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Abstract
Linear alkyl sulfates are a major class of surfactants that have large-scale industrial application and thus wide environmental 
release. These organic pollutants threaten aquatic environments and other environmental compartments. We show the promise 
of the use of a whole-cell electric sensor in the analysis of low or residual concentrations of sodium dodecyl sulfate (SDS) 
in aqueous solutions. On the basis of bioinformatic analysis and alkylsulfatase activity determinations, we chose the gram-
negative bacterium Herbaspirillum lusitanum, strain P6–12, as the sensing element. Strain P6–12 could utilize 0.01–400 mg/L 
of SDS as a growth substrate. The electric polarizability of cell suspensions changed at all frequencies used (50–3000 kHz). 
The determination limit of 0.01 mg/L is much lower than the official requirements for the content of SDS in potable and 
process water (0.5 and 1.0 mg/L, respectively), and the analysis takes about 1–5 min. The promise of H. lusitanum P6–12 
for use in the remediation of SDS-polluted soils is discussed.
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Introduction

Sodium dodecyl sulfate  [CH3(CH2)10CH2OSO3Na; SDS, 
E487; synonym: sodium lauryl sulfate, SLS] is a highly 
effective synthetic surfactant used in almost all everyday 
products, including soap, shampoo, toothpaste, detergent, 
and cleaner (Smulders et al. 2007; Devesa-Rey et al. 2011) 
as well as in various industries and in basic research (Adac 
et al. 2005; Liwarska and Bizukojc 2006; Martinez and 
Munoz 2007). SDS is also used as an adjuvant to improve 
the repellent effects, dispersion, and penetration of pesticides 
(Liwarska and Bizukojc 2006; Martinez and Munoz 2007) 
and as an emulsifying and bacteriostatic agent in pharmacol-
ogy and medicine. In the EU countries, SDS is classed with 
the nonparenteral drugs (Liwarska and Bizukojc 2006; Mar-
tinez and Munoz 2007; EMA/CHMP/351898/2014). Owing 
to its ability to solubilize the virus envelope and destroy the 
capsid proteins, SDS is a potential inhibitor of enveloped 
(HIV, herpes simplex virus) and nonenveloped (human pap-
illoma virus, rotavirus, poliovirus) viruses (Piret et al. 2002; 
Zhernov and Khaitov 2019).

In 2020, the SDS market volume was worth more than 
$590 million. It is expected to increase at a rate of 3.8% 
from 2021 to 2027 owing to the rapidly growing demand for 
cleaning, detergent, and personal care products (Pulidindi 
and Bhalerao 2021). The increased use of SDS and the 
imperfect treatment of industrial wastewater have led to 
large-scale pollution of the environment by SDS and its 
derivatives (Pettersson et al. 2000). According to EC Reg-
ulation No. 1272/2008, SDS (classified as Category 3) is 
moderately toxic, has acute toxic effects, and is a long-term 
hazard to water bodies. Surfactant accumulation in animals 
and humans leads to genetic disorders, malignant neoplasms, 
and immune response disorders (Martinez and Munoz 2007; 
Rosety et al. 2001; Forni et al. 2008; Messina et al. 2014).

The content of surfactants in environmental constituents 
is under the close attention of ecologists and is subject to 
mandatory monitoring. The limits to the content of SDS in 
potable and process water are 0.5 and 1.0 mg/L, respectively 
(Rao 1995; European Chemicals Agency [ECHA], 2008; 
ECHA REACH database: http:// echa. europa. eu/ infor mation- 
on- chemi cals/ regis tered- subst ances).

An urgent need exists for specific and rapid methods to 
monitor SDS in water bodies and in industrial wastewater. 
The analytical methods used for SDS determination include 
capillary electrophoresis/mass spectrometry, turbidimetry, 
polarography, spectrophotometry and amperometry (Hayashi 
1975; Petrovic and Barcelo 2000; Attaran et  al. 2009; 
Taranova et al. 2002; Dey et al. 2020). These have several 

limitations, as they require expensive, high-tech equipment 
and are time-consuming and poorly sensitive (Hayashi 1975; 
Petrovic and Barcelo 2000). An effective alternative is the 
use of bacteria-based biosensors. Whole-cell biosensors 
have found application in environmental monitoring (Bel-
kin 2003), pharmacology, and drug screening (Zager et al. 
2010; Hillger et al. 2015). They have also been used to rap-
idly measure biochemical oxygen consumption in aquatic 
environments (Raudkivi et al. 2008; Abrevayaet et al. 2014). 
The integrity of the bacterial cell membrane after contact 
with a detergent and the induction of enzymatic catalysis, 
accompanied by redistribution of charges within the cell, 
can be recorded with an optical sensor (Bartnik 1992; Bunin 
and Voloshin 1996; Guliy et al. 2008; Guliy, Bunin 2020). 
However, the development of a unified device for surfactant 
analysis is a challenging task that requires the selection of 
promising prokaryotes (Cain 1994; van Ginkel 1996; Carac-
ciolo et al. 2017).

The goal of this work was to select bacteria capable to 
utilizing SDS as the sole carbon source and to develop a 
bacteria-based sensor system for the determination of SDS 
in aqueous solutions.

Materials and methods

Bacteria and culture conditions

Herbaspirillum lusitanum P6–12 was from the IBPPM RAS 
Collection of Rhizosphere Microorganisms (IBPPM 515; 
http:// colle ction. ibppm. ru). Cells were grown in a vitamin-
supplemented liquid synthetic medium (Smol'kina et al. 
2012) at 30 ± 1 °C for 22–24 h (until the end of the expo-
nential growth phase).

Bioinformatics analysis

Search for amino acid sequences of Herbaspirillum sp. 
was carried out in the Protein NCBI and UniProt data-
bases, annotated Pseudomonas putida alkyl sulfatase was 
chosen as a reference. Protein amino acid sequences were 
compared using the Protein BLAST tool (https:// blast. 
ncbi. nlm. nih. gov). Search parameters: database—non-
redundant protein sequences, organism—Herbaspirillum 
(taxid:963), blastp algorithm (protein–protein BLAST). 
The phylogenetic tree of amino acid sequences was built 
using the nearest neighbor joining algorithm (Saitou and 
Nei 1987.) using the MEGA 10 program (Kumar et al. 
2018). Alignment of amino acid sequences was performed 

http://echa.europa.eu/information-on-chemicals/registered-substances
http://echa.europa.eu/information-on-chemicals/registered-substances
http://collection.ibppm.ru
https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
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using the MUSCLE method (Edgar 2004). The evolution-
ary distances were computed using the Poisson correc-
tion method (Zuckerkandl and Pauling 1965.) and are in 
the units of the number of amino acid substitutions per 
site. This analysis involved 6 amino acid sequences. All 
ambiguous positions were removed for each sequence pair 
(pairwise deletion option).

SDS degradation study by the methylene blue active 
substance (MBAS) method

The degradation experiment was conducted in 250-mL 
Erlenmeyer flasks containing 100 mL of a liquid medium 
composed as follows (g/L):  K2HPO4, 0.25;  MgSO4 ×  7H2O, 
0.2; NaCl, 0.1;  Na2MoO4 ×  2H2O, 0.001;  MnSO4 ×  H2O, 
0.002;  FeSO4 ×  7H2O, 0.01;  CaCl2 ×  2H2O, 0.02;  (NH4)2SO4, 
1.0. Filter-sterilized SDS [Sigma–Aldrich, USA, L5750; 
92.5–100.5% (on the basis of total alkyl sulfate content)] 
was used as the sole carbon source, and the concentration 
was increased progressively from 0 to 600 mg/L. The pH 
was adjusted to 7.2–7.4. After the medium was sterilized, 
it was inoculated with a suitable dilution of an overnight 
bacterial culture at A600 = 0.1  (109 CFU/mL). The degrada-
tion experiment was run in a shaking incubator at 200 rpm 
at 30 ± 1 °C. The incubation was done in triplicate, with 
appropriate duplicate controls (approximate duration, 24 h). 
Biomass increase was monitored by A595 measurements. 
Cultures grown in the liquid synthetic medium (Smol'kina 
et al. 2012) without SDS were used as a growth control.

SDS degradation was monitored by measuring the inten-
sity of methylene blue in a chloroform extraction process 
[methylene blue active substance (MBAS) assay; Shukor 
et al. 2009). At time intervals, a sample of 5 mL was drawn 
from the culture medium. One hundred μL of the culture was 
added to 100 mL of a separating funnel containing 9.9 mL of 
deionized water; this was followed by the addition of 2.5 mL 
of a methylene blue solution and 1 mL of chloroform. The 
funnel was shaken vigorously for 15 s, and the mixture was 
left to separate and settle. The chloroform layer was drawn 
off into a second funnel. The extraction was repeated three 
times, with 1 mL of chloroform used each time. All chlo-
roform extracts were combined in the second funnel before 
5.0 mL of a washing solution was added. The funnel was 
then shaken vigorously for 15 s. The chloroform layer was 
drawn off into a volumetric flask. The washing solution 
was extracted twice with 1 mL of chloroform. All extracts 
were combined and diluted to 10 mL with chloroform. The 
absorbance was read at 652 nm against blank chloroform 
in a quartz cuvette. Calibration curves were generated by 
using standard solutions based on the weight of pure SDS. 
All experiments were run in triplicate, and results were 
expressed as mean ± SD.

Alkylsulfatase assay

Alkylsulfatase activity was measured by the rate of phenol 
red oxidation at 557 nm (ε557 = 44,100  M−1  cm−1) (Liang 
et al. 2014). The measurements were made in 96-well plates, 
and the absorbance decrease was read on a Spark 10 M tablet 
spectrophotometer (Tecan, Switzerland). The reaction mix-
ture contained 0.2 mM HEPES (pH 7.5), 100 mM phenol 
red, 0.02% (wt/vol) SDS, and 20 μL sample. The reaction 
mixture was incubated at 37 °C for 60 min. One unit of 
activity is the amount of enzyme catalyzing the conversion 
of 1 μM substrate per min.

Bacterial cells were sedimented by centrifugation 
(10,000×g, 15 min), and the supernatant liquid was used to 
measure extracellular enzymatic activity.

Fractions of the cell surface enzymes were obtained with 
the cell shearing method of Eshdat et al. (1978), modified 
as follows: The cell suspension was passed several times 
through a syringe with a needle size of 0.8 × 38 mm. Treat-
ment with 2-nitro-5-thiocyanobenzoic acid was omitted to 
avoid loss of enzyme activity. Then, the suspension was cen-
trifuged (10,000×g, 10 min), and the supernatant liquid was 
separated from the sediment.

For intracellular enzymes, the cell suspension in phos-
phate-buffered saline (pH 7.2) was treated with ultrasound 
(37 kHz, 5 min) and then centrifuged (12,000×g, 15 min). 
The supernatant liquid was separated from the sediment and 
was filtered through a polytetrafluoroethylene (PTFE) filter 
(Merck).

Analysis with an electric sensor

To investigate the response of cells to SDS by measur-
ing their electric polarizability, we used a sensing system 
based on the ELUS device (EloSystems GbR, Germany). 
Before analysis, the cells were washed free of the culture 
medium three times by centrifugation (2800×g, 5 min) 
in distilled water (electric conductivity, 1.6–1.8 μS/cm) 
and then they were centrifuged once (1000×g, 1 min) to 
remove cellular aggregates. Conductivity was measured 
with an HI 8733 m (HANNA, USA). The absorbance of 
the supernatant liquid was adjusted with distilled water to 
A670 ~ 0.42–0.45 (1.2 ×  109 cells/mL of H. lusitanum P6–12). 
The measuring conditions were as follows: electric field 
strength, 89.4 V/cm; light wavelength, 670 nm (relative to 
vacuum); field application time, 4.5 s; volume of the meas-
uring cell, ~ 1 mL; frequencies, 50, 100, 200, 400, 500, 700, 
1000, 2000, and 3000 kHz. The method used to measure 
electric polarizability is based on the effect of an external 
electric field on cells suspended in an aqueous medium. 
The electric field gives rise to induced charges on the sus-
pended particles. The structural mechanism of polarizability 
is characterized by the appearance of bulk charges at the 
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interfaces between adjacent media with different dielectric 
permittivities (the double electric layer–cell wall interface, 
the cell wall–cytoplasmic membrane interface, the cytoplas-
mic membrane–cytoplasm interface, etc.). The magnitude of 
the charges induced at the interfaces is proportional to the 
electric field strength E and depends on the ratio between 
the dielectric permittivities of the structures forming these 
interfaces. The phenomenological variable describing this 
effect is the particle polarizability tensor γ (Bottcher 1982); 
changes in this parameter were recorded in this work. Fig-
ure 1A shows the general scheme for the electric sensor.

The electrical sensory system for SDS determination is 
based on the effects of an electric field force on cells sus-
pended in an aqueous medium, i.e. the method is based on 
using the effect of polarizability of particles in an electric 

field and measuring the optical manifestation of the cells 
polarization (Kerr effect/electro-optical effect). When an 
electric field is applied to a cell suspension, polarization 
of cellular structures occurs, as a result of which the cells 
acquire an induced cellular dipole moment. The physical 
manifestations of this effect is the electrical orientation of 
cells, which displays itself in the transition of cells to an 
oriented state. The phenomenon of electroorientation is due 
to the influence of an external electric field on the dipole 
moment of cells. Since all substances, including biologi-
cal ones, contain free and bound charges, when an elec-
tric field is applied, two types of processes are observed 
in a substance. One of them—the movement (drift) of free 
charges (electrons and ions) through the thickness of the 
substance from one electrode to another is a conduction cur-
rent. Another process is that the bound charges under the 
action of an external field are displaced within some accept-
able but restricted limits, causing displacement currents and 
the appearance of an induced electric moment, as shown in 
Fig. 1B. This phenomenon of electric polarization of matter 
arises when a field is applied and decreases after its removal 
not instantly, but after some finite time, called the relaxation 
time (Guliy and Bunin 2020).

Because several interrelated variables (polarizability 
change, dielectric permittivity, optical signal change) are 
recorded simultaneously, the initial electric phenomenon 
can be measured only in relative units. The use of relative 
units simplifies the presentation of the experimental result 
because, by accepted international standards, relative units 
offer a way to calculate variables when the values of sys-
tem quantities (voltage, current, resistance, power, etc.) are 
expressed as multipliers of a certain reference value taken 
as a unit.

For each set of experiments, at least five independent 
replicates were done. In the analysis of the electric polar-
izability, at least three replicate measurements were made 
for each datum point. Data were analyzed with Excel 2016 
software (Microsoft Corp., USA). Confidence intervals were 
calculated for 95% confidence.

Results

Alkylsulfatase assay

Using a bioinformatics search, 5 amino acid sequences of 
Herbaspirillum alkylsulfatases were selected with a high 
level of homology to the reference alkylsulfatase (E-value 
less than 1e–130) (Table 1). The phylogenetic tree con-
structed based on the alignment of amino acid sequences is 
shown in the Fig. 2. The bioinformatic data were confirmed 
by a series of experiments to measure the alkylsulfatase 
activity of H. lusitanum P6–12 grown in the liquid medium 

Fig. 1  A General scheme for the electric sensor and B Scheme of 
changes in the optical density of microbial cells under the orienting 
effect of an electric field for one of the mutually perpendicular direc-
tions of the optical beam: I—the moment the electric field is applied 
(chaotic orientation of the cells), II—the moment the field is turned 
off (the cells are in an oriented state), III—the moment the cells 
return to a state with a chaotic orientation
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(Fig. 3). The culture showed a high enzymatic activity in 
material washed off the cell surface and in cell-free and 
intracellular extracts. Intracellular and surface alkylsulfatase 
activities were approximately at the same level (50 units/L), 
and extracellular alkylsulfatase activity was approximately 
2.5 times higher (120 units/L) (Fig. 3).

The use of microorganisms in biosensor systems pre-
supposes preliminary study of bacterial activity toward the 
substrate being tested. Therefore, we analyzed the ability 
of H. lusitanum P6–12 to utilize SDS as the only carbon 
and energy source. Bacteria were grown with 0–600 mg/L 
of SDS (Fig. 4). This range was chosen because as a rule, 
industrial wastewater contains anionic surfactants in the con-
centration range 1–10 mg/L (Fendinger et al. 1994).

The Fig.  4 data show that the growth of H. lusita-
num P6–12 with 50 mg/L of SDS was intense and was 

comparable to growth without SDS. Increasing the SDS 
concentration to 100 mg/L decreased the number of bac-
teria twofold. Between 200 and 500 mg/L of SDS, growth 
was largely inhibited but the cells retained their viability 
and motility (Fig. 4). Increasing the SDS concentration to 
600 mg/L resulted in cell aggregation and sedimentation.

The growth of strain P6–12 was accompanied by a 
decrease in the content of SDS (Fig. 4). At 50, 100, and 
200 mg/L of SDS in the medium, 92.2, 77.3, and 43.8% of 
SDS was degraded, respectively. When the SDS concentra-
tion was increased to 400 and 600 mg/L, the degradation 
efficacy decreased to 21.9 and 3.7%, respectively.

Analysis with an electric sensor

Because H. lusitanum P6–12 has alkylsulfatase activity and 
can utilize SDS as a single source of carbon, we investigated 
whether it can be used as the sensing element of an electric 
sensor in SDS analysis. For this purpose, we used a sensor 
to examine the effect of different SDS concentrations on the 
electric polarizability of the bacterial cells. Figure 5a shows 
that under the influence of SDS, the electric polarizability of 
strain P6–12 changed across the range of frequencies used, 
as compared to the control (no SDS; Fig. 5a, line 1). For 
convenience of presentation, Fig. 6b shows the results for the 
100, 500, and 1000 kHz frequencies. It can be seen that the 
minimum detectable concentration of SDS was 0.08 mg/L 
(Fig. 5a, line 2). Additionally, Table 2 shows the SDS-
induced deviations of the analytical signal, as compared to 
the control (no SDS).

When SDS was used at greater than 200 mg/L con-
centrations, the sensor signal changed within 2–3% 
(Fig. 5). Therefore, we examined the sensor signal at the 
0.01–10 mg/L concentration range of SDS (Fig. 6). For 
convenience of presentation, we give the discrete polariz-
ability tensor values measured at the constant frequencies 
of 100, 500, and 1000 kHz, respectively. From 0.01 mg/L 
onwards, there were statistically significant changes in the 
signal magnitude (9, 7, and 14%), as compared to the con-
trol (Fig. 6). The set of discrete polarizability tensor values 
obtained approximated satisfactorily by two intersecting 

Table 1  Alkylsulfatases of Herbaspirillum spp. with high homology (score and E-value measures) to the reference alkylsulfatase of P. putida 

Reference alkylsulfatase (protein ID) Herbaspirillum alkylsulfatase (protein ID) Score E-value Percent 
identity 
(%)

P. putida, Q9WWU5.1 H. frisingense, KAF1038947.1 413 2e–145 69.28
H. huttiense, MBM7749534.1 407 3e–143 68.06
H. hiltneri, WP _053198152.1 404 4e–142 69.40
H. lusitanum, WP_016835402.1 402 6e–141 68.68
H. seropedicae, WP_225202855.1 390 2e–136 68.06

Fig. 2  The evolutionary history was inferred using the Neighbor-Join-
ing method (Saitou and Nei 1987). The optimal tree with the sum of 
branch length = 0.65119288 is shown. The tree is drawn to scale, with 
branch lengths (next to the branches) in the same units as those of the 
evolutionary distances used to infer the phylogenetic tree



 World Journal of Microbiology and Biotechnology (2022) 38:118

1 3

118 Page 6 of 13

linear functions at the concentration ranges of 0–0.1 and 
0.1–2 mg/L, with coefficients of determination (R2) val-
ues of 0.9738 and 0.9819 (data not shown), respectively. 
The resultant concentration dependences may be used as 
calibration graphs for the determination of SDS in aque-
ous solutions.

The interaction of SDS with the bacterial surface struc-
tures are recorded by the sensor as changes in the parti-
cle polarizability tensor. Thus, H. lusitanum P6–12 can 
be recommended as a sensing element for the determina-
tion of 0.01–400 mg/L of SDS. The determination limit of 
0.01 mg/L is much lower than the official requirements for 
the content of SDS in potable and process water (0.5 and 
1.0 mg/L, respectively). Approximately the same level of 
alkylsulfatases activity with a significant decrease in bio-
mass production at SDS concentrations of 100 and 200 mg/L 
may be due to the action of a stressor that activates the bacte-
rial enzymatic system involved in SDS degradation.

It follows from the Table 3 data that our whole-cell elec-
tric sensor for SDS determination has a good minimum 
detection limit (0.01 mg/L). In this work, the presence of 
SDS in the medium was recorded within an average range 
of 1–5 min.

Discussion

Biosensors are analytical systems that consist of a sensi-
tive biological element and a detection system recording the 
concentration or activity of the analytes present in the sam-
ple. In biosensor development, it is crucial that one choose 
a bioselective agent (recognition element) that will ensure 
specific binding to the target analyte; this binding will be 
detected by the sensor. Microbial cells able to utilize the 
substrate being detected can be used as the sensing element. 
The preferred bioelement is a microorganism that has an 

Fig. 3  Alkylsulfatase activity of 
H. lusitanum P6–12 grown in 
the liquid medium
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enzymatic oxidation system for the efficient degradation of 
pollutants and low tolerance for their limiting effects. The 
use of natural (unadapted) microbial strains for these pur-
poses will make it possible not only to ascertain pollutant 
effects but also to show the prospects of using the chosen 
strains in bioremediation.

Herbaspirillum bacteria have a plastic genome and an 
oxidative enzyme system, and therefore they can degrade 
environmental pollutants. This fact may form the basis for 
the design of new bacteria-based whole-cell biosensors 
(Tecon and van der Meer 2008; Brice et al. 2011; Hong 
et al. 2011.). Bacterial enzymes are under “evolutionarily 
optimized conditions,” and in some cases, this results in 
highly stable analytical signals. Several studies have shown 
the involvement of microbial alkylsulfatases in the degrada-
tion of SDS. Alkylsulfatase (EC 1.14.11. 77; alkylsulfatase, 
α-ketoglutarate-dependent sulfate ester dioxygenase) is a 
heme-containing dioxygenase that catalyzes the cleavage of 
complex alkyl sulfates with medium chain lengths, such as 
butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and sodium 
dodecyl (SDS) sulfates (Müller et al. 2004). High degrada-
tive potential against alkyl sulfates, in particular SDS, has 
been shown in members of the genus Pseudomonas; how-
ever, the higher is the oxidative ability of a bacterial strain, 
the lower is the analysis selectivity when this strain is used 
as the sensing component (Beyersdorf-Radeck et al. 1998).

Bacterial cell surface polysaccharides, which have a large 
number of hydrophilic and (often) other functional groups 
(e.g., –COOH, –NH2), are implicated in the formation of 
hydrate shells around cells and of the cell surface charge. 
In turn, the shells and the charge ensure the aggregative sta-
bility of the bacterial suspension in response to a stressor. 
Details of the mechanism underlying the interaction of SDS 
with the bacterial surface structures have not yet been clari-
fied, but it is known that a large contribution to this pro-
cess is made by hydrophobic interactions (Bhuyan 2010). 
Lipopolysaccharide (LPS), the major component of the outer 
membrane surface of gram-negative bacteria, can bind SDS 
molecules owing to its hydrophobicity and owing to ionic 
interactions with the charged groups in the core oligosaccha-
ride. One can assume that the interaction with the core oligo-
saccharide would be more pronounced in R-form LPS owing 
to the absence of O polysaccharide chains. Such interactions 

of SDS and its enzymatic decomposition products with the 
R-LPS of H. lusitanum P6–12 may result in the appearance 
of induced charges on the bacterial surface.

Biosensors, especially those used for environmental pur-
poses, should offer easy and quick detection of compounds 
(Belkin 2003; Tecon and van der Meer 2008). In this con-
text, the use of fluorescent, electrochemical, and whole-cell 
sensors to determine SDS has great potential. The main cri-
teria involved in the development of sensor systems for the 
analysis of toxic compounds include the specific response 
of bacteria, the presence of a range of linear dependence of 
bacterial activity toward a given substrate, the ease of prepa-
ration of active biomass, and the analysis time. Our biosen-
sor system obviates the need for purified enzyme prepara-
tions, giving great advantages for in situ microbial ecology 
and largely reducing the analysis cost. Our sensor differs 
in principle from other whole-cell bacteria-based sensors 
used for SDS analysis (Table 3), because the mechanism of 
its action is supposedly based on the binding of SDS and its 
enzymatic decomposition products to the bacterial surface, 
which brings about changes in the polarizability tensor. An 
added advantage is the absence of need for bacterial cell 
immobilization, which largely reduces the preparation time 
for the sensor’s sensing element.

Thus, the use of H. lusitanum P6–12 shows promise for 
use in the sensor determination of low SDS concentrations. 
Analysis of changes in the electrical polarizability of cells 
grown with SDS can both show the fact of SDS effect on 
microorganisms but also measure this effect by the change 
in the magnitude of the recorded signal.

The COVID-19 pandemic triggered a sudden increase 
in demand for hand and room disinfectants in hospitals, 
households, and industrial enterprises. Research on the 
lauryl sulfate market has shown a substantial increase in 
the production of SDS and SDS-based household clean-
ing products. By 2027, the market for dry sodium lau-
ryl sulfate may be worth $620 million through its use in 
detergents and in personal care and beauty products. The 
growing urbanization, the sustained growth in the cos-
metics industry, and modernization are the major factors 
responsible for the changing consumer preferences, which 
are expected to drive the global demand for sodium lau-
ryl sulfate. It is expected that the growth of the sector of 

Table 2  Changes in the electric 
polarizability of SDS-grown 
cells, as compared to the control 
(relaxation time, 4.5 s)

SDS (mg/L) Deviation of values at different frequencies (kHz) from the control (%)

50 100 200 400 500 700 1000 2000 3000

0.08 19.78 29.61 29.99 42.60 43.64 44.55 47.75 44.97 21.40
4 84.11 84.62 84.07 86.96 86.32 86.33 85.10 85.08 77.12
200 85.94 81.86 80.50 85.10 87.21 86.56 84.23 85.36 69.93
400 74.10 75.82 75.17 81.14 80.50 82.26 81.04 80.57 75.64
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fast-moving consumer goods (FMCG) will accelerate the 
growth of the global sodium lauryl sulfate market during 
the forecast period. To prevent the global environmental 
disaster associated with the use and deposition of SDS, 
researchers should develop methods for the detection of 
this compound, primarily in water resources.

A necessary component of current environmental research 
is the rapid assessment of pollution. We have described an 
H. lusitanum P6–12—based sensor system for the detec-
tion and analysis of residual SDS amounts in aqueous solu-
tions. The system enables reliable and rapid determination of 
alkyl sulfates, with the minimum determination limit being 
0.01 mg/L. H. lusitanum P6–12 offers promise for use in the 
determination of anionic surfactants in aqueous solutions.

A modern achievement in biological cleanup is the 
method of local microbial cleanup. It is based on the use 
of biocatalysts-active microbial degraders used either in 
culture or as immobilized on inert media. Bacteria una-
dapted to xenobiotics but showing alkylsulfatase activity, 
which is implicated in SDS degradation, can be used as 
remediation agents or as components of biofertilizers able 
to improve crop yields in polluted settings. Herbaspiril-
lum lusitanum P6–12, able to grow with SDS as the sole 
carbon source, can be recommended not only as a sensing 
element for SDS analysis but also as a remediation agent 
for polluted soils. Expanding the knowledge on the micro-
bial degradation of xenobiotics will allow the design of 
new technological approaches and the improvement and 
optimization of the existing bioremediation technologies.

Thus, gram-negative soil bacteria of the genus 
Herbaspirillum have potential as SDS degraders and can 
also act as bioindicators. The described sensor permits 
rapid determination of low SDS concentrations and obvi-
ates the need for sample pretreatment. The relatively high 
optimum temperature for growth on SDS is suitable for use 
of Herbaspirillum in the remediation of SDS-polluted soils.
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