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Abstract

Due to the high cost of sequencing-based genomics assays such as ChIP-seq and DNase-seq, the epigenomic
characterization of a cell type is typically carried out using a small panel of assay types. Deciding a priori which assays
to perform is, thus, a critical step in many studies. We present the submodular selection of assays (SSA), a method for
choosing a diverse panel of genomic assays that leverages methods from submodular optimization. More generally,
this application serves as a model for how submodular optimization can be applied to other discrete problems in
biology.
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Background
Genomics assays such as ChIP-seq, DNase-seq, and RNA-
seq, can measure a wide variety of types of DNA activity,
but the cost of these assays limits their application. In
principle, to characterize a cell type fully, one would like
to perform every possible type of assay, including ChIP-
seq for a variety of histone modifications and dozens
of transcription factors, several chromatin accessibility
assays, and RNA-seq to characterize various types of RNA
molecules. However, at current sequencing prices, per-
forming a single genomics assay with reasonable sequenc-
ing depth costs of the order of $400 (https://www.
scienceexchange.com/services/chip-seq). As a point of
comparison, consider the ENCODE and Roadmap Epige-
nomics consortia, which develop, perform, and analyze
genomics assays as their primary activity [1, 2].
As of August 2016, the two consortia had performed a

total of 359 types of assays on at least one cell type, and
at least one assay on a total of 583 cell types (“Methods”).
Applying all these assay types to all these cell types would
require 209,297 assays; however, the two consortia have
performed just 5,707 assays, 5 % of the possible number
(http://www.encodeproject.org; 2016).
These consortia are worldwide efforts with large bud-

gets; a typical lab may be able to perform at most several
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assays per cell type when analyzing a particular tissue or
perturbation that they are interested in. Moreover, there
are virtually limitless perturbations and variations of a
given cell type for which it would be interesting to exam-
ine the effect on DNA activity, including drug treatments,
age, differentiation, etc.
Consequently, selecting a small panel of assays to per-

form on each cell type of interest—a problemwe call assay
panel selection—is a key step in any genomics project. To
our knowledge, there has been little discussion in the lit-
erature of how to choose such a panel. In consortia such
as ENCODE and Roadmap, the procedure for choosing
which assay types to perform on each cell type is typi-
cally ad hoc. These decisions are made by the investiga-
tors involved, based on their intuition about the diversity
of assay types, perhaps based on pairwise correlations
between assays or similar simple metrics. Ernst and Kellis
[3] proposed that imputation methods can evaluate the
quality of a given panel, but this approach cannot be used
efficiently to select a panel (see “Conclusion”).
In this work, we propose a principled method to

solve the assay panel selection problem. Qualitatively, the
method aims to identify, based on existing data sets, assay
types that yield complementary views of the genome. In
practice, many pairs of assay types yield redundant infor-
mation. For example, the transcription factors REST and
RCOR1 are cofactors and, therefore, bind almost the same
set of genomic positions [4]. Similarly, the histone mod-
ification H3K36me3 primarily marks gene bodies, which
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are also transcribed and, therefore, measured by RNA-
seq. Therefore, a great deal of what can be learned from
the full set of assays can likely be learned by perform-
ing a small subset of the possible assays. This redundancy
among assay types suggests that a carefully chosen panel
of assays is likely to produce most of the information that
would be obtained by performing all assays. Our solu-
tion to the assay panel selection problem is composed of
two parts: an objective function that defines the quality
of a panel and an optimization algorithm that efficiently
finds a panel that scores highly according to the objective
function.
We propose to use an objective function called facility

location (defined mathematically below), which measures
what fraction of the information available in the full set
of assay types is contained within the panel. This function
has been previously applied in many fields, including doc-
ument summarization [5], feature selection for machine
learning [6], and exemplar-based clustering [7]. This func-
tion also corresponds to the objective function of the
widely used k-medoids clustering algorithm [8]. Com-
puting the facility location function requires a measure
of similarity between assay types. For this purpose, we
use the Pearson correlation between the two assays, aver-
aged over the cell types in which the assays have been
performed. We chose this objective function because it
performs better than or comparably to the other methods
we tried (Additional file 1: Notes 1–4).
To optimize the facility location function, we borrow

methods from the field of submodular optimization. A
simple approach to selecting a panel of assays would eval-
uate the facility location function for every possible subset
of assays and then choose the highest-scoring subset.
Unfortunately, 216 possible assay types yield 2216 ≈ 1065
possible panels of assays, so this approach is not feasible
in practice. Fortunately, an efficient alternative selection
method exists because the facility location function has
the property of submodularity. The property of submod-
ularity (defined mathematically below) is analogous to
the property of convexity but is defined on discrete set
functions rather than continuous functions. Submodular
functions have a long history in economics [9, 10], game
theory [11, 12], combinatorial optimization [13–15], elec-
trical networks [16], operations research [17], and more
recently, machine learning [6, 18–20], but they are not
yet widely used for problems in biology. Therefore, this
application may serve as a model for how submodular
optimization can be applied to biological problems more
generally.
We apply existing submodular optimization algorithms

to the facility location function to select a high-quality
panel of assays efficiently, a method we call the submodu-
lar selection of assays (SSA). There exists a large literature
of methods for optimizing submodular functions. The

optimization method we employ is very efficient and is
theoretically guaranteed to find a solution whose qual-
ity comes within a constant factor of the quality of the
optimal solution [21].
In addition to proposing solutions to the assay panel

selection problem, an important contribution of this work
is the development of three general methods for evaluat-
ing the quality of a selected panel of assays. These three
methods correspond to three distinct practical applica-
tions of the selected panel: (1) the accuracy with which
the panel can be used to impute the results of assays
not included in the panel; (2) the accuracy with which
the panel can be used to detect functional elements,
such as transcription factor binding sites, promoters, and
enhancers; and (3) the quality of a whole-genome annota-
tion produced using the panel. These evaluation metrics
share the property that an informative and diverse set of
assay types yields better performance, according to each
metric, than does a redundant set. Note that these eval-
uation metrics differ from the objective function because
they use information that is not available at the time a
panel is chosen; therefore, the evaluation metrics them-
selves cannot be used directly to choose a panel. These
three metrics will be useful for any future study of the
quality of a panel of assays, independent of the particular
procedure used to choose such a panel.
We consider two variants of the assay panel selection

problem. We are primarily interested in the “future” vari-
ant, which arises when a researcher is interested in apply-
ing a panel of genomics assays to a new tissue type or
cellular condition. In this case, the researcher must use
previously performed assays in other cell types to choose a
representative panel of assay types. However, we also con-
sider the “past” variant, which arises when a researcher is
interested in applying a computationally expensive anal-
ysis, such as a genome annotation method, that cannot
efficiently be run on all available data sets. In this setting,
the researcher must choose a representative panel from
the available data to use as input to the analysis. In this
case, the researcher may use the data from assays per-
formed on the cell type in question to inform their choice.
We propose a variant of our method, called SSA-past,
which leverages this information to allow a researcher to
choose such a representative panel in this setting.

Results and Discussion
SSA identifies diverse panels of genomics assays
SSA takes as input a collection of genomics data sets
(assays) and identifies a high-quality subset of those assays
(“Methods”, Fig. 1). Each input data set is represented as
a real-valued signal vector over the genome. SSA begins
by computing a pairwise similarity matrix that contains,
for each pair of assay types, the mean Pearson corre-
lation over all pairs of assays of those two types. The
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Fig. 1 Schematic of the selection process performed by submodular selection of assays (SSA). The method takes as input all available existing
genomics assays, where each assay is represented as a real-valued track over the genome. In the SSA-past mode, SSA selects a panel of
already-performed assays to use as input to an expensive computational analysis. In the SSA-future mode, SSA chooses a panel of assay types to be
performed in a new cell type. In both cases, the resulting data sets are provided as input to downstream analyses, which may include imputing
assays that were not performed, predicting the locations of functional elements, or semi-automated genome annotation. SSA submodular selection
of assays

method employs a submodular function, called facility
location (“Methods”), to estimate the quality of any pos-
sible panel of assay types. The facility location function
takes a high value for a particular panel when all assay
types have at least one similar representative in the panel.
We chose this strategy because it performed the best of
those we tried according to our evaluation (Additional
file 1: Notes 1–4). SSA then applies the greedy submodular
optimization algorithm (“Methods”) to efficiently choose
a panel of assays that maximizes this facility location func-
tion. The output of this method is an ordered list of
assay types, where the top k assay types in this list repre-
sent a high-quality panel of size k. A detailed description
and theoretical justification for the method is provided in
“Methods”.
By analyzing data from the ENCODE and Roadmap

Epigenomics Consortia, we found that SSA results in assay
panels with diverse genomic functions.
Because researchers often perform panels consisting

entirely of histone modifications or entirely of transcrip-
tion factor ChIP-seq assay types, we ran the method
separately on transcription factor and histone modifica-
tion types (combined panels are shown in Additional file 1:
Table S1).
When choosing from transcription factors, SSA chooses

factors that engage in diverse regulatory pathways
(Table 1). The vast majority of transcription factors in our
data set bind to promoters and enhancers and regulate
the transcription of RNA Pol II-transcribed genes. The
top five transcription factors chosen by SSA include three
of these factors, each of which regulates very different

regulatory pathways: SMARCB1, an ATP-dependent
chromatin remodeler; PML, a tumor suppression factor;
and STAT5A, a factor involved in developmental sig-
nal transduction [22]. The top five also includes two
factors—CTCF and BRF2—that are not solely involved
in RNA Pol II-mediated transcription. CTCF, part of the
cohesin complex, regulates chromatin conformation and
enhancer-promoter insulation, and only about half of its
binding sites occur in promoters or enhancers. BRF2 is
part of the RNA Polymerase III complex, which tran-
scribes rRNA, tRNA, and other small RNAs. These two
assay types each have low objective scores when in a panel
by themselves (“singleton scores”), but are chosen by SSA
because they measure different types of activity than the
rest of the panel. Therefore, they are important to include
in a diverse panel.
When choosing a panel of histone modifications, SSA

selects marks that cover diverse types of genomic regions
and exhibit qualitatively different patterns (Fig. 2, Table 2).
The top six histone modifications include a promoter
mark (H3K4me3), an enhancer mark (H3K4me1), a gene
mark (H3K79me2) andmarks associated with both known
types of repressive domains, facultative (H3K27me3)
and constitutive (H3K9me3) heterochromatin. The two
repressive marks, H3K27me3 and H3K9me3, have the
lowest singleton scores of all the histone modifications,
but they give a high objective gain because they measure
distinct activity from the rest of the panel. In contrast,
even though H3K27ac is sometimes considered the best
individual mark of enhancers and has a high singleton
score, it is chosen last by SSA because it is redundant
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Table 1 Panels of transcription factors assays chosen by SSA-future

Choice
Transcription factor Function

Singleton Objective
order score gain

1 SMARCB1 ATP-dependent chromatin remodeling 14.78 14.78

2 PML Tumor suppression 14.12 1.84

3 STAT5A Developmental signal transduction 14.17 0.91

4 CTCF Chromatin conformation and insulation 8.40 0.81

5 BRF2 RNA polymerase III initiation complex 8.88 0.55

Each list is in the order assigned by SSA; for any size k, the top k assay types in the list are the chosen panel of this size. The “singleton score” is the objective value of a panel
containing only the indicated assay type, and the “objective gain” indicates the improvement in the objective that results from SSA adding the indicated assay type to the
growing panel. Because there are 80 transcription factors, we display just the top five chosen by SSA. Associations are summarized from UniProt [22]
SSA submodular selection of assays

with other assay types in the panel, such as H3K4me1
and H3K9ac. The top six includes two different marks of
transcription, H3K79me2 and H3K36me3, but these two
modifications mark different parts of genes and are regu-
lated differently relative to the gene’s level of transcription
[23]. As expected, SSA ranks additional measures of reg-
ulation (H3K4me2, H2A.Z, H3K9ac, and H3K27ac) low
on the list because these marks are redundant with the
regulatory marks H3K4me1 and H3K4me3.
SSA almost exactly recapitulates the panel of histone

modifications chosen by the Roadmap Epigenomics con-
sortium (boldface entries in Table 2). This consortium
chose a set of five core histone modifications to assay
across 111 human primary tissues. This choice was made
by the members of this consortium based on their collec-
tive, expert knowledge. These five core histone modifica-
tions ranked among the top six modifications chosen by
SSA. In fact, the SSA-chosen and Roadmap-chosen panels
of size 5 have very similar scores according to the facility
location function, ranking 1 and 16 respectively out of all

(11
5
) = 462 possible panels of five histone modifications.

Therefore, SSA closely reproduces careful, manual selec-
tion by experts in an entirely automated and data-driven
way.
To understand better the choices made by SSA in the

selection of histone modifications, we performed a swap-
out experiment (final column of Table 2). We started with
the panel of size 5 selected via SSA, and we asked, for
each of the remaining six histone modification assays,
how much the objective function would decrease if we
were forced to swap one of the SSA-selected assays for
the excluded assay. In five out of the six cases, the objec-
tive is maximized by swapping the excluded assay with
the last-selected histone modification, H3K36me3. How-
ever, the magnitude in the change in objective varies quite
a bit: swapping in H3K4me1 makes very little difference
(0.05), whereas swapping in H3K36me3 yields a relatively
large change in objective (0.22). This type of exploratory
analysis can be quite valuable in the context of a real
experimental design setting, where qualitative features of

Fig. 2 Redundancy in histone modification signal in the genome. The top five assay types chosen by SSA are boxed in red. SSA submodular selection
of assays
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Table 2 Panels of histone modification assays chosen by SSA-future

Choice Histone
Association

Singleton Objective Objective loss
order modification score gain if swapped in

1 H3K4me3 Promoters 3.18 3.18

2 H3K79me2 Transcription 2.40 0.97

3 H3K9me3 Constitutive heterochromatin 0.70 0.34

4 H3K27me3 Facultative heterochromatin 0.86 0.25

5 H3K36me3 Transcription 1.21 0.23

6 H3K4me1 Enhancers 1.86 0.18 0.05 (H3K36me3)

7 H3K4me2 Regulatory 3.12 0.08 0.07 (H3K36me3)

8 H3K9ac Regulatory 3.13 0.07 0.15 (H3K36me3)

9 H2A.Z Promoters 2.47 0.05 0.16 (H3K27me3)

10 H4K20me1 Transcription 1.41 0.005 0.22 (H3K36me3)

11 H3K27ac Regulatory 2.61 0 0.14 (H3K36me3)

See the main text for a description of the “Objective loss if swapped in” column. There are only 11 histone modifications, so we display the full list. Bold font indicates those
histone modification assays chosen by the Roadmap Epigenomics consortium

the assays (e.g., familiarity to the researchers involved) are
important but difficult to quantify.
In addition to its efficiency, SSA is flexible. First, in

some circumstances, a researcher may have already per-
formed a few assays in a given cell type or be confident
that they want to perform them, and is therefore inter-
ested in choosing which assay types best complement
these existing assays. SSA can be used in this scenario
simply by restricting the returned set to include these
assay types. For example, restricting the set of histone
modifications to contain H3K27ac deprioritizes other
enhancer marks, such as H3K9ac and H3K4me1 (Addi-
tional file 1: Table S2). Second, a researcher may have
a prior preference for certain classes of assays because
they are easier to perform, less expensive, or measure fea-
tures the researcher is especially interested in. SSA can
include this prior preference by adding a weight to the
objective for each assay type, reflecting the preference
for that assay type. For example, selecting jointly from
all assay types (transcription factor, histone modification,
and DNA accessibility) while placing a preference for (or
against) histonemodifications increases (or decreases) the
fraction of histone modifications chosen for the panel
(Additional file 1: Table S3). Third, SSA can be used to
select cell types instead of assay types by transposing the
cell type–assay type matrix and running the same analy-
sis. Doing so produces a panel of cell types that includes
a diverse mixture of mesodermal, endodermal, and undif-
ferentiated cells, and both normal and cancer-derived cells
(Additional file 1: Table S4).

Three metrics evaluate the quality of a set of genomics
assays
To evaluate SSA quantitatively, we developed an evalu-
ation framework for assay panel selection. We focused

on three of the most common downstream applications
of genomics data sets: (1) imputing assays that have not
been performed, (2) locating functional elements such as
promoters and enhancers, and (3) annotating the genome
using a semi-automated method.We describe each metric
briefly here, with full details provided in “Methods”.
The first evaluation metric, assay imputation, measures

how well a chosen panel of assays can be used to pre-
dict assays that have not been performed (Fig. 3a). We
train a regression model to predict each assay outside
of the panel based on the assays within the panel, using
random subsets of the genome for training and test-
ing, respectively. High performance on the assay impu-
tation metric indicates that the panel contains all the
information in the assays outside the panel. Moreover,
recent work on imputation has showed that it is often
effective to train a regression model on data from ref-
erence cell types and apply it to a target cell type
(“Conclusion”).
The second evaluation metric, functional element pre-

diction, is like the assay imputation metric but focuses
specifically on how well a chosen panel of assays can
be used to locate functional elements such as promoters
and enhancers (Fig. 3b). Because there are few validated
examples of each type of element, we use experimentally
determined binding of transcription factors, as measured
by transcription factor ChIP-seq, as a proxy for functional
elements. We train a classifier model to predict the loca-
tions of these elements based on the assays within the
panel. High performance on the functional element pre-
diction metric indicates that a panel can be used to locate
functional elements accurately. Although both the assay
imputation and functional element prediction evaluation
metrics aim to predict genomics data sets, functional
element prediction focuses on the small fraction of the
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Fig. 3 Evaluation strategies. Schematics of the three evaluation metrics: a assay imputation, b functional element prediction, and c
annotation-based evaluation, as well as d the overall cross-validation evaluation strategy

genome corresponding to transcription factor binding
sites.
The third evaluation metric, annotation-based evalua-

tion, measures how effectively a given panel can be used to
annotate the genome through a semi-automated genome
annotation (SAGA) method (Fig. 3c). SAGA methods,
which include HMMSeg [24], ChromHMM [25], Segway
[26], and others [27–33], annotate the genome based on
a panel of genomics assays. They simultaneously par-
tition the genome and annotate each segment with an
integer label such that positions with the same label
exhibit similar patterns of activity. These methods are
semi-automated because a person must interpret the bio-
logical meaning of each integer label. SAGAmethods have
been shown to recapitulate known functional elements
including genes, promoters, and enhancers.
Previous work has shown that a small panel of assays

can sometimes recover a similar annotation to that from
a much larger panel [25]. Given a particular panel of
assays, we perform annotation-based evaluation by using
this panel as input to Segway and measuring how well
the resulting genome annotation corresponds to pat-
terns observed in the assays outside of the panel. High
performance on this metric indicates that the chosen

panel can be used to produce a comprehensive annotation
of the genome.
Applying these metrics to evaluate a method for choos-

ing panels is complicated by two factors. First, no cell type
has had all assay types performed for it, so we perform the
evaluation separately on each cell type to evaluate against
all available assay types. Second, these evaluation metrics
must be used to compare to assays outside of the panel,
so we use a cross-validation strategy in which we hold
out a target set for evaluation and choose panels from
the remaining source set, repeating this process for many
choices of target set. This evaluation strategy enables a
principled evaluation that compares all methods against
the same held-out standard while using only the available
data sets (“Methods”, Figs. 3d and 4).

Panels chosen by SSA perform well by three evaluation
metrics
We applied this panel evaluation framework to evaluate
SSA. First, to determine the most effective objective func-
tion, we compared the facility location function and four
other potential objective functions based on the pairwise
similarity matrix. We found that the facility location func-
tion had a higher Spearman correlation with the three
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evaluation metrics than the other objective functions we
tried, and this trend was consistent across multiple cell
types (Additional file 1: Note 1). In addition, we found
that the facility location function produced the highest
correlation with the three evaluation metrics when we
defined the similarity between a pair of assay types as the
mean Pearson correlation between this pair, as opposed to
the median, maximum, or another aggregation function
(Additional file 1: Note 2). We also compared between
two strategies for deriving the Pearson correlation. The
first computes the correlation based on random sam-
ples of genomic positions, and the second on the DNase
peak positions only. We found that almost comparable
performance is achieved on the three evaluation met-
rics for the two strategies (Additional file 1: Note 3). We
lastly compared the effectiveness of using Pearson versus
Spearman correlation for computing the similarity mea-
sure. We found that consistently better performance is
achieved when the similarity is defined using the Pearson
correlation (Additional file 1: Note 4). These observations
led us to choose our variant of facility location as the SSA
objective function.
Next, we used our three evaluation metrics to com-

pare SSA to alternative panel selection approaches. As
a baseline, we considered randomly selected panels of a
given size. We found that the panels reported by SSA per-
form among the top few percent out of the space of all
possible panels, and this high performance is consistent
across panel sizes, evaluation cell types, and performance
metrics (Fig. 5a).
We also considered the panel of most frequently per-

formed assays (Additional file 1: Table S5) as a good proxy
for a likely data-driven choice. This is a somewhat biased
comparison because the frequently performed panel is

composed mostly of histone modification assay types
while our data (and, thus, the data used for evaluation)
is composed mostly of transcription factors; however,
there are no other surrogate methods to compare against.
Indeed, this commonly performed panel performs well
when evaluated against non-transcription factor assay
types but performs much worse than the average panel
when evaluated against transcription factor ChIP-seq
(Additional file 1: Figure S8). In contrast, SSA performs
well on both categories of assay types.
These results demonstrate quantitatively that panels

chosen by SSA are effective when applied to their most
common downstream tasks.

SSA can select a subset of performed assays as input to an
expensive analysis
So far we have considered panel selection in the future set-
ting, where a researcher is planning to perform a panel of
assay types experimentally. Panel selection is sometimes
also important in the past setting, where a researcher
wishes to apply a computationally expensive analysis that
cannot be efficiently applied to all assays together and,
therefore, must be applied to a smaller panel. For exam-
ple, training a statistical model to perform SAGA jointly
on dozens of assays across many cell types has a run-
ning time proportional to the product of the length of the
genome and the number of tracks. A strategy in which
each cell type is represented by a smaller panel of assays
may yield very similar annotations using a fraction of
the computational resources. In this setting, the assays
themselves are available to the selection algorithm, so we
compute the similaritymatrix based on these values them-
selves (SSA-past) rather than estimating the similarities
by aggregating across cell types (SSA-future). Importantly,
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in the selection of past assays, a different panel can be
selected for each cell type, based on the available data.
Alternatively, if the researcher would like to use the same
panel of past assays to analyse several cell types, SSA-
future can be used to select a panel that maximizes the
average quality over all target cell types (Additional file 1:
Table S6). To test SSA in the past setting, we used the
same evaluation strategy as in the future setting, but using
the source assays themselves to compute the similarity
matrix. SSA performs consistently well according to these
metrics, and it performs slightly better on some cell types
in the past than the future setting due to the availability
of this additional information (Fig. 5b). Because the run-
ning time of SSA does not grow with the length of the

genome, using SSA-past to choose a representative panel
may result in significant computational savings at minimal
reduction in quality.

Conclusion
The growing availability of a large number of types of
genomics assays means that choosing a panel of genomics
assays is a key step in any genomics project. Previously,
these panels were chosen in an ad hoc fashion. We have
developed SSA, amethod for choosing high-quality panels
using submodular optimization. This method is computa-
tionally efficient, results in high-quality panels according
to several quality measures, and is mathematically opti-
mal under some assumptions (“Methods”). By applying
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SSA, researchers can now easily choose a high-quality
panel of assay types to perform on any cell type of inter-
est. These higher-quality panels will allow researchers to
achieve the same utility from performing fewer assays,
saving thousands of dollars in labor and reagent costs per
cell type. This panel selection framework can also be used
partway through the investigation of a cell type, when
several assays are already available. By modifying the facil-
ity location function to include the availability of these
assays, SSA can be used to determine the most informa-
tive next experiments to perform. In doing so, SSA will
take into account the information in these existing assays
and choose additional assay types that measure distinct
genomic features.
A key feature of the submodular optimization approach

is the flexibility afforded by the broad class of submodular
objective functions, and the ability to encode appropriate
prior knowledge into the selection of the objective. In this
manuscript, we focused on optimizing the facility loca-
tion function. However, the same submodular optimiza-
tion framework can be used to optimize other objective
functions that may prove to be more relevant for cer-
tain applications. Several other functions may be useful in
practice. First, if some assays are more expensive or time-
consuming than others, then the objective function can be
modified to incorporate this cost. Second, if some assays
are inherently preferable to others, for example because
they have better-established processing pipelines, then the
objective can incorporate this preference and trade off
choosing both diverse and established assay types. Third,
entirely different types of panel attributes may be valu-
able for a particular application, which can be formalized
as a different objective function, such as the alternatives
we discuss in Additional file 1: Note 1. As long as the
resulting objective function remains submodular, it will
be efficiently optimizable using either the greedy algo-
rithm for monotone non-decreasing functions or other
efficient methods [34, 35] for non-monotone functions.
Moreover, such modifications are intuitive to design and
easy to implement.
The facility location function can also be used to guide

manual assay panel selection. A researcher may seek to
optimize hard-to-quantify characteristics of a panel, such
as familiarity with the protocols involved or the panel’s
concordance with panels performed on other cell types.
In this case, the researcher may choose to perform a panel
that has slightly poorer quality, as measured by the facil-
ity location function, to optimize these other criteria. Still,
in such a setting, manual investigation of the objective
values associated with different panels can provide useful
insights.
In addition to choosing the submodular objective func-

tion, SSA requires that the user select an appropriate
similarity measure. In this work, we testedmanymeasures

of similarity, including (1) Pearson and Spearman corre-
lation (Additional file 1: Note 4), (2) computing similarity
on the whole genome or just DNase hypersensitive sites
(Additional file 1: Note 3), and (3) multiple measures
of aggregating similarities across cell types (Additional
file 1: Note 2). We chose Pearson correlation because it
performed best in our experiments. Note that, although
Pearson correlation is sensitive to large values, this effect
is suppressed through our use of the inverse hyperbolic
sine transformation.
The framework presented here can also be extended to

many related problems. We have discussed two such vari-
ants that apply in the scenarios “I would like to select a
panel of assay types to perform, taking cost into account,”
and “I have carried out many assays in this cell type and
would like to choose a subset of this to use as input to
an expensive computational analysis.” This framework can
also trivially be extended to the problem “I have already
performed several assay types in a particular cell type of
interest and would like to select several more to perform,”
by simply restricting the output panel to contain the pre-
viously performed assays (Additional file 1: Table S2). The
same framework also applies to the problem “I have a set
of assay types commonly performed in several cell types
and would like to choose several assay types from the set
that are the most informative and representative to study
the cell types” by restricting the aggregation of the assay
type similarity to the cell types at hand (Additional file 1:
Table S6). In addition, by deriving a similarity measure
between cell types, the methods presented here could be
used to solve the problem “Based on orthogonal data such
as gene expression profiles, which new cell types should
I perform assays in?” Finally, it may be possible to apply
related methods to the problem “I have carried out assays
across a variety of cell types and assay types, and I would
like to select a set of additional assays to apply in any
combination of cell and assay types.”
The evaluation strategy we introduce here can be used

to evaluate any proposed strategy for panel selection,
whether or not this method is based on submodular opti-
mization. This framework is composed of two parts. First,
a cross-validation strategy allows for principled compar-
ison of methods under the restriction that not all assays
are available in all cell types, and that a panel must not be
evaluated on an assay type that it contains. Second, three
distinct metrics capture the three primary downstream
applications of genomics data sets.
The problem of assay panel selection was posed pre-

viously by Ernst and Kellis [3]. These authors proposed
the assay imputation evaluation metric for evaluating a
panel of genomics assays. However, this type of evaluation
metric cannot be used to choose an assay panel for two
reasons. First, evaluating the accuracy of an imputation
model requires that the target data set has already been
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performed. Second, even if such data sets were available,
evaluating all possible panels of size K from N assay types
requires applying the evaluation to

(N
K
)
possible panels,

which is hopelessly computationally expensive. For exam-
ple, the method of Ernst and Kellis was reported to take
roughly one hour to train per panel, so choosing a panel of
five assay types from the 188 previously performed assay
types would take of the order of 105 processor-years. In
contrast, the facility location objective function we define
does not require that the target data sets be available to
evaluate the function, and the submodular optimization
approach requires only a polynomial number of eval-
uations. Moreover, we define two additional evaluation
metrics (functional element prediction and annotation-
based evaluation) that complement the evaluation with
assay imputation.
In addition to the assay panel selection problem, the

same submodular optimization framework may also be
useful in selecting a set of informative and representative
cell types to study. This cell-type panel selection setting
can be viewed as a dual variant of the assay panel selec-
tion problem (Additional file 1: Table S4). The flexibility
of SSA (e.g., forcing selection of certain assay types or
weighting assay types based on cost or preference) easily
carries over to the cell-type selection setting. Moreover,
the methodologies proposed here for evaluating the qual-
ity of a panel of assay types (e.g., assay imputation and
annotation-based evaluation) can be easily extended to
assess the goodness a cell-type panel selection approach.
Data-driven analyses are limited by any imperfections

in the data sets used. For example, if all available assays
of a given type happen to be of particularly good or poor
quality, then the correlations associated with this assay
type will appear to the algorithm to be particularly strong
or weak, respectively. Similarly, any mislabeled assays,
batch effects, varying processing pipelines, or other arti-
facts may also influence whether certain assay types will
be chosen in a panel. Future assays of that type may not
be expected to exhibit the same artifactual patterns, so
the resulting panels could be suboptimal. Therefore, it is
always important to scrutinize the results of data-driven
approaches like this one to understand whether patterns
in the available data are predictive of future experiments.
Modifications of this approach that, for example, find and
remove faulty assays before input into the algorithm may
result in different panels. However, our evaluation met-
rics are also entirely data-driven, so we cannot use them
to explore these issues.
A second limitation of any data-driven approach is that

it is heavily dependent on the data sets used as input.
For example, users who are interested only in assays that
measure regulation and not those that measure transcrip-
tion must be sure not to include transcription-associated
assays in the input. In our experiments, SSA focused

mostly on transcription factors because many diverse
transcription factor data sets are available. This limita-
tion can be partially alleviated by up- or down-weighting
certain assay types to represent the focus of the user’s
research question (Additional file 1: Table S3).
As noted above, submodular optimization is widely used

for discrete problems in other fields but is not yet widely
used in biology. We hope that the current work can serve
as a model for how submodular optimization can be
applied to other problems in biology. As with convex opti-
mization, the same toolbox of submodular optimization
methods can be applied to a wide variety of problems,
and any innovations to this toolbox improve all solutions.
Therefore, we expect that submodular optimization will
be used for other discrete problems in biology, such as for
selecting panels of DNA mutations to test in a functional
screen or removing redundancy in protein sequence data
sets.

Methods
Genomics data
We acquired all public genomics data from the ENCODE
[36] and Roadmap Epigenomics [37] projects as of January
2015. These data sets have been processed by the two con-
sortia into real-valued data tracks, as described previously
[38, 39].
Briefly, the sequencing reads were mapped to human

reference genome hg19, reads were extended accord-
ing to inferred fragment lengths, the number of reads
overlapping each genomic position was computed, and
assay type-specific normalizations were performed, such
as computing fold enrichment over an input control for
ChIP-seq.
We omitted all assays with more than 1 % unspecified

positions, which may indicate errors during processing
or mapping. We manually curated these assays to unify
assay type and cell-type terminology and, when multiple
assays were available, we arbitrarily chose a representative
assay for each (cell type, assay type) pair. This proce-
dure resulted in a total of 1894 assays composed of a
total of 206 assay types and 316 cell types. The assay
types include ChIP-seq with a variety of targets (both his-
tone modification and transcription factor), DNase-seq,
FAIRE-seq and Repli-seq. The full list of assays is given in
Additional file 2.
We applied the inverse hyperbolic sine transform

asinh(x) = ln(x + √
x2 + 1) to all signal data. This func-

tion has the compressing effect of a function like log x for
large values of x but it is defined at zero and has much
less of a compressing effect for small values. The asinh
transform has been shown to be important for reduc-
ing the effect of large values in the analysis of genomics
data sets [26, 40]. Transcription factor ChIP-seq peaks
were called by each consortium for each factor using
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MACS with an irreproducible discovery rate threshold of
0.05 [41, 42].

Notation
We use the following notation to facilitate the descrip-
tion of our method. We use the term “assay type” to mean
a particular genomics assay protocol that may be per-
formed in any cell type (for example “ChIP-seq targeting
H3K27me3”) and “assay” to mean a particular assay type
performed in a particular cell type. The term “cell type”
refers to any cellular state that may be queried with a
genomics assay, which may refer to any combination of
cell line, tissue type, disease state (such as cancer), indi-
vidual, or drug perturbation. We refer to a cell type as c
and the entire set of all cell types as C (|C| = 228). We use
a to refer to an assay type, A for a subset of assay types,
and A for the set of all assay types (|A| = 216). We use
s to denote a single assay (that is, a given assay type per-
formed in a given cell type), S for a set of assays, and S
for the set of all available performed assays. Given any cell
type c ∈ C, we define the set of assay types performed in
this cell type as Ac and the corresponding assays as Sc.
We define I = {1, . . . , n} as the set of all positions in a
genome. An assay s is represented as a vector of length n;
i.e., s ∈ R

n. We denote its ith entry (i.e., the value of assay
s at genomic position i) as s(i).

Submodular optimization
A submodular function [43] is defined as follows: given a
set V = {1, 2, . . . ,m} of finite size m, a discrete set func-
tion f : 2V → R that offers a real value for any subset
S ⊆ V is submodular if and only if:

f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T), ∀S,T ⊆ V . (1)

Defining f (s|S) � f (s ∪ S) − f (S), submodularity can
equivalently be defined as f (s|S) ≥ f (s|T), ∀S ⊆ T and
s /∈ T . That is, the incremental gain of adding item s to the
set decreases when the set to which s is added to grows
from S to T. In this work, the whole set V represents a set
of genomics assays and the set function f (S) represents a
measure of the quality of a subset of assays S ⊆ V .
Two other properties of set functions are relevant to this

setting. First, a set function f is defined asmonotone non-
decreasing if

f (s|S) ≥ 0, ∀s ∈ V \ S, S ⊆ V . (2)

Second, we say that f is normalized if f (∅) = 0.
In this work, we are interested in the problem of maxi-

mizing a submodular function subject to a constraint on
the size of the reported set. That is, we are interested in
solving the problem

maximize f (S), subject to |S| ≤ k (3)

for some integer k ≤ |V |. In this work, we require that f is
submodular, monotone non-decreasing, and normalized.
While this problem is NP-hard, it can be approximately

solved by a simple greedy algorithm with a worst-case
approximation factor (1 − e−1) [21]. This is also the best
solution obtainable in polynomial time unless P = NP
[44]. The algorithm starts with the empty set S0 = ∅ and
at each iteration i adds the element si that maximizes the
conditional gain f (si|Si−1)with ties broken arbitrarily (i.e.,
finding si ∈ argmaxe∈V\Si−1 f (e|Si−1)) and then updates
Si ← Si−1 ∪{si}. The algorithm stops when the cardinality
constraint is met with equality. This algorithm has a time
complexity of O(km) function evaluations. The complex-
ity for evaluating the facility location function is O(m2), if
implemented naively. Since the greedy algorithm requires
computing only the gain associated with adding an item
to the already selected set, memorization techniques can
be employed to reduce the complexity of function evalua-
tion to onlyO(m), leading to an overall time complexity of
O(km2). Furthermore, the running time can be improved
to almost O(m2) without any performance loss by further
exploiting the submodularity property [45]. The mem-
ory requirement of SSA depends on the choice of the
optimization objective. For example, to instantiate the
facility location function, one needs to compute and store
a pairwise similarity graph, which takes O(m2) memory.

Facility location function
In this work, we use the facility location function to mea-
sure the quality of a panel of assay types. The facility
location function [17] ffac : 2V → R is defined as follows:

ffac(S) =
∑

s′∈V
max
s∈S

rs′,s, (4)

where rs′,s measures the pairwise similarity between assays
s′ and s (defined below). Intuitively, the facility location
function takes a high value when every assay in V has at
least one similar representative in S.

Assay type similarity
We use the following strategy to define the similarity
between each pair of assay types and use this similar-
ity to define a facility location function. We define this
similarity differently depending on the application. In the
selection of past assays setting, the particular assays per-
formed in the cell type of interest c are available, while
in the selection of future assays setting, we must estimate
this similarity from reference cell types.
In the selection of past assays setting, we directly use

the signal vectors si and sj to derive the similarity, which
we define as rsi,sj = |ρsi,sj | ∈[ 0, 1], where ρsi,sj is the
Pearson correlation between the signal vector si and sj.
Pearson correlation is frequently used to evaluate the sim-
ilarity between genomics assays [2]. For efficiency, we
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compute the correlation measure ρsi,sj only across a sub-
set of genomic positions I ′ ⊆ I, where I ′ is randomly
subsampled from I and |I ′| ≈ 0.01|I|.
In the selection of future assays setting, the assays in the

cell type c are not available, but the assays performed in
cell types other than c, S \ Sc, are available. Let ai, aj ∈ A
be the assay types associated with the assays si and sj,
respectively. Let Sai be the set of assays in S with type ai.
We approximate the similarity between si and sj by aggre-
gating the similarity between the pairs inSai\si andSaj\sj.
We utilize the aggregation strategy by taking the average
of these similarity scores. Mathematically, the aggregated
similarity is defined as

rsi,sj �
1

|Sai \ si|
1

|Saj \ sj|
∑

s∈Sai\si
.

∑

s′∈Saj\sj
|ρs,s′ |. (5)

We chose to use the average correlation r because the
facility location function defined via the similarities aggre-
gated in this way correlated best with our evaluation met-
rics. We compare this aggregation strategy against other
strategies in Additional file 1: Note 2.

Evaluation cross-validation strategy
We would prefer to apply our method once to select a sin-
gle panel of assay types. However, doing so could result
in a panel of assay types that have not been performed in
any cell type (or very few cell types), which would prohibit
evaluating the quality of this panel. Therefore, we apply a
cross-validation strategy that repeatedly holds out a sub-
set of assay types for evaluation and selects a panel from
the remaining assay types, and we perform this cross-
validation separately for each cell type in turn (Fig. 3d).
To evaluate the quality of our method with respect to a
cell type c, we restrict ourselves to selecting from the set
of assays performed in c (Sc). We randomly partition Sc

into ten equally sized, disjoint folds. Of the ten folds, a
single fold is retained as the target set T c, and the remain-
ing nine blocks are used as the source set Vc. We select a
panel of assays S ⊆ Vc from the source set Vc and evaluate
the panel on the assays relative to the target set T c using
the three evaluation metrics described below. The pro-
cess is then repeated ten times, with each of the ten folds
used once as the target set. We average the ten results to
produce a single number representing the performance.

Assay imputation
The assay imputation evaluation metric measures the use
of a panel of assay types to impute the results of other
assay types outside the panel (Fig. 3a). We formalize the
assay imputation metric as a regression problem in which
the assays in the panel S are used as features to predict the
target set assays, s′ ∈ T c. In this regression problem, we
have one labeled example for each position in the genome.

For our regression model, we use support vector regres-
sion with a Gaussian kernel. To construct the training and
test data, we randomly choose disjoint sets of genomic
positions ITr, ITe ⊆ I, where ITr ∩ ITe = ∅. In our exper-
iments, we set |ITr| = 5000 and |ITe| = 2000. Given the
panel S = {s1, . . . , s|S|}, a target assay s′ ∈ T c, and the
training genomic positions ITr, we create the training data
as DTr = {xi, yi}i∈ITr , where xi =[ s1(i), s2(i), . . . , s|S|(i)]T
and yi = s′(i). Similarly, the test data set is constructed
as DTe = {xi, yi}i∈ITe . The hyperparameters of the regres-
sion model are tuned using fivefold cross-validation. We
measure the performance of the trained model on the test
data DTe as the squared correlation coefficient θs′ . We
repeat this evaluation process for every target assay in T c

and report the performance of the panel S as the average
squared correlation coefficient:

θ = 1
|T c|

∑

s′∈T c

θs′ .

Functional element prediction
The functional element prediction evaluation metric eval-
uates how well a panel of assays can predict the genomic
locations of functional elements such as promoters,
enhancers, and insulators. Because there are few validated
examples of each type of element, we use the experimen-
tally determined binding of transcription factors, as deter-
mined by transcription factor ChIP-seq peaks, as a proxy
for functional elements. Most known types of functional
elements can be characterized by the binding of partic-
ular transcription factors [46, 47]. Note that functional
element prediction is like assay imputation in the sense
that both evaluation metrics aim to predict the output of
a genomics assay; however, functional element prediction
focuses on just transcription factor binding sites, whereas
assay imputation focuses on the whole genome. Like assay
imputation, we consider this metric separately for each
cell type. For an evaluation cell type c, we denote the set
of transcription factor ChIP-seq assays performed in c as
Ŝc ⊆ Sc. Given a bi-partition of Sc into the source set Vc

and the target set T c, we choose from the source set Vc a
panel of assays, and we evaluate functional element pre-
diction only on the target assays in the set T̂ c = T c ∩ Ŝc,
in contrast to the assay imputation metric where all assays
in T c are used for evaluation.
For a target transcription factor assay s ∈ T̂ c, let p

be a binary vector {0, 1}n indicating the genomic posi-
tions where s has a peak as called by the peak-calling
algorithm. That is, p(i) = 1 if there is a peak at posi-
tion i, and p(i) = 0 otherwise. We use a support vector
machine (SVM) with a Gaussian kernel to predict p given
a panel of assays S ⊆ Vc. For a given testing factor p,
we refer to the positions where p = 1 as I+ and the set
of positions where p = 0 as I− = I \ I+. We randomly
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choose ITr+ ⊆ I+ and ITr− ⊆ I− as the positive and nega-
tive positions to generate training samples. Similarly, the
testing samples are randomly chosen from ITe+ ⊆ I+ \ ITr+
and ITe− ⊆ I− \ ITr− . Given the panel S = {s1, . . . , s|S|} of
assays and the set of positive training genomic positions
ITr+ , we construct the set of positive training samples as
DTr+ = {xi,+1}i∈ITr+ where xi =[ s1(i), . . . , s|S|(i)]T. Simi-
larly, we construct the negative training samples, positive
test samples, and negative test samples as DTr− , DTe+ , and
DTe− , respectively. The SVM is first trained on the train-
ing data set DTr = {DTr+ ,DTr− }, and then evaluated on the
testing data setDTe = {DTe+ ,DTe− }.
Because there are far more genomic positions that are

not a functional element than there are positions that are,
measures of predictive accuracy, such as the total frac-
tion of correct predictions (accuracy) and the area under
the receiver operating characteristic curve, do not offer
a reasonable measure of performance. Instead, we com-
pute the area under the curve of a precision-recall plot
(AUC-PR), which is particularly well suited for settings
with imbalanced class distributions [48, 49]. In our exper-
iments, we set |ITr+ | = 200, |ITr− | = 20, 000, |ITe+ | = 100,
and |ITe− | = 10, 000. We apply fivefold cross-validation
for tuning the hyperparameters of the SVM. Let γs′ be
the normalized area under the curve for the precision-
recall plot (i.e., γs′ ∈[ 0, 1]) for each target assay s′ ∈ T̂ c.
We illustrate this procedure schematically in Fig. 3b. We
report the performance as the average AUC-PR on all
target assays, i.e.,

γ = 1
T̂ c

∑

s′∈T̂ c

γs′ .

Annotation-based evaluation
The annotation-based evaluation metric measures the
quality of a panel of genomics assays according to the
quality of the genome annotation that is obtained by
inputting the panel into a SAGA algorithm. SAGA algo-
rithms are widely used to jointly model diverse genomics
data sets. These algorithms take as input a panel of
genomics assays and simultaneously partition the genome
and label each segment with an integer such that posi-
tions with the same label have similar patterns of activity.
These algorithms are considered semi-automated because
a human performs a functional interpretation of the labels
after the annotation process. Examples of SAGA methods
include HMMSeg [24], ChromHMM [25], Segway [26],
and others [27–29]. These genome annotation algorithms
have had great success in interpreting genomics data and
have been shown to recapitulate known functional ele-
ments including genes, promoters, and enhancers. We use
the SAGA method Segway in this work.
To apply annotation-based evaluation to a panel of

assays, we input this panel into a SAGA algorithm and

evaluate the resulting annotation (Fig. 3c). Intuitively, a
diverse panel of assays input to a SAGA algorithm should
more accurately capture important biological phenom-
ena than a redundant panel. To evaluate the quality of an
annotation relative to a particular genomics data set, we
use the variance explained measure [50]. Given an evalu-
ation cell type c, we randomly partition Sc into a source
set Vc and a target set T c. For a given panel of assays
S ⊆ Vc, we first train a Segway model based on the panel
and then obtain an annotation y. Segway outputs an anno-
tation y ∈ Yn, where Y = {1, 2, . . . , k} is a set of k labels
that an annotation can take on at each genomic position.
For each target assay s′ ∈ T c, we measure the quality of
the annotation y as how well it explains the variance of the
assay s′. We first compute the signal mean of s′ over the
positions assigned a given label � as

μ� �
∑n

i=1 1(y(i) = �)s′(i)
∑n

i=1 1(y(i) = �)
for � ∈ {1, . . . , k}. (6)

We then define a predicted signal vector ŝ′ with ŝ′(i) =
μy(i) and compute the prediction error as di = ŝ′(i)− s′(i).
We compute the residual standard deviation of the signal
vector as

σres � stdev (d1:n) =
√√
√
√1

n

n∑

i=1
(di − mean(d1:n))2

=
√√
√
√1

n

n∑

i=1
d2i .

(7)

The last equality holds because mean(d1:n) = 0 by con-
struction. σres measures the residual standard deviation
of the target assay s′ accounting for the annotation y. Let
σov = stdev(s′(1 : n)) be the overall standard deviation
of the assay s′. The normalized variance explained by the
annotation y is then

αs′ = σov − σres
σov

. (8)

Observe that σov always upper bounds σres. The mea-
sure αs′ ∈[ 0, 1] represents the fraction of the variance of
the assay s′ explained by the annotation y, where larger
values indicate better agreement.
In our experiments, we trained the Segway model with

ten random initializations (using GMTK [51]) and 15
labels at 100 base-pair resolution. We report the per-
formance as the averaged measure on all target assays
as

α = 1
|T c|

∑

s′∈T c

αs′ .
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from. (TAB 300 kb)

Acknowledgments
This work was supported by National Institutes of Health awards
R01 CA180777 and U41 HG007000.

Availability of data andmaterials
All genomics data sets used in this work can be accessed at http://www.
encodeproject.org. The full list of assays used is given in Additional file 2.

Authors’ contributions
All authors devised the method and designed the analysis. KW and MWL
analyzed the data, implemented the method, developed the software, and
wrote the initial manuscript. All authors edited and approved the final
manuscript. WSN and JAB jointly supervised the project.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
No ethical approval was required for this study.

Source code
SSA is supported as a web server available at http://noble.gs.washington.edu/
proj/ssa/. The source code for SSA and the pre-computed assay type similarity
matrix are also available online at http://github.com/melodi-lab/submodular-
selection-of-assays.
This source code is released under the MIT License and is archived on Zenodo
at http://dx.doi.org/10.5281/zenodo.60563.

Author details
1Department of Electrical Engineering, University of Washington, Seattle, WA,
USA. 2Department of Computer Science and Engineering, University of
Washington, Seattle, WA, USA. 3Department of Genome Sciences, University
of Washington, Seattle, WA, USA.

Received: 17 May 2016 Accepted: 24 October 2016

References
1. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic

A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping
Consortium. Nat Biotechnol. 2010;28(10):1045–8. http://dx.doi.org/10.
1038/nbt1010-1045.

2. ENCODE Project Consortium. An Integrated Encyclopedia of DNA
Elements in the Human Genome. Nature. 2012;489:57–74.

3. Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for
systematic annotation of diverse human tissues. Nat Biotechnol.
2015;33(4):364–76.

4. Andrés ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME,
Grimes J, et al. CoREST: a functional corepressor required for regulation of
neural-specific gene expression. Proc Nat Acad Sci. 1999;96(17):9873–8.

5. Lin H, Bilmes J. Learning mixtures of submodular shells with application
to document summarization. In: Uncertainty in Artificial Intelligence (UAI).
Catalina Island, USA: AUAI; 2012. p. 479–90.

6. Liu Y, Wei K, Kirchhoff K, Song Y, Bilmes J. Submodular feature selection
for high-dimensional acoustic score spaces. Proceedings of International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2013;7184–8.

7. Mirzasoleiman B, Karbasi A, Sarkar R, Krause A. Distributed submodular
maximization: identifying representative elements in massive data. In:
Advances in neural information processing systems. MIT Press; 2013. p.
2049–57.

8. Gomes R, Krause A, Perona P. Discriminative clustering by regularized
information maximization. In: Advances in neural information processing
systems. MIT Press; 2010. p. 775–83.

9. Vives X. Oligopoly pricing: old ideas and new tools. MIT Press; 2001.
10. Carter M. Foundations of mathematical economics. MIT Press; 2001.
11. Topkis DM. Supermodularity and complementarity. Princeton University

Press; 1998.
12. Shapley LS. Cores of convex games. Int J Game Theory. 1971;1(1):11–26.
13. Edmonds J. Submodular functions, matroids and certain polyhedra.

Combinatorial structures and their applications. 1970;69–87.
14. Lovász L. Submodular functions and convexity In: A BachemMG, Korte B,

editors. Mathematical programming – the state of the art.
Springer-Verlag; 1983. p. 235–57.

15. Schrijver A. Combinatorial optimization. Springer; 2004.
16. Narayanan H. Submodular functions and electrical networks. Ann

Discrete Math. 199754.
17. Cornunéjols G, Nemhauser GL, Wolsey LA. The uncapacitated facility

location problem In: Mirchandani PB, Franci RL, editors. Discrete location
theory. New York: Wiley/Interscience; 1990. p. 119–71.

18. Narasimhan M, Bilmes J. A submodular-supermodular procedure with
applications to discriminative structure learning. In: Uncertainty in,
Artificial Intelligence (UAI). Edinburgh: Morgan Kaufmann Publishers;
2005. p. 404–12.

19. Krause A, Singh A, Guestrin C. Near-optimal sensor placements in
Gaussian processes: theory, efficient algorithms and empirical studies. J
Mach Learn Res. 2008;9:235–84.

20. Wei K, Liu Y, Kirchhoff K, Bartels C, Bilmes J. Submodular subset
selection for large-scale speech training data. In: Proceedings of
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE; 2014. p. 3311–15.

21. Nemhauser GL, Wolsey LA, Fisher ML. An analysis of approximations for
maximizing submodular set functions. Math Program. 1978;14(1):265–94.

22. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res. 2014;43:gku989.

23. Li B, Carey M, Workman JLW. The role of chromatin during transcription.
Cell. 2007;128(4):707–19.

24. Day N, Hemmaplardh A, Thurman RE, Stamatoyannopoulos JA, Noble
WS. Unsupervised segmentation of continuous genomic data.
Bioinformatics. 2007;23(11):1424–6.

25. Ernst J, Kellis M. Discovery and characterization of chromatin states for
systematic annotation of the human genome. Nat Biotechnol. 2010;28(8):
817–25.

26. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS.
Unsupervised pattern discovery in human chromatin structure through
genomic segmentation. Nat Methods. 2012;9(5):473–6.

27. Thurman RE, Day N, Noble WS, Stamatoyannopoulos JA. Identification
of higher-order functional domains in the human ENCODE regions.
Genome Res. 2007;17:917–27.

28. Lian H, Thompson W, Thurman RE, Stamatoyannopoulos JA, Noble WS,
Lawrence C. Automated mapping of large-scale chromatin structure in
ENCODE. Bioinformatics. 2008;24(17):1911–16.

29. Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD,
et al. Systematic protein location mapping reveals five principal
chromatin types in Drosophila cells. Cell. 2010;143(2):212–24.

30. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC,
Ernst J, et al. Comprehensive analysis of the chromatin landscape in
Drosophila melanogaster. Nature. 2010;471:480–5.

31. Jaschek R, Tanay A. Spatial clustering of multivariate genomic and
epigenomic information. In: Proceedings of the 13th Annual International
Conference on Computational Molecular Biology. vol. 5541. Springer;
2009. p. 170–83.

32. Larson JL, Huttenhower C, Quackenbush J, Yuan GC. A tiered hidden
Markov model characterizes multi-scale chromatin states. Genomics.
2013;102(1):1–7.

33. Biesinger J, Wang Y, Xie X. Discovering and mapping chromatin states
using a tree hidden Markov model. BMC Bioinform. 2013;14(Suppl 5):S4.

34. Buchbinder N, Feldman M, Naor J, Schwartz R. A tight linear time
(1/2)-approximation for unconstrained submodular maximization. In:
Proceedings of Annual Symposium on. IEEE, Foundations of Computer
Science (FOCS); 2012. p. 649–58.

35. Buchbinder N, Feldman M, Naor JS, Schwartz R. Submodular
maximization with cardinality constraints. Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2014;25:1433–52.

http://dx.doi.org/10.1186/s13059-016-1089-7
http://dx.doi.org/10.1186/s13059-016-1089-7
http://www.encodeproject.org
http://www.encodeproject.org
http://noble.gs.washington.edu/proj/ssa/
http://noble.gs.washington.edu/proj/ssa/
http://github.com/melodi-lab/submodular-selection-of-assays
http://github.com/melodi-lab/submodular-selection-of-assays
http://dx.doi.org/10.5281/zenodo.60563
http://dx.doi.org/10.1038/nbt1010-1045
http://dx.doi.org/10.1038/nbt1010-1045


Wei et al. Genome Biology  (2016) 17:229 Page 15 of 15

36. http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/.
37. https://sites.google.com/site/anshulkundaje/projects/

epigenomeroadmap.
38. Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M, et al.

Integrative annotation of chromatin elements from ENCODE data.
Nucleic Acids Res. 2013;41(2):827–41.

39. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A,
et al. Integrative analysis of 111 reference human epigenomes. Nature.
2015;518(7539):317–30.

40. Johnson NL. Systems of frequency curves generated by methods of
translation. Biometrika. 1949;36(1/2):149–76.

41. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
http://dx.doi.org/10.1186/gb-2008-9-9-r137.

42. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S,
et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE
consortia. Genome Res. 2012 Sep;22(9):1813–31. http://dx.doi.org/10.
1101/gr.136184.111.

43. Fujishige S. Submodular functions and optimization. vol. 58: Elsevier
Science; 2005.

44. Feige U. A threshold of ln n for approximating set cover. J ACM.
1998;45(4):634–52.

45. Minoux M. Accelerated greedy algorithms for maximizing submodular set
functions. Optimization Tech. 1978;234–43.

46. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, et al. ChIP-seq
accurately predicts tissue-specific activity of enhancers. Nature.
2009;457(7231):854–8. http://dx.doi.org/10.1038/nature07730.

47. Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa
F, et al. The insulation of genes from external enhancers and silencing
chromatin. Proc Nat Acad Sci USA. 2002;99(Suppl 4):16433.

48. Craven M, Bockhorst J. Markov networks for detecting overlapping
elements in sequence data. Adv Neural Inform Process Syst. 2005;17:193.

49. Davis J, Goadrich M. The relationship between precision-recall and ROC
curves. In: Proceedings of the International Conference on Machine
Learning. IMLS; 2006. p. 233–40.

50. Libbrecht M, Ay F, Hoffman MM, Gilbert DM, Bilmes JA, Noble WS. Joint
annotation of chromatin state and chromatin conformation reveals
relationships among domain types and identifies domains of
cell-type-specific expression. Genome Res. 2015;25(4):544–57.

51. Bilmes J, Rogers R. The Graphical Models Toolkit GMTK Source
Distribution; 2015. https://melodi.ee.washington.edu/gmtk.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap
https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://dx.doi.org/10.1101/gr.136184.111
http://dx.doi.org/10.1101/gr.136184.111
http://dx.doi.org/10.1038/nature07730
https://melodi.ee.washington.edu/gmtk

	Abstract
	Keywords

	Background
	Results and Discussion
	SSA identifies diverse panels of genomics assays
	Three metrics evaluate the quality of a set of genomics assays
	Panels chosen by SSA perform well by three evaluation metrics
	SSA can select a subset of performed assays as input to an expensive analysis

	Conclusion
	Methods
	Genomics data
	Notation
	Submodular optimization
	Facility location function
	Assay type similarity
	Evaluation cross-validation strategy
	Assay imputation
	Functional element prediction
	Annotation-based evaluation

	Additional files
	Additional file 1
	Additional file 2

	Acknowledgments
	Availability of data and materials
	Authors' contributions
	Competing interests
	Ethics approval and consent to participate
	Source code
	Author details
	References

