could have synergistic effects based on encour-
aging in vitro results (Lu et al. 2021; Stahl et al. 2021).

Targeting other AML-associated mutations

While there has been considerable debate on the mecha-
nistic effects of leukemia-associated ASXL1 mutations,
several recent studies (Balasubramani et al. 2015; Asada
et al. 2018; Wang et al. 2021) have identified that the
most common ASXL1 mutations generate a stable trun-
cated protein that promotes the activity of the histone
H2A lysine 119 deubiquitinase BAP1 (Fig. 2). These obser-
vations motivated Wang et al. (2021) to screen for BAP1
catalytic inhibitors. A first-in-class BAP1 inhibitor abro-
gated truncatedASXL1 gene expression and tumor growth
in vivo. Future studies elucidating the dependency of
ASXL1 mutant cells on BAP1 or BAP1 inhibitors will be
an important next step in evaluating this new therapeutic
target.

Similar to ASXL1 mutations, RUNX1 mutations have
also been associatedwith an adverse prognosis in AML pa-
tients (Döhner et al. 2017). RUNX1 mutations have been
shown to lead to impaired biogenesis of ribosomes and to
be more susceptible to treatment with venetoclax or the
protein translation inhibitor homoharringtonine (Mill

Figure 3. Therapeutic modalities for targeting aberrant RNA
splicing in acute myeloid leukemia. Based on data identifying
that leukemia cells with change of function mutations in RNA
splicing factor genes are preferentially sensitive to chemicalmod-
ulators of splicing, a number of means to perturb splicing have
been developed. These include SF3b binding agents, RBM39-de-
grading compounds, and inhibitors of a series of enzymes that
place critical post-translational modifications on splicing factors,
such as inhibitors of protein arginine methyltransferases
(PRMTs), CDC2-like (CLK) protein kinases, and SRprotein kinas-
es (SRPKs).
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et al. 2021). In vitro experiments demonstrated reduced
levels of c-Myc, c-Myb, MCL1, and BCL-XL in RUNX1
mutantAML cells treatedwith homoharringtonine. Addi-
tionally, cotreatment with venetoclax or BET inhibitors
with homoharringtonine had synergistic effects, suggest-
ing homoharringtonine-based combination therapies as
a potential therapeutic option in AML patients with
RUNX1 mutations (Mill et al. 2019, 2021).
Loss-of-function mutations in TET2 are found in ∼10%

of AML patients but are more common in patients with
MDS or CMML (Delhommeau et al. 2009). TET2 loss
has been associated with DNA hypermethylation and
changes in gene expression in hematopoietic stem and
progenitor cells leading to increased self-renewal and my-
eloid differentiation (Moran-Crusio et al. 2011). It is also
notable thatTET2mutations are one of themost common
mutations in otherwise healthy people with clonal hema-
topoiesis and confer a preleukemic lesion that can pro-
mote development of myeloid neoplasm (Busque et al.
2012; Jaiswal et al. 2014; Xie et al. 2014). Thus, restoration
of TET2 activity not only could be beneficial in patients
with AML and MDS but could potentially even prevent
the development of an overtmyeloid neoplasm in patients
with clonal hematopoiesis. In inducible and reversible
Tet2 knockdown mouse models, treatment with vitamin
C was able to restore Tet2 expression and to reverse the
aberrant self-renewal of hematopoietic stem and progeni-
tor cells (Cimmino et al. 2017). Additionally, vitamin C
treatment increased the susceptibility of leukemia cells
to treatmentwith poly-ADP-ribose polymerase (PARP) in-
hibitors (Cimmino et al. 2017). As TET2 mutations have
also been associated with increased response rates to
hypomethylating agents (Bejar et al. 2014), using vitamin
C as an adjunct to treatment with hypomethylating
agents or PARP inhibitors could lead to therapeutic syn-
ergy. The combination of azacitidine and vitamin C has
been studied in a phase II clinical trial (NCT03397173)
but no results have been published yet.
It has also been shown that the oncometabolite 2-

hydroxyglutarate is lethal to TET2-deficient cells, which
also explains the mutual exclusivity of TET2 and IDH1/
2mutations. Therefore, TET-selective dioxygenase inhib-
itors have been developed and shown to have antileuke-
mic effects in xenografts from TET2 mutated human
leukemia, but additional testing in clinical trials is neces-
sary (Guan et al. 2021).

Immune therapies in AML

Beyond cell-intrinsic genetic alterations driving AML de-
velopment, avoiding elimination by the immune system
via the up-regulation of inhibitory immune checkpoints
such as programmed death (PD)-1 and cytotoxic T lym-
phocyte-associated protein (CTLA)-4 has been associated
with disease persistence in AML (Williams et al. 2019).
Several additional inhibitory immune checkpoints, in-
cluding TIM-3 and LAG-3, have also been implicated in
immune evasion in AML, and the double expression of
PD-1 and TIM-3 or LAG-3 is a characteristic feature of

T-cell exhaustion at the time of disease relapse (Kong
et al. 2015; Schnorfeil et al. 2015; Williams et al. 2019;
Bewersdorf et al. 2020).
In an era of increasingly individualized, genetically driv-

en treatment approaches to AML patients, recent efforts
have focused on the characterization of the immune land-
scape in genetically defined patient subsets. For example,
emerging data suggest that TP53mutations confer an im-
munosuppressive phenotype in patients with secondary
AML or MDS that is characterized by the up-regulation
of PD-L1 and other markers of CD8+ T-cell exhaustion,
an expanded population of immunosuppressive regulatory
T cells, and increased interferon-γ signaling (Sallman et al.
2020b; Vadakekolathu et al. 2020a,b). Thus, clinical trials
to increase antitumor immune responses using immune
checkpoint inhibitors, bispecific antibodies, and cellular
therapies have been conducted with mixed results (Table
3; Bodduet al. 2018; Liu et al. 2019). Figure 4 illustrates var-
ious immune targets in development for AML.
While treatment with anti-PD-1/PD-L1 or anti-CTLA-4

antibodies has reshaped the treatment for various solid
malignancies, results inmyeloidmalignancies have large-
ly been disappointing, with limited efficacy if used as
monotherapy (Berger et al. 2008; Zeidan et al. 2018).
One of the few trials showing clinical efficacy of anti-
CTLA-4 monotherapy with ipilimumab enrolled 28 pa-
tients (12 with AML and two with MDS) who relapsed af-
ter allo-HCT (Davids et al. 2016). Five patients (23%)
achieved a CR in this trial, with four of these patients pre-
senting with extramedullary disease, suggesting that ipili-
mumab is able to reinvigorate the “graft versus leukemia”
effect in some patients. However, it is unclearwhat specif-
ic characteristics of the immunemicroenvironment in pa-
tients with extramedullary disease render these tumors
more susceptible to immune checkpoint blockade. Of
note, exacerbation of “graft versus host disease” consti-
tuted a dose-limiting toxicity in this trial, and fatal “graft
versus host disease” with the use of immune checkpoint
inhibitors in the post-transplant setting have been report-
ed (Davids et al. 2016; Gros et al. 2017).
Preclinical studies showing up-regulation of PD-1, PD-

L1,CTLA-4, and PD-L2 inCD34+ cells frompatients treat-
ed with hypomethylating agents have suggested potential
synergy of hypomethylating agents with immune check-
point inhibitors (Yang et al. 2014; Ørskov et al. 2015).
While single-arm studies supported synergistic effects of
azacitidinewith anti-PD-1 and/or anti-CTLA4 antibodies,
the only randomized trial that compared the anti-PD-L1
antibody durvalumab plus azacitidine with azacitidine
alone did not show a survival benefit in newly diagnosed
older AML or MDS patients (Zeidan et al. 2019a; Chien
et al. 2020;Morita et al. 2020; Saxena et al. 2021). A poten-
tial barrier to the success of these trials is the absence of a
validated biomarker predicting response to immune
checkpoint inhibitors. While PD-1 expression on T cells
does not appear to predict response, the absolute CD3+

and CD8+ T-cell count prior to therapy, a higher number
of ICOS (inducible T-cell costimulator)-expressing T cells,
and a low bone marrow blast percentage have been sug-
gested as potential response predictors (Zeidan et al.
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2018; Daver et al. 2019). On a genetic level, the presence of
ASXL1 mutations has been associated with higher re-
sponse rates to combination treatment with azacitidine

plus the anti-PD1 antibody nivolumab (Daver et al.
2019). However, additional validation of immunopheno-
typic and molecular biomarkers is necessary.

Table 3. Results of selected trials on immune therapies in AML and MDS

Reference Therapy Phase Study population Outcomes

Immune checkpoint inhibitors
Anti-PD1

Berger et al. 2008 Pidilizumab I R/R AML (n =8) 1 patient with reduction in
peripheral blasts from 50% to 5%

Daver et al. 2019 Nivolumab+AZA Ib/II R/R AML (n =70) 33% ORR (22% CR/CRi)
Ravandi et al.
2019

Nivolumab+ cytarabine/
idarubicin induction and
consolidation

II Frontline AML and MDS (n =44) CR/CRi 78%; median OS: 18.5 mo

Tschernia et al.
2021

Pembrolizumab as bridge to
allo-HCT

II 9 AML patients receiving high-
dose cytarabine followed by
pembrolizumab prior to allo-
HCT

1-yr OS: 67%

Chien et al. 2021 Pembrolizumab+AZA II Frontline (n= 17) and R/R (n=20)
MDS

Frontline: 76% ORR, median OS
not reached

R/R: 25% ORR, median OS 5.8 mo
Anti-PD-L1

Zeidan et al.
2019a

Durvalumab+AZA vs.
AZA monotherapy

II Frontline MDS (n =84) and AML (n
=129)

ORR (MDS: 61.9% for AZA+
durvalumab vs. 47.6% with AZA
alone; AML: 31.3% vs. 35.4%)

Median OS (MDS: 11.6 mo vs. 16.7
mo; AML: 13.0 mo vs. 14.4 mo)

Anti-CTLA4

Zeidan et al. 2018 Ipilimumab Ib R/R MDS (n =29) 1 patient with mCR, 24% with
prolonged stable disease

Anti-CD47

Sallman et al.
2020a

Magrolimab+AZA II Frontline MDS (n =39) and AML (n
=29)

MDS: 91% ORR (42% CR): AML:
64% ORR (40% CR)

Zeidan et al. 2022 CC-90002 I R/R AML (n =24) and MDS (n=4) No objective responses

Anti-TIM3

Brunner et al.
2021

Sabatolimab+HMA Ib Frontline AML (n =48), MDS (n =
51)

AML: 40.0% ORR; MDS: 56.9%
ORR

Bispecific antibodies

Uy et al. 2021 Flotetuzumab (anti-CD3×
CD123 DART)

I/II R/R AML (n =88) ORR: 30% among AML patients
with primary induction failure or
early relapse; 24% in unselected
cohort

Ravandi et al.
2020a

Vibecotamab (anti-CD3×
CD123 BiTE)

I R/R AML (n =104) ORR: 14% (4% CR)

Ravandi et al.
2020b

AMG 330 (anti-CD3×
CD33 BiTE)

I R/R AML (n =55) ORR: 19% (7% CR)

Subklewe et al.
2019

AMG 673 (anti-CD3×
CD33 BiTE)

I R/R AML (n =30) 1 patient with CRi; 6 with ≥50%
bone marrow blast reduction

CAR T cells

Liu et al. 2018 Anti-CLL1-CD33
compound CAR T cells

I R/R AML 1 patient with MRD-negative CR

Sallman et al.
2018

NKG2D CAR T cells I R/R AML (n =8), multiple
myeloma (n =3), MDS (n=1)

AML: ORR 42% (1 patient with
CRh)

(Allo-HCT) Allogeneic hematopoietic cell transplantation, (AML) acute myeloid leukemia, (AZA) azacitidine, (BiTE) bispecific T-cell
engager, (CMML) chronic myelomonocytic leukemia, (CR) complete remission, (CRi) complete remission with incomplete count re-
covery, (CTLA-4) cytotoxic T lymphocyte-associated protein-4, (DART) dual-affinity retargeting, (HMA) hypomethylating agent,
(mCR) marrow CR, (MDS) myelodysplastic syndrome, (MRD) minimal residual disease, (ORR) overall response rate, (OS) overall sur-
vival, (PD1) programmed cell death protein 1, (R/R) relapsed/refractory, (TIM3) T-cell immunoglobulin and mucin domain-containing.
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Novel immune checkpoint inhibitors and combination
approaches

Following the lackluster results with anti-PD-1/PD-L1-
and anti-CTLA-4-directed therapies, novel therapeutic
targets such as TIM-3, LAG-3, and CD47 have been ex-
plored. As the presence of exhausted immune effector
cells that are characterized by PD-1 and TIM-3, TIGIT,
or LAG-3 expression have been linked toAML relapse, tar-
geting both either sequentially or simultaneously could

have the potential to reverse this immune-exhausted state
(Kong et al. 2016; Lichtenegger et al. 2018; Armand et al.
2019; Toffalori et al. 2019; Williams et al. 2019). The ex-
pression of TIM-3 on leukemic stem cells in particular
makes TIM-3 a promising target in AML (Kikushige
et al. 2010; Haubner et al. 2019).
MBG453 (sabatolimab) is an anti-TIM-3 monoclonal

antibody currently being explored in clinical trials in
combination with hypomethylating agents and/or vene-
toclax in AML, MDS, and CMML (NCT04150029 and
NCT03946670) (Zeidan et al. 2020a). Data from a phase
I trial that combined MBG453 with decitabine or azaciti-
dine in patients with MDS, CMML, and AML showed re-
sponse rates ranging from 40.0% among newly diagnosed
AML patients to 56.9% for MDS patients (Brunner et al.
2020; Brunner et al. 2021). Grade 3 or higher treatment-
emergent adverse events were primarily hematologic
with thrombocytopenia (43.4%–45.8%), neutropenia
(47.2%–50.0%), and febrile neutropenia (29.2%–35.8%)
in both cohorts. Bispecific antibodies and chimeric anti-
gen receptor (CAR) T cells targeting both TIM-3 and other
leukemic stem cell markers such as CD13, CLL1, and
CD33 have also been tested preclinically and could enable
the eradication of leukemic stem cells while minimizing
on-target, off-leukemia side-effects (Haubner et al. 2019;
He et al. 2020). However, these agents have only been test-
ed in vitro to date.
The role of the innate immune system in the antitumor

immune response has received increasing attention recent-
ly, with studies showing the role of CD47 in the immune
evasion of leukemic cells. CD47 is overexpressed on
AML blasts and leukemic stem cells and has been associat-
ed with adverse outcomes in AML and MDS patients
(Majeti et al. 2009; Chao et al. 2020). Via interaction with
SIRPα on macrophages, CD47 functions as a “do not eat
me” signal that protects leukemic cells from phagocytosis
(Russ et al. 2018). Several antibodies targeting anti-CD47
(e.g., CC-90002, Hu5F9-G4 [magrolimab], and TTI-621)
have been developed and showed only limited efficacy
when used as single agents (Petrova et al. 2017; Zeidan
et al. 2019b, 2022). However, the addition of azacitidine
to magrolimab has been shown to significantly enhance
the therapeutic efficacy with ORR of 91% (42% CR) and
64% (40%CR) innewly diagnosedMDSandAMLpatients,
respectively (Sallman et al. 2020a). While not specifically
directed against TP53 mutations, combining magrolimab
with azacitidine also showed significant efficacy in TP53
mutant AML patients with a 75% ORR (Sallman et al.
2020a). Treatment was generally well tolerated, with ane-
mia (38%; an expected on-target adverse event due to ex-
pression of CD47 on erythrocytes), fatigue (21%),
neutropenia (19%), and thrombocytopenia (18%) being
the most common adverse events (Sallman et al. 2020a).
However, these promising results need to be validated in
the ongoing randomized placebo-controlled phase III trial
(NCT04313881). Besides targeting CD47, ablation of the
AXL receptor in macrophages has been shown to enable
NK cell- and T-cell-mediated antitumor immune respons-
es and to restore sensitivity to PD1 inhibition in preclinical
leukemia models (Tirado-Gonzalez et al. 2021).

Figure 4. Innate and adaptive immune targets in clinical evalu-
ation for the treatment of acute myeloid leukemia. Currently,
clinical trials combining anti-CD47 antibodies (which block
CD47 interaction on AML cells with the receptor SIRPa on mac-
rophages) with DNA hypomethylating agents and the triplet of
HMAs and venetoclax are ongoing. In addition, blocking SIRPα
is being pursued clinically, and inhibiting signaling downstream
from the AXL receptor tyrosine kinase on macrophages has
been shown in preclinical settings to promote innate immune
killing of AML. While treatment with anti-PD-1/PD-L1 or anti-
CTLA-4 antibodies has had limited efficacy if used as monother-
apy or combined with hypomethylating agents inMDS and AML
to date, targeting adaptive immune signaling via blocking the
TIM-3 immune checkpoint is currently being evaluated in
AML. Preclinical data suggest a tumor cell-autonomous effect
of TIM-3 signaling in AML where the TIM-3 ligand Gal-9 is se-
creted by AML cells and supports AML survival via an autocrine
loop. Finally, a number of AML-associated surface antigens are
being targeted via T-cell-engaging approaches, including CD33,
CD123, and CD371 (CLL1). Currently, the safety and utility of
these latter approaches are unclear, as many of these antigens
are expressed on normal myeloid cells and/or hematopoietic
precursors.
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Bispecific antibodies

Bispecific antibodies constitute a heterogenous class of
antibody constructs that simultaneously bind CD3 on
T cells and another specific tumor-associated antigen on
the surface of tumor cells, leading to an HLA-indepen-
dent, endogenous immune response against the target
cell (Huehls et al. 2015). This has the advantage of mini-
mizing off-target toxicity but also inducing an antitumor
response independent ofMHC-I expression on tumor cells
or costimulatory signals (Dreier et al. 2002; Brischwein
et al. 2007; Huehls et al. 2015).

The first approval for this novel class of therapeutics
was granted to the anti-CD3/CD19 bispecific T-cell
engager (BiTE) blinatumomab in acute lymphoblastic leu-
kemia (ALL) (Kantarjian et al. 2017; Gökbuget et al. 2018).
In contrast to ALL, target antigen selection in AML is
more difficult given the expression of potential targets
on both leukemic cells and normal hematopoietic stem
and progenitor cells. Several potential therapeutic targets
for bispecific antibodies, including CD33, CD123, and
CLEC12A, have been explored in AML, but early con-
structs had limited efficacy in clinical trials (Clark and
Stein 2020; Slade and Uy 2020). As a comprehensive re-
view of the various different constructs would be beyond
the scope of this review, we refer the reader to a recent re-
view on T-cell-based therapies in AML (Daver et al. 2021).

AMG 330 is an anti-CD3/CD33 BiTE that has been
studied in a phase I trial (NCT02520427) that enrolled
55 patients with R/R AML and demonstrated objective re-
sponses in eight out of 42 evaluable patients (19.1%; four
patients with CR), with 67% of patients experiencing cy-
tokine release syndrome (grade 3 or higher in 13%) (Rav-
andi et al. 2020b). Several other anti-CD3/CD33 BiTE
constructs (e.g., AMG 673 and AMV 564) tested in early
stage clinical trials in patients with R/R AML showed ac-
ceptable safety and some antileukemic efficacy (Subklewe
et al. 2019; Westervelt et al. 2019). These latter agents of-
fer the advantage of an extended half-life compared with
AMG 330, which requires a continuous infusion. Preclin-
ical studies showed that AMG 330 led to up-regulation of
PD-L1 on primary AML cells, which could represent an
escape mechanism by tumor cells, underlying the limited
response rates seen in clinical trials thus far. As addition
of PD-1/PD-L1 blockadewas able to restore T-cell prolifer-
ation and AMG 330-mediated leukemic cell lysis pre-
clinically, combination treatment of anti-PD-1/PD-L1
antibodies and BiTEs could be a potent therapeutic option
that is currently being explored in a clinical trial
(NCT04478695) (Krupka et al. 2016).

CD123 is expressed on both normal hematopoietic
stem and progenitor cells but also on AML blasts and
leukemic stem cells (Ehninger et al. 2014). Among the var-
ious anti-CD123 targeted bispecific antibodies, flotetuzu-
mab, an anti-CD3/CD123 dual-affinity retargeting
antibody, is the furthest advanced in clinical development
(Uy et al. 2021). Flotetuzumab has been studied in 88 pa-
tients with R/R AML in a phase I/II study and showed
an ORR of 30.0% among patients with primary induction
failure or relapse within 6 mo as well as 24% in the total,

unselected patient cohort (Uy et al. 2021). Given the oth-
erwise very limited prognosis in patients with induction
failure or early relapse, a 6- and 12-mo OS estimate of
75% and 50%, respectively, among responding patients
appears encouraging (Uy et al. 2021). Correlative studies
from this trial also revealed up-regulation of inhibitory
immune checkpoints following treatment with flote-
tuzumab, which highlights the immunosuppressive
microenvironment in the bone marrow and provides
the rationale for combination of flotetuzumab with PD-
1/PD-L1-directed therapies (Vadakekolathu et al. 2020b).
The investigators also identified specific interferon-γ-re-
lated gene signatures as a potential biomarker for response
to flotetuzumab that could help with patient selection
based on response likelihood (Vadakekolathu et al.
2020b). Vibecotamab is another anti-CD3/CD123 BiTE
that has demonstrated dose-dependent antileukemic ac-
tivity in a phase I study of 104 R/R AML patients, with
14% of patients responding at the higher dose level with
frequent but manageable cytokine release syndrome
(85% grades 1–2, 15% grade 3 or higher) (Ravandi et al.
2020a).

While early results with bispecific antibodies appear
promising, several challenges pertaining to antigen target
selection, dose/schedule optimization, and management
of toxicities (e.g., cytokine release and neurotoxicity) re-
main. Additionally, resistance mechanisms such as the
up-regulation of inhibitory immune checkpoint or anti-
gen loss warrant further exploration.

Chimeric antigen receptor (CAR) T-cell therapy

CAR T cells have been approved for various advanced
B-cell malignancies (Park et al. 2018; Schuster et al.
2019). In contrast to bispecific antibodies, CAR T cells
are genetically modified autologous T cells that expand
and persist after infusion to induce both short- and long-
term antileukemic immune response. However, the de-
velopment of CAR T cells in AML has been hindered by
the lack of a tumor-specific antigen and the clonal hetero-
geneity of AML (Daver et al. 2021). Several early phase
clinical trials targeting CD33, CD123, or NKG2D are on-
going and objective responses have been reported, but the
data available currently are too immature and limited to
draw any definitive conclusions (Liu et al. 2018; Sallman
et al. 2018). Multiple efforts to improve the efficacy of
CAR T cells in AML are ongoing and include the identifi-
cation of alternative target antigens, the development of
compound or bispecific and split CAR T cells that target
two distinct antigens, combination with azacitidine, and
gene-editing strategies using CRISPR–Cas9 to reduce on-
target, off-leukemia toxicity (Kim et al. 2018; Liu et al.
2018; El Khawanky et al. 2019; Leick et al. 2019; He
et al. 2020). However, these efforts remain in the preclin-
ical space at this point.

Neoantigens and tumor vaccines

Neoantigens are derived from cancer-associated aberrant
proteins that are presented bound to human leukocyte
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antigen (HLA)moleculesonthe cell surfaceandelicit anan-
titumorT-cell response (Biernacki andBleakley2020). Iden-
tification of AML-associated neoantigens could therefore
provide a new target for immunotherapies. Compared
with various solidmalignancies,AMLhas a low tumormu-
tational burden, which may be associated with a relatively
lower number of candidate neoantigens (Chalmers et al.
2017). However, subsets of AML patients are characterized
by recurrent fusions andmutations in RNAprocessingma-
chinery, which may serve as neoantigens (although their
immunogenicity remains to be systematically assessed)
(BiernackiandBleakley2020).Theneoantigenburden inge-
netically defined AML subsets is being increasingly eluci-
dated, with the most data available for patients with
NPM1 mutations and fusions such as MLL-KMT2A,
CBFB-MYH11, or PML-RARA (Meyer et al. 2018; van der
Lee et al. 2019; Biernacki et al. 2020). For example, mutant
NPM1, when presented on HLA-A∗02:01 on leukemic
blasts, hasbeenshowntoelicit aCD8+T-cell response invi-
tro. Similar data exist forCBFB-MYH11,which results in an
immunogenic fusion protein in HLA-B∗40:01+ donors.
However, whether this could offer a targeted immunother-
apy option in genetically defined subsets of AML patients
requires additional studies, and whether these advances
could pave the way for vaccine therapy in AML is an area
of ongoing research (Berlin et al. 2015; Rosenblatt et al.
2016; Pearlman et al. 2021).
Pharmacologic modulation of RNA splicing has also

been shown to generate immunogenic neoantigen pep-
tides that are presented on MHC-I and elicit a CD8+

T-cell response (Lu et al. 2021). Furthermore, combination
of the splicingmodulator indisulam and an anti-PD1 anti-
body was able to induce an antitumor T-cell response in
murine solid tumor syngeneic models (Lu et al. 2021).
As mutations in genes involved in splicing regulation
such as SF3B1 are frequently encountered in MDS and
AML, the possibility of RNA splicing factor mutation-in-
duced neoantigens is intriguing. While data from MDS
and AML patients are limited, SF3B1 mutations have
been associated with the generation of putative neoanti-
gens in myeloproliferative neoplasm as well as uveal mel-
anoma, which could serve as potential targets for
immunotherapy (Schischlik et al. 2019; Bigot et al.
2021). Evaluation of these fusion and RNA-derived neoan-
tigens for therapeutic targeting of MDS and AML will be
an important area of research in the near future.

Conclusion and future directions

Thanks to technological advances and wider availability,
individualized treatment selection based on genetic and
molecular features is increasingly becoming routine clin-
ical practice. While only FLT3, IDH1, and IDH2 muta-
tions are currently targetable by specific small molecule
inhibitors, several other compounds targeting dependen-
cies caused by mutations in RNA splicing factors, TET2,
RUNX1, andASXL1might become available in the future
and expand the proportion of AML and MDS patients eli-
gible for targeted therapies. Additionally, a multitude of

antibody and cellular therapies are in various stages of
clinical development, including randomized phase III tri-
als that could lead to the approval of a new class of thera-
peutic agents in myeloid malignancies.
Although the rate of early mortality with AML induc-

tion chemotherapy has been declining over the last de-
cades, a substantial subset of older patients with AML
remains untreated due to concerns for treatment-related
toxicity. Indeed, early mortality with cytarabine/anthra-
cycline-based induction chemotherapy has been reported
to be >10% in population-based studies (Zeidan et al.
2019c, 2020b). With the introduction of venetoclax-based
therapies, an effective, lower-intensity option has become
available for older AML patients, but responses are time-
limited, and myelosuppression remains a concern that
may preclude use of this regimen in frail, very elderly pa-
tients (DiNardo et al. 2020a). Therefore, the development
of well-tolerated and effective novel therapies in both the
frontline and R/R setting is still needed. Such targeted and
safe therapies are especially important when given as
maintenance therapy following induction chemotherapy
or allo-HCT or pre-emptively in patients with clonal he-
matopoiesis of indeterminate potential (CHIP). Recent
studies with the multikinase inhibitor sorafenib have
demonstrated an OS benefit of sorafenib maintenance
therapy after allo-HCT, but treatment discontinuation
due to adverse events remains a concern (Burchert et al.
2020; Xuan et al. 2020). Several other agents, including
FLT3 inhibitors and venetoclax, are currently being eval-
uated in randomized clinical trials in this setting as well
(Bewersdorf et al. 2021b).
An additional important area of future research will be

potential preventive approaches against AML, with the in-
creasing recognition of CHIP and its risk of progression to
MDS and AML (Genovese et al. 2014; Jaiswal et al. 2017).
CHIP refers to the presence of somatic mutations in genes
associated with myeloid neoplasms in otherwise healthy
individuals (Steensma et al. 2015).While certainmutations
(e.g., TP53) and the presence of cytopenias are associated
with a higher risk of evolution into an overt myeloid neo-
plasm, genes involved in epigenetic processes (e.g., TET2,
DNMT3A, and ASXL1) are most frequently encountered
in CHIP (Malcovati et al. 2017; Sperling et al. 2017; Desai
et al. 2018). As peripheral blood-based next-generation se-
quencing is becoming increasinglyperformed forother indi-
cations (e.g., patients with solid tumors), CHIP is likely
goingtobecomeamoreprevalent clinical scenario in the fu-
ture, and it will be interesting to determine whether pre-
emptive therapy can prevent the development of overt my-
eloid neoplasms. For example, patients with IDH2 muta-
tions have a very high risk of eventually developing AML
but could benefit from suppression of clonal evolution by
treatment with enasidenib (Desai et al. 2018). This exact
concept is currentlybeing evaluated in amulticenter, phase
I clinical trial (NCT05102370) in patients with IDH2 mu-
tant clonal cytopenia of undetermined significance
(CCUS). Other open questions that could be worth explor-
ing are whether treatment of chronic inflammation or use
ofvitaminCcandelayorevenabrogatedevelopmentofmy-
eloid neoplasms (Cimmino et al. 2017; Jaiswal et al. 2017).
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In addition to careful selection of high-risk patientswho are
most likely to benefit from preventive treatment, such
agents would need to have limited side-effects given their
prolonged use in (currently) healthy individuals.
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