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Abstract

The recent movement towards open data in the biomedical domain has generated a

large number of datasets that are publicly accessible. The Big Data to Knowledge

data indexing project, biomedical and healthCAre Data Discovery Index Ecosystem

(bioCADDIE), has gathered these datasets in a one-stop portal aiming at facilitating their

reuse for accelerating scientific advances. However, as the number of biomedical data-

sets stored and indexed increases, it becomes more and more challenging to retrieve the

relevant datasets according to researchers’ queries. In this article, we propose an infor-

mation retrieval (IR) system to tackle this problem and implement it for the bioCADDIE

Dataset Retrieval Challenge. The system leverages the unstructured texts of each dataset

including the title and description for the dataset, and utilizes a state-of-the-art IR model,

medical named entity extraction techniques, query expansion with deep learning-based

word embeddings and a re-ranking strategy to enhance the retrieval performance. In em-

pirical experiments, we compared the proposed system with 11 baseline systems using

the bioCADDIE Dataset Retrieval Challenge datasets. The experimental results show that

the proposed system outperforms other systems in terms of inference Average Precision

and inference normalized Discounted Cumulative Gain, implying that the proposed sys-

tem is a viable option for biomedical dataset retrieval.
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Introduction

The recent movement towards open data in the biomedical

domain has generated a large number of datasets that are

publicly accessible (1–3). It not only makes research trans-

parent and reproducible, but also allows for more collab-

orative and rapid progress and enables the development of

new questions by revealing previously hidden patterns and

connections across datasets (4). Due to the lack of stand-

ards, however, integration and interconnection of datasets

available in different repositories are major obstacles for

biomedical research (5, 6).

There have been considerable efforts that attempt to

address the integration issue. For example, a number of

scientific journals have created policies about sharing

data. Many projects have been funded to tackle the bio-

medical data integration problem, such as the OpenAIRE

project (http://www.openaire.eu/) in Europe and the Open

Research Data project (http://www.rcuk.ac.uk/research/

opendata/) in UK. In the US, the National Institutes of

Health has funded the biomedical and healthCAre Data

Discovery Index Ecosystem (http://biocaddie.ucsd.edu/)

(bioCADDIE) prototype through the Big Data to

Knowledge program. The bioCADDIE is a data discovery

index prototype providing a searchable index of biomed-

ical study data, analogous to what PubMed and PubMed

Central have achieved for medical literature (4, 7).

However, as bioCADDIE has ingested and indexed >840

000 datasets from 23 different repositories across 10 differ-

ent data types (8), it becomes more and more challenging

to retrieve the datasets that meet the needs of the biomed-

ical researchers.

With this in mind, the bioCADDIE Dataset Retrieval

Challenge (9) was initiated with a goal of addressing the

dearth of tools to retrieve relevant datasets from a large

collection of biomedical datasets, in order to facilitate the

re-utilization of collected data, and to enable the replica-

tion of published results. Specifically, the task is an infor-

mation retrieval (IR) task that is defined as follows: Given

a biomedical researcher’s query, participants were chal-

lenged to retrieve 1000 biomedical datasets relevant for an-

swering a specific instantiated query. Retrieved datasets

will be manually judged by human annotators and cate-

goried into three levels of relevance, i.e. relevant, partially

relevant or not relevant, according to whether or not they

meet all the constraints specified in the query. Multiple

metadata, including structured, unstructured and semi-

structured metadata, were given in the dataset collection,

such as ‘title,’ ‘description,’ ‘platform,’ ‘repository’ and

‘species.’

In this article, we describe an IR system for the

bioCADDIE Dataset Retrieval Challenge and focus on

using the unstructured textual data, specifically, ‘title’ and

‘description.’ The system utilizes a state-of-the-art IR

model, medical named entity extraction techniques, query

expansion with deep learning-based word embeddings and

a re-ranking strategy to enhance the retrieval performance.

In empirical experiments, we compared the proposed sys-

tem with 11 baseline systems using the bioCADDIE

Dataset Retrieval Challenge datasets.

The article is organized as follows. First, we briefly re-

view related work. Second, we described the proposed

methods, including the IR model, medical entity extraction,

query expansion with word embeddings and the re-ranking

mechanism. Third, we present the experiments including the

data given in the challenge, preprocessing, indexing and ex-

perimental results. Finally, we conclude the article with dis-

cussions, limitations and future directions.

Related work

In this big data era, we always find it challenging to find

the most relevant documents to a query from a large collec-

tion of documents. IR has been studied to address this issue

for decades. IR techniques have been adopted in every

search engine for searching the World Wide Web. A typical

scenario is that a user inputs a query into a search engine

and the search engine retrieves answers in the form of a list

of documents in ranked order (10). According to the classic

definition of IR in (11), ‘IR is a field concerned with the

structure, analysis, organization, storage, searching and re-

trieval of information.’ Figure 1 shows a high-level IR

architecture, which consists of two major functions, index-

ing and querying. The indexing process creates the struc-

tures that make document contents searchable while

querying takes a user’s query as input and uses retrieval al-

gorithms and those indexing structures to produce relevant

documents in the order of ranking scores.

In the indexing process, text transformation and index

creation are two major components. The conventional

method of text transformation is to transform documents

Figure 1. A basic IR architecture.
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into index terms. An alternative is to use vectors for repre-

senting document contents. The vectors might refer to an

index term or partial document. Vector Space Model

(VSM) is the most widely used method in vector represen-

tations (12, 13). There are different variants of VSM based

on how the vectors are generated. Tf-idf is the simplest

method that calculates the term frequency-inverse docu-

ment frequency for each term (12, 13). Latent Semantic

Analysis (14, 15) and Latent Dirichlet Allocation (16, 17)

are topic modeling methods that could capture some as-

pects of hidden conceptual information and represent such

information in vectors.

Unlike the VSM model that assumes words are inde-

pendent of each other (i.e. bag-of-word assumption), the

Markov Random Field (MRF) model is a state-of-the-art

IR model that leverages Markov properties to take into

account the relationships between terms (18). Figure 2 il-

lustrates an example of the bag-of-word assumption and

the MRF model with three dependency types. The MRF

model explicitly represents three types of dependencies be-

tween query terms. It has been verified on a variety of IR

tasks and the performance has shown promise compared

to the conventional bag-of-word based models (18, 19).

Recently, Wang et al. proposed a Part-Of-Speech (POS)

based MRF (POS-MRF) model, which is a variant of the

MRF model that assigns different weights to different

query terms according to the terms’ POS (20). It outper-

forms the conventional MRF model based on exhaustive

experiments (20, 21). Therefore, we also utilized the POS-

MRF in our proposed system.

In the querying process, query transformation and rank-

ing are two major components. Query transformation is im-

portant for the final retrieval performance since a raw query

might not fully capture the linguistic variability of the infor-

mation needs. Query transformation includes simple stop-

words removal, stemming and more sophisticated spell

checking and query term suggestion. In addition, query ex-

pansion is a commonly adopted technique in query trans-

formation that expands an initial query using synonyms and

semantically related words (22, 23). However, it is still an

open question how to find the most related words automat-

ically. Some researchers use topic modeling to expand

queries with terms having shared latent topics (24).

Recently, deep learning has drawn researchers’ interest

since it automatically learns features from data. Word

embeddings are one of the widely used word representa-

tions that are trained by deep learning models, which rep-

resent words in a dense low-dimension vector that captures

hidden features of the word. Having been verified by many

winning systems in the Text Retrieval Conference (TREC)

Clinical Decision Support (CDS), word embeddings have

been shown to be effective for query expansion. The most

commonly used model for generating word embeddings is

word2vec (25). Many participants in the TREC CDS 2016

(26) have used word2vec to expand queries with semantic-

ally related terms (27, 28). The difference between their

methods is that distinct corpora were utilized to train the

word2vec. Jo and Lee (27) and Gurulingappa et al. (29)

used Wikipedia to train word embeddings while Greuter

et al. used the TREC-supplied corpus. Diaz et al. (30)

showed some substantial evidence that word embeddings

trained on a global corpus, such as Wikipedia, under-per-

formed those trained on local corpora for IR tasks, particu-

larly for query expansion. Therefore, in our approach, we

used word embeddings that were trained on the supplied

corpus to expand queries.

Ranking is another crucial component in the querying

process since it determines the position of a relevant docu-

ment in the final retrieval list. A ranking algorithm is able

to rank the relevant documents at the top of the list. Many

ranking algorithms have been proposed in the literature,

such as BM25 (31) and a query likelihood ranking model

(32). It has been shown that the Dirichlet smoothing-based

query likelihood model performs better than other models

(33). Thus, it was used in the proposed system.

In the biomedical domain, IR tasks mainly focus on

retrieving relevant biomedical literature to help physicians

and clinicians make better decisions in patient care. The

TREC CDS track is an IR shared task that aims to provide

common biomedical datasets for participants and promote

Figure 2. An example of bag-of-word assumption and MRF model.
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biomedical IR research (34). Most participants in the

TREC CDS utilized medical knowledge to enhance their

IR methods. The Unified Medical Language System

(UMLS) was the most widely used medical knowledge base

(35–37). Jo and Lee (27) utilized the UMLS to construct a

clinical causal knowledge to re-rank retrieved documents.

Other systems utilized UMLS to expand queries with

its thesaurus (29, 38). In addition to the UMLS,

Medical Subject Headings (MeSH) (39), Systematized

Nomenclature of Medicine–Clinical Terms (SNOMED

CT) and Wikipedia were also utilized as medical know-

ledge bases. Mourao et al. (40) appended synonyms, alter-

native and preferential labels for all query terms using

SNOMED CT and MeSH. Nikolentzos et al. (41) ex-

panded queries with extracted terms from Wikipedia. All

these studies showed improvement over their baselines

without using a medical knowledge base.

Materials and methods

In this section, we present an overview of the proposed sys-

tem and detail each component in the system.

System overview

Figure 3 depicts an overview of the proposed system.

Overall, the system contains three parts: query expansion,

IR model and re-ranking. We describe each step below.

Query expansion. We utilized the corpus containing all

the unstructured texts (i.e. ‘title’ and ‘description’) of the

datasets and trained the skip-gram model (25), a word2vec

model, to obtain the word embeddings. Then, we ex-

panded each medical term in a query with the five nearest

terms in the embedding space.

IR model. We indexed the ‘title’ and ‘description’ from

each dataset into two separate fields and utilized the

POS-MRF model to query the two fields simultaneously to

retrieve the relevant datasets. In this article, we also

use document to represent the two fields of a specified

dataset.

Re-ranking. An ensemble of state-of-the-art named en-

tity recognition and normalization tools were applied to

extract medical entities, such as genes and chemical names,

from both corpus and queries. Then we re-ranked the top

10 000 retrieved datasets in the previous step by counting

the shared entities between documents and queries. By

doing so, the datasets that contained more identical

medical entities were ranked higher in the final 1000

documents.

Retrieval model

POS-MRF is a variant of the MRF model that leverages the

grammatical property POS to assign weights to different

words (20). Figure 4 shows an example graphical model of

the POS-MRF model with three query terms. Similar to the

MRF model, the POS-MRF model contains three dependency

types, namely full independence (denoted as F), sequential de-

pendence (denoted as O) and full dependence (denoted as U).

Alternatively, a term weight, denoted as kt, is assigned to

Figure 3. System overview of the proposed method.

Page 4 of 13 Database, Vol. 2017, Article ID bax091

Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: paper
Deleted Text: ten thousand
Deleted Text: one thousand
Deleted Text: Part-of-Speech (
Deleted Text: )
Deleted Text: ,


each query term according to its POS category t. The joint

probability function of POS-MRF becomes

p Q;Dð Þ ¼ 1

Z

Y
c2fF;O;Ug

Y
t2T

Y
qi2t

f c; qi;Dð Þkthc

8<
:

9=
;;

where c denotes the clique set associated with one of the

three dependency types, hc is the parameter associated with

the clique set c, f c;qi;Dð Þ is the potential function associ-

ated with the query term qi in the clique set c and Z is the

normalization function. Taking the logarithm of both sides

of the above joint probability function and applying Bayes’

rule, we can get the probability of retrieving document D

given query Q:

log pðDjQÞ ¼
X

2fF;O;Ug
hc

X
t2T

kt

X
qi2t

log f ðc;qi;DÞ � log Z

� log p Dð Þ:

Since log Z and log p Dð Þ do not influence the document

ranking, we can define the ranking function as

r Q;Dð Þ ¼
X

2fF;O;Ug
hc

X
t2T

kt

X
qi2t

log f ðc; qi;DÞ:

In our system, we utilized heuristics and set hc to 0.8, 0.1,

0.1 for dependency types F, O and U, respectively. We uti-

lized the optimal kt which maximized the mean average

precision (MAP) based on the TREC 2011 and 2012

Medical Records datasets. The optimal values are 0.5970,

0.2265, 0.3065, 0.2260, 0.3730, 0.1040, 0.8930 and 0.0

for nouns, plural nouns, past participle verbs, past tense

verbs, adjectives, adverbs, singular proper nouns and all

other POS categories, respectively.

Medical entity extraction

We extracted the medical entities from both queries and

documents. We used an ensemble of the state-of-the-art

named entity normalization tools, PubTator (42) and

beCAS (43), supplemented by a dictionary-based lookup

for identifying the entities and normalizing them to stand-

ard identifiers.

First, we used the REST-API services provided by

PubTator and beCAS to detect entities from the texts.

Subsequently, we built a dictionary by compiling different

dictionaries from multiple knowledge sources such as

Entrez (44), UniProtKB (45), Gene ontology (46), CTD

(47) and MeSH (39), and looked up gene, biological proc-

esses, cell component, chemical names and disease names

in the composite dictionary. This dictionary lookup

resolved three problems where PubTator and beCAS failed:

(1) noun phrases lacking morphological features were

detected (for example, PubTator and beCAS failed to de-

tect ‘bone morphogenetic protein-2’ while the tokenization

component in the dictionary lookup translated the phrase

to ‘bone morphogenetic protein 2’ that could be exactly

matched in the dictionary Entrez); (2) acronyms were

detected and (3) strings with high surface similarity were

detected [for example, both ‘Gialpha(1)’ and ‘Gi alpha(2)’

were detected by the dictionary lookup while PubTator

failed to detect ‘Gi alpha(2)’].

We had certain priority rules to resolve conflicts be-

tween the entity recognition systems. Specifically, we uti-

lized the annotations of PubTator for genes/proteins,

chemical and disease names when conflicts existed between

PubTator and other systems. When PubTator failed to de-

tect those entities, we considered beCAS and the dictionary

lookup. Moreover, when a phrase was matched in more

than one dictionary in the dictionary lookup, we chose the

dictionary that exactly matched the phrase instead of those

with partial matches. More details can be found in the

BELMiner toolkit paper (48).

Query expansion with word embeddings

We utilized the skip-gram word2vec model to generate

word embeddings. Suppose a word w 2 Vw and a context

word c 2 Vc are used as input where Vw and Vc denote

word and context vocabulary in the corpus, respectively.

The corresponding embedding vectors are w 2 Rd and

c 2 Rd where d is the dimension of the embedding vectors.

Figure 4. An example of the POS-MRF model.
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The goal of word2vec is to predict the context words when

given a word, i.e. p cwð Þ ¼ ew0c=
P

c2Vc
ew0c. The embedding

vectors could be learned by maximizing the log-likelihood

on the training data. However, the intractability of com-

puting
P

c2Vc
ew0c, Mikolov et al. (49) suggests maximizing

the following objective likelihood function log rðw0cÞ þ k

Ec�PD
log r �w

0
c

� �� �
; where rð�Þ is the sigmoid function,

PD is a probability measure on the words to sample false

context words and k is the number of false context words

for each w. The embedding vectors are then learned by

maximizing the revised likelihood function.

Since local embeddings that capture the nuances of

topic-specific language perform better than global embed-

dings, and the latter usually under-perform the former for

IR tasks. Therefore, we trained the skip-gram model on

the given document collection, i.e. a collection of the

‘title’ and ‘description’ of all the datasets. One hidden

layer was utilized and the dimension is set to 100 in

the skip-gram model. Minor preprocessing was conducted

for the corpus before training, including lowercasing

and removing punctuation. Then the entire corpus was

merged into one text document to train the word2vec

model. We utilized the extracted medical entity terms

described in the previous section for expansion. For each

medical term, we calculated the cosine similarity in the

embeddings and used the five nearest terms as the

expansion.

For example, take the query ‘Find data of all types on

synaptic growth and remodeling related to glycolysis in the

human brain across all databases.’ We first extracted med-

ical entity terms ‘growth,’ ‘glycolysis,’ ‘human,’ ‘brain’ and

found the five nearest terms in the embeddings for each

term, i.e. ‘factor-i pressure lymphangiogenic factor-a

factor-b’ for ‘growth,’ ‘glycolytic phenylpropanoid tca

catabolism gluconeogenesis’ for ‘glycolysis,’ ‘murine mutz-

mouse mutamouse tert-immortalized’ for ‘human’ and

‘subcortical brainstem thalamic cortical neurochemistry’

for ‘brain.’ As implied in the previous studies (28, 40, 50),

low weights were usually given to the expanded query

terms while high weights were given to the original query

terms. Thus, in our system, we heuristically set the weight

for the expanded query terms to 0.1 and original query

terms to 0.9. In the previous example, the expanded query,

i.e. ‘factor-i pressure lymphangiogenic factor-a factor-b

glycolytic phenylpropanoid tca catabolism gluconeogenesis

murine mutz- mouse mutamouse tert-immortalized subcor-

tical brainstem thalamic cortical neurochemistry,’ was

weighed 0.1 while the original query, i.e. ‘Find data of all

types on synaptic growth and remodeling related to gly-

colysis in the human brain across all data-bases,’ was

weighed 0.9. Note that we removed the stopwords from

the original query in the retrieval system and added two

words ‘find’ and ‘search’ into the stopword list for this spe-

cific challenge.

Re-ranking

Using the afore-mentioned retrieval models and query ex-

pansions, we retrieved the top 10 000 datasets for each

query. Each document D was associated with a ranking

score sD and the highest ranking score (i.e. the ranking

score of the document ranked at the first place) was

denoted as smax: Then, we re-ranked the retrieved docu-

ment D based on the number of entities nD that the docu-

ment had in common with the query. In other words, we

conducted an exact match between entities in the queries

and those in the documents. We counted the number of

shared unique entities between each retrieved document

and the query. Using those numbers, we re-calculated the

score of each retrieved document and ranked them again

and returned the top 1000 documents. We used the follow-

ing formula to calculate the final score of document D:

s
0

D ¼ smax � nD þ sD:

By doing this, we can assign larger weights to the documents

that have more shared entities associated with a query.

Experiments

In this section, we describe the dataset provided by the

BioCADDIE Dataset Retrieval Challenge and present the

empirical results of 12 systems based on different settings,

including five official participant systems in the challenge

and seven comparative systems. These systems were meas-

ured by the official metrics and one additional metric. An

error analysis is then provided for illustrating the pros and

cons of the proposed system.

Dataset

The organizers generated the dataset collection from

DataMed (https://datamed.org/), which was a prototype

biomedical data search engine that contains numerous bio-

medical datasets from a variety of data repositories. The

provided dataset collection was derived from a set of 23 in-

dividual repositories, which resulted in a total of 794 992

datasets (51). Multiple metadata, including structured, un-

structured and semi-structured metadata, were given in the

dataset collection, such as ‘title,’ ‘description,’ ‘platform,’

‘repository’ and ‘species.’ Six queries with retrieved results

for which the relevance judgments have been annotated

were provided as training data and 15 queries were given

as testing data.
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A dataset was judged as relevant if it captured all

required concepts in the query and if it answered the query

or there was a relationship between terms or key concepts.

If each key term existed in the dataset title or description,

but there was no relationship between terms, the dataset

was marked as partially relevant. If no related terms or con-

cepts exist, or the majority of the concepts are missing, the

dataset is judged as not relevant. Table 1 shows an example

of a query and the relevant and partially relevant dataset.

Though there are vast amounts of meta-data available, we

observed that the annotation guidelines provided by the or-

ganizers implied that the human experts to a great extent

annotated the dataset based on the free text in the ‘title’

and ‘description’ fields (see the annotation guidelines at

https://github.com/yanshanwang/biocaddie2016mayodata/

blob/master/AnnotationGuidelineFinal.pdf). The released

six queries with relevance judgments confirmed our obser-

vation (see https://github.com/yanshanwang/biocaddie2016

mayodata/blob/master/Example_with_Annotation_Qrels_

100716_updated.zip). Bouadjenek and Verspoor’s study

(53) also shows that querying the ‘title’ and ‘description’

fields provides the best retrieval performance since these

two fields are the most common across the repositories.

Therefore, in order to mimic human experts’ judgment, we

only utilized the unstructured texts in ‘title’ and ‘description’

in our submissions.

Baseline and evaluation

In this empirical experiment, we evaluated 12 systems based

on different settings of the proposed methods. Table 2 lists

the setting for each system. TFIDF (official run1), MRF (offi-

cial run2) and POS-MRF (official run3) were three baseline

systems that utilized the conventional tf-idf weighted VSM,

MRF and POS-MRF as the retrieval models respectively.

TFIDFþWE, MRFþWE and POS-MRFþWE (official

run4) added the query expansion using word embeddings

in each model. TFIDFþRR, MRFþRR and POS-

MRFþRR added the re-ranking step after retrieving

the documents. TFIDFþWEþRR, MRFþWEþRR and

POS-MRFþWEþRR leveraged both query expansion and

re-ranking in the retrieval models. TFIDF, MRF, POS-MRF,

Table 1. An example of a query and the corresponding relevant and partially relevant datasets

Query Find data on T-cell homeostasis related to multiple sclerosis across all

databases

Relevant dataset Partially relevant dataset

Title: A Combination Trial of Copaxone Plus Estriol in Relapsing

Remitting Multiple Sclerosis.

Title: Quorum sensing in CD4þ T cells homeostasis: IL-2 coordinates

the interplay between IL-2p and regulatory T cells.

Description: Through their functional diversification, CD4þ T cells

play key roles in both driving and constraining immune-mediated

pathology. . . . Polymorphisms within the locus encoding a tran-

scription factor BACH2 are associated with di-verse immune-medi-

ated diseases including asthma2, multiple sclerosis3, Crohns

disease4-5, coeliac disease6, vitiligo7 and type 1 diabetes8. A role

for Bach2 in maintaining immune homeostasis, however, has not

been established. Here, we define Bach2 as a broad regulator of im-

mune activation that stabilizes im- munoregulatory capacity while

repressing the differentiation programmes of mul- tiple effector lin-

eages in CD4þ T cells. Bach2 was required for efficient forma- tion

of regulatory (Treg) cells and consequently for suppression of lethal

inflam- mation in a manner that was Treg cell dependent.

Assessment of the genome- wide function of Bach2, however, re-

vealed that it represses genes associated with effector cell differenti-

ation. Consequently, its absence during Treg polarization resulted

in inappropriate diversion to effector lineages. . . .

Description: Many species of bacteria use quorum sensing to sense the

amounts of secreted metabolites and adapt their growth according

to their population den- sity. We asked whether similar mechanisms

would operate in lymphocyte home- ostasis. We investigated the

regulation of the size of Interleukin-2-producing CD4þ T-cell

(IL-2p) pool using different IL-2-reporter mice. We found that in

the absence of either IL-2 or regulatory CD4þ T-cells (Treg) the

number of IL-2p-cells increases. Administration of IL-2 decreases

the number of cells of the IL-2p-cell subset and pertinently, abro-

gates their ability to produce IL-2 upon in vivo cognate stimulation,

while increasing Treg-cell numbers. We propose that control of the

IL-2p-cell numbers occurs via a quorum-sensing-like feedback loop

where the produced IL-2 is sensed by both the activated CD4þ
T-cell pool and by Treg-cells, which reciprocally regulate cells of

the IL-2p-cell subset. In conclusion, IL-2 acts as a self-regulatory

circuit integrating the homeostasis of activated and regulatory

T cells as CD4þ T-cells restrain their growth by monitoring IL-2

levels thereby preventing uncontrolled responses and autoimmun-

ity. Overall design: 2 populations of conventional CD4þ T cell are

analysed. 5 replicates for each. GFP- is the control one.

Judgment rationale*:

It doesn’t directly mention anything about T-cell homeostasis but

Bach 2 is involved in regulation of level of Treg (Which is regula-

tory T-cells). Also, it mentions the role of Bach 2 in multiple dis-

eases as highlighted.

Judgment rationale*:

It talks about Multiple Sclerosis but doesn’t have anything related

to T-cell homeostasis.

*Provided by the challenge organizers
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POS-MRFþWE and POS-MRFþWEþRR are the five offi-

cial systems submitted to the BioCADDIE challenge. By com-

paring these systems, we were able to know the impact of

each component on the retrieval system.

Five metrics, including inference Average Precision

(infAP) (52), inference normalized Discounted Cumulative

Gain (infNDCG) (52), NDCG@10 (NDCG at the top 10

documents), P@10(þpartial) (precision at the top 10

document including partially relevant datasets) and

P@10(-partial) (precision at the top 10 document exclud-

ing partially relevant datasets), were used by the challenge

organizers to measure the submitted systems. We also com-

puted the MAP as an additional metric. The evaluation

scripts for computing these metrics are available at: https://

github.com/yanshanwang/biocaddie2016mayodata.

Preprocessing and indexing

Minor preprocessing was conducted for the corpus, includ-

ing lowercasing and stopwords removal. Two document

types, namely json and xml, were provided in this shared

task. We used the json format to extract the title and descrip-

tion fields to construct documents. After the preprocessing,

we built an index using Elasticsearch (https://www.elastic.co/

), which is an open source package for indexing and retriev-

ing documents. Compared to other IR tools, Elasticsearch is

much faster for indexing and searching. It has been adopted

by many commercial companies, such as eBay, Dell and

Facebook, to handle all kinds of search functionalities. We

indexed the ‘title’ and ‘description’ into two fields in Elastic

search and utilized both fields simultaneously for retrieval.

Results

Table 3 lists three examples of the original queries, and the

associated extracted medical entities from the original

queries and expanded query terms using word embeddings.

We can see that the medical entity extraction method suc-

cessfully extracted the medical entities that were the key

medical concepts to understand the query. Since the identi-

cal method was applied to the corpus, these medical enti-

ties in each document could also be extracted. In the

re-ranking step, the exact matching between the medical

entities from the query and corpus could dramatically in-

crease the ranking of the relevant datasets. We can also ob-

serve that expanded query terms using word embeddings

added semantically related terms to the original query.

For example, ‘phenylpropanoid’ and ‘gluconeogenesis’ are

related to ‘glycolysis’; and ‘progesterone’ and ‘hormone’

are related to ‘estrogen’ for ‘women.’ Adding these related

terms could increase the retrieval of relevant or partially

relevant datasets. In our system, we assigned a lower

weight (weight¼ 0.1) to the expanded query terms because

we wanted the IR system to focus more on the original

query terms. By doing so, we could not only reduce the im-

pact of noisy information but also take advantage of the

related terms.

Table 4 shows the experimental results using the offi-

cial evaluation scripts in terms of infAP, infNDCG,

NDCG@10, P@10(þpartial), P@10(-partial) and MAP.

First, we observe that the POS-MRF model is inferior to

TFIDF and MRF models. The reason is that the POS

parser, a crucial part of the POS-MRF model (20), does

not perform well on the given queries since these queries

are not complete sentences. For example, a testing query is

‘Search for data of all types related to energy metabolism

in obese M. musculus’ and the corresponding POS tagging

result is ‘Search/NN for/IN data/NNS of/IN all/DT types/

NNS related/VBN to energy/NN metabolism/NN in/IN

obese/JJ M./NNP musculus/NNS’. 9 out of 13 terms are

one of ‘NN,’ ‘NNS,’ ‘VBN,’ ‘JJ’ and ‘NNP’ that are

assigned greater weights according to the POS-MRF.

Moreover, ‘M.’ is parsed as ‘NNP’ and ‘search’ is mis-

takenly parsed as ‘NN,’ which are also weighted larger by

Table 2. Settings for the evaluated systems

TFIDF MRF POS-MRF Word Embeddings Re-ranking

TFIDF (official run1) �
TFIDFþWE � �
TFIDFþRR � �
TFIDFþWEþRR � � �
MRF (official run2) �
MRFþWE � �
MRFþRR � �
MRFþWEþRR � � �
POS-MRF (official run3) �
POS-MRFþWE (official run4) � �
POS-MRFþRR � �
POS-MRFþWEþRR (official run5) � � �
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the POS-MRF model. Documents containing more terms

like ‘search’ or ‘M’ are eventually ranked higher than other

documents. Thus, the POS-MRF fails to distinguish im-

portant terms from less important terms and parses

‘search’ as ‘NN.’ Future directions for improving the POS-

MRF may include assigning different weighs to different

terms having the same POS, and searching for multiword

expressions like ‘M.musculus’ and training the POS tagger

on a biomedical corpus.

Second, we observe that adding the query expansion

with word embeddings slightly decreases the performance

of TFIDF and MRF in terms of infAP and infNDCG, while

it slightly increases the performance of TFIDF in terms of

P@10(-partial) and the performance of MRF in terms of

NDCG@10. This means that expanding the query using

word embeddings adds more relevant terms so that the

relevant documents are ranked higher in the retrieval re-

sults (i.e. more relevant documents are ranked in the top

10). At the same time, we can also see that the query ex-

pansion also incorporates more noisy terms, which leads to

more non-relevant documents being retrieved (low infAP

and infNDCG). It is interesting that almost no changes are

found when P@10(þpartial) is used as the metric, which is

consistent with the result that the most relevant documents

are ranked higher using the query expansion. In addition,

we observe that the performance of POS-MRF significantly

increases (P<0.01 using Wilcoxon test) with the word

embeddings based query expansion in terms of all metrics.

Table 4. Experimental results on the BioCADDIE dataset

infAP infNDCG NDCG@10 P@10(þpartial) P@10(-partial) MAP

TFIDF (official run1) 0.1393 0.3485 0.5735 0.7267 0.2600 0.1708

TFIDFþWE 0.1392 0.3470 0.5735 0.7267 0.2667 0.1708

TFIDFþRR 0.1399 0.3404 0.5345 0.6933 0.2667 0.1476

TFIDFþWEþRR 0.1484 0.3358 0.5418 0.7067 0.2467 0.1633

MRF (official run2) 0.1424 0.3516 0.5726 0.7467 0.2533 0.1742

MRFþWE 0.1424 0.3508 0.5901 0.7467 0.2533 0.1741

MRFþRR 0.1383 0.3439 0.5267 0.6933 0.2467 0.1463

MRFþWEþRR 0.1499 0.3381 0.5564 0.7267 0.2467 0.1659

POS-MRF (official run3) 0.1077 0.3006 0.4406 0.5333 0.2267 0.1273

POS-MRFþWE (official run4) 0.1423 0.3253 0.4453 0.5400 0.2333 0.1640

POS-MRFþRR 0.1382 0.3641 0.5105 0.6533 0.2533 0.1472

POS-MRFþWEþRR (official run5) 0.1628 0.3933 0.5243 0.6667 0.2600 0.1697

Best performance for each metric is highlighted in bold.

Table 3. Examples of original queries, extracted medical entities from the original queries and expanded query terms using

word embeddings

Original query Extracted medical entity Expanded query terms

Entity

ID

Semantic

type

Entity Entity

term

Expanded terms

Find data of all types on

synaptic growth and

remodeling related to

glycolysis in the

human brain across

all databases.

T0 PROC Growth Growth

Glycolysis

Human

Brain

Factor-i pressure lymphangiogenic factor-a factor-b

Glycolytic phenylpropanoid tca catabolism gluconeogenesis

Murine mutz- mouse mutamouse tertimmortalized

Subcortical brainstem thalamic cortical neurochemistry

T1 PROC Glycolysis

T2 SPEC Human

T3 ANAT Brain

Search for data on

BRCA gene mutations

and the estrogen sig-

naling pathway in

women with stage I

breast cancer.

T0 PROC Gene mutations Gene

Mutations

Estrogen

Signaling

Pathway

Women

Stage

Breast

Cancer

Expression differential microrna mirna profiles

Mutation truncating mutated deletions missense

Oestrogen progesterone androgen hormone progestins

Signaling autophagy jakstat jak-stat endocytosis

Signaling jakstat wnt\ub-catenin signaling nf-kb

Men premenopausal pre-menopausal desiring perimenopausal

ii-iii uicc iiiiv iiiciv iiic

Prostate colorectal ovarian erþ cancers

Prostate castrate-resistant breast non-metastatic colorectal

T1 PATH Estrogen signaling

pathway

T2 CHED Estrogen

T3 PROC Signaling pathway

T4 SPEC Women

T5 DISO Stage I breast

cancer
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This result is consistent with our findings that the ex-

panded terms are important for retrieving relevant docu-

ments. Adding these terms into the original query alleviates

the impact of POS-MRF on the important query terms.

Third, the TFIDFþRR and the MRFþRR under-per-

form the TFIDF (or the TFIDFþWE) and the MRF (the

MRFþWE), respectively, in terms of almost all of the met-

rics [except for TFIDF measuring by infAP and P@10(-par-

tial)]. These results show that the re-ranking component

does not positively improve the retrieval results for the

TFIDF and MRF models. However, the POS-MRFþRR

out-performs the POS-MRF in terms of all the metrics. The

reason might be that the POS-MRF retrieved more relevant

documents in the top 10 000 documents than the other

two models (since the re-ranking is performed on the

top 10 000 documents) but these relevant documents are

ranked very low and the re-ranking could rank these rele-

vant documents high into the top 1000 documents.

Compared to using the query expansion or re-ranking

alone, adding both components enhances all of the models

(i.e. the TFIDFþWEþRR versus the TFIDFþWE or the

TFIDFþRR, the MRFþWEþRR versus the MRFþWE

or the MRFþRR and the POS-MRFþWEþRR versus

the POS-MRFþWE or the POS-MRFþRR) in terms of

infAP. However, when other metrics are used, the perform-

ance of using both components is superior to that of using

only re-ranking but inferior to that of using only query

expansion. This is clearly shown by comparing the

MAP results of each model. For example, the MAP of

TFIDFþWEþRR is 0.1633, which is between that of

TFIDFþRR (0.1476) and that of TFIDFþRR (0.1708)

and the MAP of MRFþWEþRR is 0.1659, which is be-

tween that of MRFþRR (0.1463) and that of MRFþWE

(0.1741). This result is consistent with the above findings

of the influence of re-ranking. However, the POS-

MRFþWEþRR performs better than either the POS-

MRFþWE or the POS-MRF-RR. This result shows that

the POS-MRF model could take advantage of both the

query expansion and the re-ranking.

Finally, the POS-MRFþWEþRR has the best per-

formance among the evaluated methods in terms of infAP

and infNDCG, and competitive performance in terms of

other metrics. The results indicate that the proposed sys-

tem performs well overall. The MRFþWE model has the

best NDCG@10 and P@10(þpartial) and a competitive

P@10(-partial). Therefore, it should be considered when

only the top 10 retrieved documents are considered. It is

also interesting that the simple TFIDF performs well in

terms of NDCG@10, P@10(þpartial) and P@10(-partial).

The TFIDF is a keyword matching approach, which ranks

highly the documents containing more matched query

terms in the retrieval list. Particularly in the case of dataset

retrieval, documents exactly matching the terminologies in

a query are obviously judged as relevant according to the

relevance judgment guideline. Therefore, when only the

first 10 documents are considered, a simple keyword

matching approach, such as TFIDF, usually has good

performance.

Conclusion and discussion

In this article, we propose an IR system for biomedical

dataset retrieval. The proposed system combines the state-of-

the-art retrieval models and leverages the medical entity

extraction method, the query expansion based on word

embeddings and the re-ranking to enhance the biomedical

dataset retrieval. We compared 12 approaches including our

participation in the bioCADDIE Dataset Retrieval Challenge

in the experiments. Overall, the proposed approach

POS-MRFþWEþRR outperforms other approaches in

terms of infAP and infNDCG. The MRFþWE model

should be considered when only the top 10 retrieved docu-

ments are considered. In addition, we showed the impacts of

query expansion and re-ranking on the retrieval performance

for each approach.

There are two typical cases in which the proposed ap-

proach may fail: (1) if there are no shared keywords or med-

ical entities between a query and a relevant dataset, and the

query expansion using word embeddings fails to find the

relevant terms in the dataset, the proposed system will fail

to retrieve the dataset; and (2) when the query contains in-

clusion or/and exclusion criteria, it is difficult for the pro-

posed IR system to filter out the datasets that do not meet

the criteria. Table 5 illustrates two examples for both cases.

In Example 1, ‘Escherichia coli’ is a specific bacteria that

has bacterial ‘chemoraxis,’ thus the dataset is related to the

query. Since the query does not contain ‘Escherichia coli’

and the query expansion using wording embeddings fails to

find ‘Escherichia coli,’ the proposed system fails to retrieve

this relevant dataset. In Example 2, the dataset is judged

non-relevant to the query since the query is to ‘find data on

Nuclear Factor-jB (NF-jB)’ in ‘Myasthenia gravis (MG) pa-

tients’ where ‘MG patients’ is the criteria for ‘NF-jB.’

However, due to the shared entities ‘NF-jB’ and ‘signaling

pathway,’ the dataset was retrieved and ranked at the third

position by the proposed system.

Based the error analysis above, there are a few future

directions to improve the proposed system. First, we would

like to develop more sophisticated approaches for query

expansion using deep learning models. For example, we

could use external resources to train word embeddings for

query expansion. Though some studies show the local

word embeddings are superior to global embeddings,

Example 1 in our error analysis indicates that global word
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embeddings might find the related terms that cannot be

found using the local word embeddings. Moreover, we can

also take advantage of the semantic types for each ex-

tracted term and assign different weights to the expanded

terms computed from word embeddings, similar to the ap-

proach proposed in Want et al.’s study (54). Second, we

want to investigate how to take into account inclusion and

exclusion criteria in the system. As shown in Example 2, in

our error analysis, queries might have criteria that are cru-

cial to exclude some non-relevant retrieved datasets. By

doing so, false positives could be reduced in the final

retrieved datasets.

One limitation of this study is that the semi-structured

and structured metadata provided in the dataset were not

utilized for retrieval in the submitted systems. Scerri et al.

(55) leveraged the semi-structured data to build entity

dictionaries to match the user query, and achieved high re-

trieval performance. Bouadjenek and Verspoor (53) expli-

citly show that incorporating semi-structured metadata

into retrieval mostly decreases the performance. However,

they also show that using the metadata in the ‘gene’

field significantly improves the retrieval performance.

Therefore, in our future study, we would like to investigate

how to leverage the semi-structured and structured meta-

data in a dataset retrieval system.

We find that the metrics used to evaluate the systems

make the comparison difficult. Though different metrics

indicate different aspects of an IR system, we observe that

one might conclude differently when different metrics are

used. For example, we see that the trend of MAP is consist-

ent with that of infNDCG but mostly inconsistent with

that of infAP. Another example is that TFIDFþRR out-

performs TFIDF in terms of infAP but under-performs

TFIDF in terms of infNDCG and MAP. The results of

using the metrics considering only the top 10 documents

[i.e. NDCG@10 and P@10(þpartial)] are usually consist-

ent, as shown in Table 4. Therefore, an IR system should

be evaluated by different metrics to explicitly demonstrate

the advantages and disadvantages. Moreover, novel met-

rics should be studied to measure IR systems, particularly

for the IR system designed for specific tasks, such as the

dataset retrieval task.
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Table 5. Examples for error analysis

Example 1: False negatives.

Query: Find protein sequencing data related to bacterial chemotaxis across all databases.

Dataset title: Escherichia coli 6.0172: Escherichia coli 6.0172 genome sequencing project.

Dataset description: N/A

Example 2: False positives.

Query: Find data on the NF-jB signaling pathway in MG patients.

Dataset title: Ginger and its component ameliorated trinitrobenzene sulfonic acid-induced colitis in mice via modulation of NF-jB activity

and interleukin-1b (IL-1b) signaling pathway.

Dataset description: Colitis is the common pathological lesion of inflammatory bowel diseases, the major chronic inflammatory diseases of intes-

tinal tracts in humans. In this study, we investigated the therapeutic effects of ginger extract and its component zingerone in mice with 2, 4,

6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Mice were administered with TNBS and/or various amounts of ginger and zingerone by

an intrarectal route. The severity of colitis was evaluated by colonic weight/length ratio, macroscopic lesion, and histological examination. The

mechanisms of ginger and zingerone were further elucidated by DNA microarray, ex vivo imaging, and immunohistochemical staining. Our

data showed that treatment with ginger extract and zingerone ameliorated TNBS-induced colonic inflammation and injury in a dose-dependent

manner. Pathway analysis of ginger- and zingerone-regulated gene expression profiles showed that ginger and zingerone significantly regulated

cytokine-related pathways. Network analysis showed that NF-jB and IL-1b were key molecules involved in the expression of ginger- and zin-

gerone-affected genes. Ex vivo imaging and immunohistochemical staining further verified that ginger and zingerone suppressed TNBS-induced

NF-jB activation and decreased the NF-jB and IL-1b protein levels in the colon. In conclusion, our data showed that ginger improved the

TNBS-induced colitis in mice via modulation of NF-jB activity and IL-1b signaling pathway. Moreover, zingerone might be the active compo-

nent of ginger responsible for the amelioration of colitis induced by TNBS. Overall design: A total of 24 mice was randomly divided into four

groups of six mice: mock, mice were given with 0.1 ml of 50% ethanol; TNBS, mice were given with 250 mg/kg TNBS in 0.1 ml of 50% etha-

nol; TNBS/ginger, mice were administered with mixtures containing 250 mg/kg TNBS and various amounts of ginger extract in 0.1 ml of 50%

ethanol; TNBS/zingerone, mice were given with mixtures containing 250 mg/kg TNBS and various amounts of zingerone in 0.1 ml of 50%

ethanol. Mice were sacrificed 7 days later for histochemical staining, RNA extraction, and ex vivo imaging.

Keywords for relevance judgment are highlighted in bold.
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