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Abstract
Objectives Tenosynovitis (inflammation of the synovial lining of the sheath surrounding tendons) is frequently observed onMRI
of early arthritis patients. Since visual assessment of tenosynovitis is a laborious task, we investigated the feasibility of automatic
quantification of tenosynovitis on MRI of the wrist in a large cohort of early arthritis patients.
Methods For 563 consecutive early arthritis patients (clinically confirmed arthritis ≥ 1 joint, symptoms < 2 years), MR scans of
the wrist were processed in three automatic stages. First, super-resolution reconstruction was applied to fuse coronal and axial
scans into a single high-resolution three-dimensional image. Next, 10 extensor/flexor tendon regions were segmented using atlas-
based segmentation and marker-based watershed. A measurement region of interest (ROI) was defined around the tendons.
Finally, tenosynovitis was quantified by identifying image intensity values associated with tenosynovial inflammation using
fuzzy clustering and measuring the fraction of voxels with these characteristic intensities within the measurement ROI. A subset
of 60 patients was used for training and the remaining 503 patients for validation. Correlation between quantitative measurements
and visual scores was assessed through Pearson correlation coefficient.
Results Pearson correlation between quantitative measurements and visual scores across 503 patients was r = 0.90, p < 0.001.
False detections due to blood vessels and synovitis present within the measurement ROI contributed to a median offset from zero
equivalent to 13.8% of the largest measurement value.
Conclusion Quantitative measurement of tenosynovitis on MRI of the wrist is feasible and largely consistent with visual scores.
Further improvements in segmentation and exclusion of false detections are warranted.
Key Points
• Automatic measurement of tenosynovitis on MRI of the wrist is feasible and largely consistent with visual scores.
• Blood vessels and synovitis in the vicinity of evaluated tendons can contribute to false detections in automatic measurements.
• Further improvements in segmentation and exclusion of false detections are important directions of future work on the path to a
robust quantification framework.
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Introduction

Initiation of treatment in the early stages of rheumatoid arthri-
tis (RA) has been associated with higher chances of drug-free
sustained remission and improved quality of life [1].
Therefore, it is important to recognize patients who are at risk
of progressing to RA as early as possible, either in the symp-
tomatic phase of arthralgia, which precedes clinical arthritis,
or in the earliest phases of clinically detectable arthritis.
Recent studies suggest that MRI-detected inflammation can
aid this task [2–4], especially in combination with serological
markers [2]. Among the different types of inflammation ob-
served on MRI of hands and wrists, it has been shown that
tenosynovitis (inflammation of the synovial lining of the
sheath surrounding tendons) is independently predictive of
RA development, both in patients presenting with early arthri-
tis and with arthralgia [2–5]. In addition, changes in MRI-
detected tenosynovitis may be of interest in treatment re-
sponse evaluation.

Assessment of tenosynovitis on MRI is commonly done
according to the scoring method of Haavardsholm et al [6],
in which a reader examines multiple tendon regions and esti-
mates the thickness of peritendinous effusion or synovial pro-
liferation with contrast enhancement. This is a laborious task,
which requires the availability of trained, experienced readers.
Automating the evaluation of tenosynovitis could offer stan-
dardized, high precision measurements derived directly from
the image data and alleviate the time burden and cost associ-
ated with visual scoring. To date, limited research is available
on this topic. Bowes et al have published a conference abstract
on quantifying change in tenosynovitis over time in 34 RA
patients receiving treatment [7], but data on single time point
validation of these quantitative measurements with respect to
visual scores are not publicly available.

In a recent study, we developed an automatic framework
for measuring bone marrow edema (a strong predictor of ra-
diographic progression in RA patients [8]) on MR images of
the wrist [9]. In the work presented here, we sought to extend
that framework to measure tenosynovitis of the extensor and
flexor tendons of the wrist. Our aim was to investigate the
feasibility of tenosynovitis quantification and assess the cor-
relation between quantitative measurements and visual scores
in a large cohort of early arthritis patients.

Materials and methods

Patients

A total of 563 early arthritis patients consecutively included in
the Leiden Early Arthritis Clinic cohort [10] were studied.
Mean age (±SD) was 54.9 (± 15.4) years; 350 patients
(62.2%) were female. Inclusion required clinically confirmed

arthritis by physical examination in ≥ 1 joints and symptom
duration < 2 years. The cohort study was approved by the
medical ethics committee of Leiden University Medical
Center (Leiden, The Netherlands). All participants provided
written informed consent.

MRI scanning and visual scoring

The wrist joint of the most painful side (or the dominant side
in cases of equally severe symptoms on both sides) was
scanned with a 1.5T extremity MR scanner (GE Healthcare)
using a 100-mm coil, with contrast enhancement and
frequency-selective fat saturation (T1-Gd). Table 1 summa-
rizes the acquisition parameters. In line with the definitions
proposed by Haavardsholm et al [6], tenosynovitis was eval-
uated in six extensor compartments and four flexor regions
within the wrist joint (Fig. 1). Visual scoring was independent-
ly performed by two trained readers blinded to clinical data.
For each anatomical region, the readers provided a grade on a
0–3 scale based on the estimated maximum width of
peritendinous effusion or synovial proliferation with contrast
enhancement, as follows: grade 0, normal; grade 1, < 2 mm;
grade 2, ≥ 2 mm and < 5 mm; grade 3, ≥ 5 mm. The scoring
region was bounded by the distal radius/ulna proximally and
the hook of the hamate distally. The intra-reader intra-class
correlation coefficients (ICCs) of the two readers for the total
tenosynovitis score (sum across all tendon regions), based on
40 MRIs scored twice, were 0.99 and 0.83. The inter-reader
ICC for the total tenosynovitis score, based on all 563 MRIs,
was 0.87. In what follows, the mean score of the two readers
was always considered.

Quantitative image analysis framework

Super-resolution reconstruction

The coronal and axial MR scans compensate each other in
terms of anatomical detail, since the slice thickness in each

Table 1 MRI sequences

Coronal scan Axial scan

Repetition time (ms) 650 570

Echo time (ms) 17 7

Acquisition matrix 364 × 224 320 × 192

Echo train length 2 2

Slice thickness (mm) 2 3

Slice gap (mm) 0.2 0.3

Described are the acquisition parameters of T1-weighted fast spin-echo
sequences with frequency-selective fat saturation obtained after intrave-
nous injection of Gd-chelate (gadoteric acid, Guerbet, Paris, France, stan-
dard dose of 0.1 mmol/kg)
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of the scans (2 mm in coronal; 3 mm in axial) is much larger
than the in-plane spacing between voxels (~ 0.2 mm). In order
for a quantitative framework to make use of all available im-
age data in a compact and efficient manner, it is desirable to
fuse the two scans into a single 3D image using super-
resolution reconstruction (SRR). The application of SRR to
MR images of the wrist has been detailed in our previous work
[9]. We applied the method of Poot et al [12] with Laplacian
regularization (λ = 0.05).

Measurement region of interest

The computation of the ROI required automatically
segmenting the tendons, carpal bones, distal radius/ulna,
and the image region bounded by skin. The bones and
initial landmarks for the tendon regions were obtained
using atlas-based segmentation [13]. The atlas consisted
of 13 early arthritis patients (separate dataset, excluding
patients evaluated visually and quantitatively in this
study). For each atlas patient, the tendon regions and
bones were manually segmented in the axial T1-Gd im-
ages and then extended to SRR space by nearest neighbor
interpolation. After spatially mapping every atlas image
onto the target image using the Elastix toolbox [14–16],
a majority vote was applied across all mappings, deter-
mining whether a voxel would be labeled as one of the

tendons, bones, or neither. It should be noted that all atlas
images contained the right wrist joint. For segmentation
of the left wrist, atlas images were horizontally mirrored
prior to registration.

Having obtained initial landmarks for the tendon regions,
the tendons were segmented by a similar approach to Chen
et al [17] using marker-based watershed segmentation
[18–20], followed by removal of segmented regions whose
intensity was > 75 (tendons are characterized by low image
intensities on T1-Gd images) or whose volume was < 0.01 ml.
An example of the resulting segmentations is shown in
Fig. 2b.

In order to segment the image region bounded by skin, the
entire image extent of the hand was approximated. First, the
background was segmented by performing region growing
with seeds placed at the four corners of each image slice.
Then, the resulting binary image was inverted and the largest
connected component was retained.

Finally, for each segmented tendon, a distance trans-
form was performed and voxels within a fixed distance
(D) of the tendons were included in the measurement ROI
as long as these voxels were not part of other labeled
structures. The distal radius/ulna boundary of the ROI
was determined by identifying the axial slice where the
two bones were closest to each other. The hook of the
hamate boundary was determined by searching for the
axial slice with the largest number of segmented hamate
voxels. An example of the resulting measurement ROI is
shown in Fig. 2c. As detailed in the optimization section,
the value of distance parameter D was obtained by max-
imizing correlation with visual scores on a training set of
patients.

Assessment of tendon segmentation accuracy

To assess the accuracy of tendon segmentation, a leave-
one-out cross-validation was performed. In each of the 13
runs, 12 out of 13 atlas images would constitute the atlas
set, and the remaining image would be used as the target
image to be segmented. The result was validated against
manual segmentation of the axial image. Segmentation ac-
curacy was evaluated by computing precision and recall
rates for each of the 10 tendon regions. Here, precision rate
refers to the fraction of voxels segmented by the algorithm
that overlap with the manual segmentation, while recall
rate refers to the fraction of voxels within the manual seg-
mentation that were correctly segmented by the algorithm.

Tenosynovitis quantification

Tenosynovitis is characterized by high signal intensity on T1-
Gd (fat-suppressed) images due to contrast enhancement.
Intensity values vary per acquisition, depending on the

Fig. 1 Tendon regions (compartments) scored for tenosynovitis, shown
on axial MR image of the wrist (T1, post-gadolinium, fat-saturated). The
six defined extensor compartments contain abductor pollicis longus,
extensor pollicis brevis (I); extensor carpi radialis longus, extensor carpi
radialis brevis (II); extensor pollicis longus (III); extensor digitorum
communis, extensor indicus proprius (IV); extensor digiti quinti
proprius (V); and extensor carpi ulnaris (VI). The four flexor regions
contain flexor carpi ulnaris (1); ulnar bursa, including flexor digitorum
profundus and superficialis tendon quartets (2); flexor pollicis longus
(tendon) in radial bursa (3); and flexor carpi radialis (4). Note: the flexor
carpi ulnaris does not have a tenosynovial sheath; nevertheless,
inflammation around this tendon is also observed, and therefore, enhance-
ment of tissue surrounding this tendon is scored [11]
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relative strength of contrast enhancement, the homogeneity of
the fat suppression, and the inherent magnetic field inhomo-
geneities of the MR scanner. To account for these acquisition-
specific intensity ranges of tenosynovitis, fuzzy C-means clus-
tering [21, 22] was applied to the intensity values of all voxels
in each image, assuming two clusters. This yields two proba-
bility map images, where each voxel contains the probability
of that location belonging to the respective cluster. Let C2 be
the cluster whose center value is the higher of the two com-
puted cluster centers. As Fig. 2d illustrates, high probabilities
(bright voxels) within the C2 probability map correspond to
locations of healthy synovial tissue. Since our focus is on
regions of inflammation, where image intensity is expected
to be higher compared to healthy synovium, voxels whose
intensity was lower than the value of C2 cluster center were
removed, resulting in a one-sided C2 probability map.

Tenosynovitis was then quantified by computing the frac-
tion of voxels within the measurement ROI whose one-sided
C2 probability values pC2 were bounded by TL ≤ pC2 < TH. As
detailed below, the numeric values of the lower and upper
thresholds (TL, TH) were optimized on a training set of patients
to maximize correlation with visual scores.

Optimization

In order to optimize the (TL, TH) thresholds and distance pa-
rameter D based on correlation with visual scores, a training
set of patients was defined. The number of patients with low
tenosynovitis (grades 0 and 1) in our early arthritis cohort was
much larger than the number of patients with moderate-severe
tenosynovitis (grades 2 and 3). Therefore, a random sampling
of the cohort would not guarantee inclusion of patients with
severe tenosynovitis in the training sample. In order to pro-
duce a more balanced training set representing the full range
of tenosynovitis severity, we used a similar sampling approach
as in our study on bone marrow edema [9]. We categorized
563 patients by the maximum visual score (Vmax) across the
scored tendon regions. Three sampling categories were de-
fined corresponding to three severity intervals within Vmax

range (0–3): Vmax = 0, 0 < Vmax ≤ 1, 1 < Vmax ≤ 3. Table 2 lists
the defined categories and the number of patients that fall into
each category. Next, 20 patients were randomly selected from
each category to form a training set of 60 patients. The optimal
distance and threshold values were found by computing the
quantitative measurement for D = 1, 2, 3, 4, 5, and 6 mm and

Fig. 2 SRR image of the wrist (a), segmented tendon regions and bones
(b), the resulting measurement ROI (c) in which tenosynovitis is
quantified (D = 3 mm), C2 probability map (d), ROI locations included
in the quantitative measurement marked in red (e). Image depicted in the
figure received a total visual score of 1: grade 1 tenosynovitis in flexor

region 3. Some of the voxels identified in neighboring flexor region 2
corresponded to a low grade enhancement, but were not picked up in
visual scoring. Several blood vessels located within the ROI were also
included, introducing a number of false detections that counted towards
the quantitative measurement
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all possible combinations (step size 0.01) of (TL, TH) and
determining which set of parameters maximized the Pearson
correlation coefficient r between the total visual score of teno-
synovitis (sum across all tendon regions) and the total quanti-
tative tenosynovitis measurement.

Validation

After optimizing and locking the values of D, TL, and TH, the
method was validated by computing the quantitative tenosyn-
ovitis measurement for the 503 patients that were not part of
the training set and evaluating the Pearson correlation coeffi-
cient between the total visual score and the total quantitative
measurement.

Statistical analysis

When assessing the Pearson correlation coefficient be-
tween visual scores and quantitative measurements,
p values below 0.05 were considered to be statistically
significant. Statistics were computed using MATLAB
R2015b (The MathWorks, Inc.).

Results

Assessment of tendon segmentation accuracy

The median and interquartile range (IQR) of recall and preci-
sion rates of tendon region segmentation across 13 atlas im-
ages are shown in Fig. 3. Flexor regions exhibited high preci-
sion rates (median values ranging from 0.92 to 0.97) and
moderate-high recall rates (median values ranging from 0.85
to 0.90). The rates were generally lower for extensor regions
and exhibited more variability (median precision ranging from
0.78 to 0.94 and median recall ranging from 0.32 to 0.85). The
lowest recall (including three failed segmentations) was ob-
served for extensor region III.

Optimization

The highest Pearson correlation value (r = 0.93, p < 0.001)
between the total visual score of tenosynovitis and the total
quantitative measurement over 60 training set patients was
observed with distance parameter D = 3 mm and threshold
values TL = 0.82 and TH = 0.94. As illustrated by the scatter
plot in Fig. 4, increasing levels of tenosynovitis severity were
fairly consistentlymatched with increasing values of the quan-
titative measurement. The measurements of patients with total
visual score 0 had a median offset from zero of 0.04 (IQR
0.03–0.05), constituting 14.8% of the largest observed value
of 0.27 for the most severely affected patients. Figure 2e
shows an example of measurement ROI locations that were
counted towards the quantitative measurement.

Validation

Having obtained the optimized parameter values, the quanti-
tative measurement was computed for 503 patients, and cor-
relation was assessed. The resulting Pearson correlation coef-
ficient was r = 0.90 and p < 0.001. The scatter plot in Fig. 5

Table 2 Training set sampling categories

Severity category
index

Vmaxinterval Number
of patients

0 Vmax = 0 200

1 0 < Vmax ≤ 1 261

2 1 < Vmax ≤ 3 102

Note: Random sampling across all categories would form a training set
that mainly consists of patients with Vmax ≤ 1. In contrast, randomly
selecting 20 patients from category 2, for example, guarantees that the
training set will include 20 patients in which at least one tendon region
received a visual score greater than 1. Thus, random sampling from each
severity category helps ensureD, TL, and TH are optimized with respect to
the entire range of tenosynovitis severity

Fig. 3 Median and interquartile
range of recall and precision rates
of tendon region segmentation
across 13 atlas images
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shows that majority of patients exhibited a consistent trend of
increasing quantitative measurements with increasing levels
of tenosynovitis severity. The measurements of patients with
total visual score 0 had a median offset from zero of 0.04 (IQR
0.03–0.05) (same as in training), constituting 13.8% of the
largest observed value of 0.29. Visual inspection of results
indicated that blood vessels and synovitis present within the
measurement ROI were often mistakenly counted as tenosyn-
ovitis by the quantitative measurement, increasing its numeric
value. The strongly outlying case of a patient with visual score
0 and a quantitative measurement of 0.15 was caused by a

failed tendon segmentation due to an unusually low intensity
distribution of healthy synovium.

Discussion

In this study, we investigated the feasibility of automatic
quantification of tenosynovitis on MRI of the wrist in a
large cohort of early arthritis patients. The presented
method extended our previously developed atlas-based
framework [9] to the extensor and flexor tendons of the
wrist, providing the landmarks necessary for tendon seg-
mentation and definition of the ROI in which tenosynovi-
tis was measured. The results exhibited strong correlation
between quantitative measurements and visual scores.
Quantitative measurements should not be viewed as a
replication of visual scoring and therefore this study
assessed consistency and correlation, rather than absolute
agreement. The observed correlation is especially encour-
aging considering that there is an inherent degree of var-
iability within visual scores due to the interval-based def-
inition of the visual grades. These findings indicate that
automatic quantification of tenosynovitis on MRI of early
arthritis patients is feasible, and that quantitative measure-
ments are largely consistent with visual scoring. However,
this study also brings out multiple challenges pertinent to
the quantification task, such as moderate segmentation
performance and sources of false detections. As detailed
in the following discussion, these are important issues that
will need to be addressed on the path to a robust quanti-
fication framework.

Interestingly, the overall moderate tendon segmentation
recall rates did not seem to have a strong adverse effect on
correlation between quantitative measurements and visual
scores. This can be explained by the fact that even if a
tendon is partially segmented, the measurement ROI
around the segmentation is still likely to include the ten-
don’s synovial lining. Although the ROI will then also
include voxels inside the tendon, on T1-Gd images ten-
dons are characterized by low image intensities which do
not contribute towards the inflammation measurement;
one exception is enhancement due to concomitant tendi-
nitis. It should be recognized, however, that in this study,
we measured the total inflammation across all evaluated
tendon regions, which may have reduced sensitivity to
errors made on the individual region level. This is partic-
ularly relevant when considering the low recall rates for
extensor region III. The 3/13 failed cross-validation cases
indicate that reliable quantification of inflammation
around this tendon was not always feasible. A likely rea-
son for this is that extensor region III is the smallest of the
10 tendon regions and exhibits higher curvature, making
the placement of atlas-based landmarks more challenging.

Fig. 5 Scatter plot of total quantitative measurements of tenosynovitis
versus total visual scores for 503 validation set patients. Each data point
represents a single patient. Pearson correlation r = 0.90, p < 0.001 (D =
3 mm, TL = 0.82, TH = 0.94). Dashed black line represents linear
regression fit

Fig. 4 Scatter plot of total quantitative measurements of tenosynovitis
versus total visual scores for 60 training set patients. Each data point
represents a single patient. Pearson correlation r = 0.93, p < 0.001 (D =
3 mm, TL = 0.82, TH = 0.94). Dashed black line represents linear
regression fit
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One type of segmentation error that had no effect on total
measurements was mislabeling of one tendon region as
another; however, future studies must thoroughly assess
mislabeling errors if evaluation of tenosynovitis on indi-
vidual region level is of interest. More generally, it should
be noted that inaccuracies in tendon segmentation do af-
fect the total number of voxels included in the measure-
ment ROI and thereby introduce some variability in the
quantitative measurement. Therefore, improving segmen-
tation accuracy is an important direction of future work
both for measurement precision and accurate evaluation of
tenosynovitis on the individual region level.

As illustrated by Fig. 2e, locations counted towards the
quantitative measurement did not always include all voxels
within the inflammation, but most voxels along the boundary
of the inflammation were typically included. One possible
reason for this is that the threshold parameters (TL, TH) were
optimized with respect to scores that reflect the maximum
thickness of peritendinous effusion or synovial proliferation
in each tendon region. Maximum thickness is not equivalent
to total volume, and therefore, it is plausible that some voxels
within the inflammation were not included in the measure-
ment. Figure 2e also illustrates that one drawback of the cur-
rent method is that blood vessels introduce false detections
that contribute towards the quantitative measurement. This
observation explains one of the factors behind the consistent
offset from zero both during training and validation. Future
improvements should include detection of blood vessels and
their exclusion from the measurement ROI.

Visual inspection of quantification results indicated that sy-
novitis present within the measurement ROI (for example, be-
tween carpal bones and tendons) was mistakenly counted as
tenosynovitis by the quantitative measurement. In visual scor-
ing, trained readers employ their expertise and pattern recogni-
tion to classify the observed inflammation as either synovitis or
tenosynovitis. The presented method did not include such clas-
sification, and therefore, it is not surprising that it counted all
inflammation detected within the measurement ROI as tenosyn-
ovitis. This is another contributing factor to the offset observed
in training and validation. Since synovitis is often present in
joints in the vicinity of tendons affected by tenosynovitis [11],
a more specific definition of the measurement ROI is warranted.

In conclusion, the presented method provides a refer-
ence on the path to automatic quantification of tenosyno-
vitis on MRI and lays out possible directions for future
improvements. The common presence of tenosynovitis in
RA and its association with RA development in arthralgia
and early arthritis patients motivate the development of
quantitative measurement techniques. These advances
would aid clinical researchers by standardizing interpreta-
tion and allowing them to dedicate more resources to
analysis rather than visual scoring, facilitating both re-
search and potential clinical implementation.
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