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Abstract: To understand the selectivity of the crown ether type chiral stationary phase (CSP),
the retention selectivity for aniline and the positional isomers of substituted anilines were studied.
In various substituted isomers, except nitroaniline, a remarkable decrease of retention due to
steric hindrance was observed for the 2-substituted isomer. To determine the detailed molecular
recognition mechanism, quantum chemical calculations were performed for the aggregates between
the crown ether and the anilines. The results suggested that the 20-Crown-6, which includes a phenyl-
substituted 1,1′-binaphthyl moiety, interacts with alkyl and aryl amines in an unconventional form
different from the proposed one for 18-Crown-6.

Keywords: CROWNPAK CR-I; chromatography; crown ether; aniline; positional isomer; quantum
chemical calculation; three-point binding model; chiral separation

1. Introduction

In recent years, many kinds of chromatography phases have become available, and
this has aroused interest in the orthogonality among the phases. We expected that chiral
stationary phases would have distinct orthogonality with many achiral phases stemming
from the mechanism of molecular recognition [1–3]. Originally, chiral stationary phases
were developed for the purpose of enantiomeric separation and were primarily used in
the optical purity measurement of an enantiomeric mixture [4]. The idea of applying these
chiral stationary phases to achiral separation is not particularly novel, but it is not so
popularly applied in reality.

The most important reason for the underdevelopment appears to be that it is not
easy to predict the separation selectivity of a chiral stationary phase (CSP) because the
understanding of the separation mechanism is still insufficient. In general, chiral sta-
tionary phases recognize the molecular shape and many achiral phase physicochemical
properties, such as the hydrophilicity/hydrophobicity balance by octadecylsilyl (ODS)
phase and polarity by silica gel. Therefore, a CSP was expected to have good potential to
separate molecules with similar physicochemical properties, such as isomers, and such an
expectation is now being proved.

For the potential of achiral separation by CSPs to be practically utilized as described
above, elucidation of its selectivity or separation mechanism would contribute significantly.
We previously reported the elucidation of the recognition mechanism by the chromatog-
raphy of non-chiral compounds, such as aromatic positional isomers and computational
simulation, focusing on polysaccharide derivative-based CSPs. We demonstrated the
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unique molecular shape recognition of the polysaccharide derivative-based CSPs, which
are different from an ODS phase [5].

In this report, we show the selectivity of a crown ether type CSP, CROWNPAK CR-I
(CR-I, Scheme 1), for isomeric substituted anilines and the related compounds. This type of
CSP is known to have a higher chiral recognition ability for enantiomers having a primary
amino group and to be particularly useful for the enantioseparation of natural and non-
natural amino acids [6–9]. The chiral recognition of chiral crown ethers was developed by
Cram et al. [10]. The first commercially available CSP, CROWNPAK CR, was developed
by Shinbo et al. and was called a coating type [11], and then other crown ether type CSPs
were reported [12–14].

Scheme 1. Ligand of CROWNPAK CR-I (-), (R)-(−)-(3,3′-diphenyl-1,1′-binaphtyl)20-crown-6 (1).
(Tethering is omitted.).

In this CROWNPAK CR (hereafter abbreviated as CR), a hydrophobic crown ether
as a chiral selector was dissolved into the lipophilic layer of a reversed-phase silica gel
to suppress elution into an eluent. However, strict restrictions are imposed on the eluent
for the CR phase, that is, only aqueous methanol of a concentration lower than 15% (v/v)
can be used and even acetonitrile (ACN), which is used exclusively in the reverse-phase
high-performance liquid chromatography (HPLC) on an ODS column, cannot be used.
For this reason, it often occurs that highly hydrophobic compounds take a long time for
analysis or even not be eluted.

On the other hand, immobilized CROWNPAK CR-I is free from such restrictions, and
both a water-based eluent and an ACN-based or a hexane-based eluent can be applied.
This has made the optimization of a targeted separation much easier and, for example,
made the analysis time of a highly hydrophobic compound reasonable.

In this study, we took up this CR-I phase as the control of the elution with the eluent
polarity is particularly important in achiral separation. Therefore, we could discuss the
results in terms of the analyte structure and the relation to the eluent property. In addition
to the chromatographic study, we attempted simulation by quantum chemical calculation of
what is occurring in the chromatographic molecular recognition. As a result, we proposed
a new interaction model for this type of crown ether, which is different from the three-point
binding mechanism that has been widely accepted as the molecular recognition model for
18-crown-6 as proposed by Cram et al. [15].
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2. Results and Discussions
2.1. Separation of Aniline and Substituted Aniline Isomers on CROWNPAK CR-I
2.1.1. Separation of Aniline and Substituted Anilines

Tables 1 and 2 show the retention times of unsubstituted aniline, non-polar group-
substituted anilines, and polar group-substituted anilines (Schemes 2 and 3) under three
kinds of eluent (A, B, and C). The composition of each eluent is given below and other
chromatographic conditions are in Section 3. Material and Methods. The line graphs and
chromatograms (Figures 1–3) with the retention time on the vertical axis and the analytes
on the horizontal axis are also shown for aiding visual understanding.

Table 1. Retention times and retention factors of aniline (2) and substituted anilines (3–8) on a
CROWNPAK CR-I(-) column under eluent conditions with the three types of eluent 1.

Analytes
Retention Time (Retention Factor 2)

Eluent (A) 3 Eluent (B) 3 Eluent (C) 3

aniline (2) 7.55 min (1.33) 10.52 min (2.25) 7.80 min (1.41)

2-methylaniline (3) 5.19 min (0.60) 4.74 min (0.47) 4.44 min (0.37)
3-methylaniline (4) 10.95 min (2.38) 11.23 min (2.47) 7.18 min (1.22)
4-methylaniline (5) 12.46 min (2.85) 12.68 min (2.92) 8.41 min (1.60)

2-chloroaniline (6) 8.12 min (1.51) 4.44 min (0.37) 4.38 min (0.36)
3-chloroaniline (7) 12.89 min (2.98) 12.14 min (2.75) 6.08 min (0.88)
4-chloroaniline (8) 14.57 min (3.50) 15.27 min (3.72) 7.62 min (1.35)

1 Chromatograms are shown in Figure 1, and the structures of the analytes are shown in Scheme 2. 2 retention
factors are described in parentheses. 3 The eluent compositions are described in the text.

Table 2. Retention times and retention factors of aniline (2) and substituted anilines (9–17) on
a CROWNPAK CR-I(-) column with three types of eluent 1.

Analytes
Retention Time (Retention Factor 2)

Eluent (A) 3 Eluent (B) 3 Eluent (C) 3

aniline (2) 7.55 min (1.33) 10.52 min (2.25) 7.80 min (1.41)

2-nitroaniline (9) 15.00 min (3.63) 3.78 min (0.17) 5.24 min (0.62)
3-nitroaniline (10) 11.88 min (2.67) 8.89 min (1.75) 6.24 min (0.93)
4-nitroaniline (11) 13.53 min (3.18) 4.04 min (0.25) 6.62 min (1.05)

2-hydroxyaniline (12) 6.19 min (0.91) 7.96 min (1.46) 8.72 min (1.70)
3-hydroxyaniline (13) 7.55 min (1.33) 13.02 min (3.02) 12.14 min (2.75)
4-hydroxyaniline (14) 7.41 min (1.29) 13.13 min (3.06) 12.42 min (2.84)

2-carboxyaniline (15) 5.85 min (0.81) 3.50 min (0.08) 5.12 min (0.58)
3-carboxyaniline (16) 7.49 min (1.31) 13.18 min (3.07) 9.21 min (1.85)
4-carboxyaniline (17) 6.90 min (1.13) 10.40 min (2.21) 6.51 min (1.01)

1 The structures of the analytes are shown in Scheme 3. 2 Retention factors are described in parentheses.
3 The eluent compositions are given in the text.

Scheme 2. Structure of the analytes appearing in Table 1.
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Scheme 3. Structure of the analytes appearing in Table 2.

Figure 1. Plots of the retention times of aniline (2), methylaniline isomers (3–5), and chloroaniline isomers (6–8) evaluated
using a CROWNPAK CR-I(-) column. The eluents are (a) eluent A, (b) eluent B, and (c) eluent C. The structures of the
analytes are shown in Scheme 2.

Figure 2. Cont.
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Figure 2. Reverse-phase high-performance liquid chromatography (HPLC) chromatograms of aniline (2), methylaniline
isomers (3–5), and chloroaniline isomers (6–8) evaluated using a CROWNPAK CR-I(-) column. The eluents are (a,d) eluent A,
(b,e) eluent B, and (c,f) eluent C. The structures of the analytes are shown in Scheme 2.

Figure 3. Plots of the retention times of aniline (2), nitroaniline isomers (9–11), hydroxyaniline isomers (12–14), and
carboxyaniline isomers (15–17) evaluated using a CROWNPAK CR-I(-) column. The eluents are (a) eluent A, (b) eluent B,
and (c) eluent C. The structures of the analytes are shown in Scheme 3.

Eluent A: 20 mM HClO4 in 70:30 (v/v) mixture of H2O and ACN
Eluent B: 20 mM HClO4 in 10:90 (v/v) mixture of H2O and ACN
Eluent C: 100/100/4/1 (v/v/v/v) mixture of n-hexane, ethanol, water, and trifluoroacetic acid

These eluents, A, B, and C are the recommended ones in the instruction manual
published by Daicel. Perchloric acid is one of the acids resulting in good retention and
separation, and this will be discussed elsewhere [16].

Retention behavior of these aniline and substituted anilines on CR-I(-) may be outlined
with the following two features. One is concerned with the retention of isomeric forms.
In each case, except for nitroanilines (vide infra), 2-substituted aniline isomer is retained
considerably less than 3- and 4-substituted aniline isomers, which are separated moderately.
This characteristic recognition pattern was also seen with a mixture of water/methanol
(70:30 v/v) containing 20 mM HClO4 as the eluent. This strongly suggests the steric hindrance
by the substituent at 2-position against the interaction with the crown ether and features the
selectivity of the CR-I phase for substituted anilines.

This selection rule is no more apparent for benzylamines bearing a methyl substituent
at the 2-position on its benzene ring (vide Section 2.1.2). Another feature is concerned with
the effect of substitution in relation to the eluent polarity. Broadly speaking, regarding
the retention of 3- and 4-substituted anilines, a hydrophobic substituent (i.e., methyl and
chlorine) makes the retention stronger than bare aniline with an aqueous eluent, A, and
a hydrophilic one (i.e., hydroxyl and carboxy) with an organic solvent-based eluent, B and C.
The sum of the above effects, the steric hindrance, and the polarity balance between the
analyte and eluent broadly determine the actual retention. The polarity balance observed
suggests the amphiphilic property of the retention interaction.
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Therefore, the dependence of the analyte retention on the eluent composition with
a constant concentration of perchloric acid was investigated. Figure 4 is the plot of the
retention time of the analytes versus the ACN/water composition (v/v), and the plots
exhibit U-shaped retention curves as shown by Konya and Fukusaki et al. for amino acids
with eluents containing trifluoroacetic acid [7]. While the usefulness of ACN-rich eluent
B was previously exhibited by Konya and Fukusaki [8], we emphasize again the merit of
CR-I with which a considerably wider range of polar and nonpolar eluents can be adopted.

Figure 4. Effect of the volume fraction of acetonitrile (ACN) in the eluent on the retention time of
aniline (2) and methylaniline isomers (3–5). Column: CROWNPAK CR-I(-). Eluent: ca 17.1 mM
HClO4 in a mixture of H2O and ACN at a flow rate of 0.43 mL/min.

However, the retention of nitroaniline isomers was apparently out of the line of the
above discussion. This appears to be due to the extremely weak basicity. The pKa values of
nitroaniline isomers were reported to be −0.26, 2.466, and 1.0 for 2-, 3-, and 4-nitroanilines,
respectively [17]. The pH of aqueous 20 mM perchloric acid was calculated to be 1.70
(in pure water), and the protonation of at least 2- and 4-nitroanilines must occur only
partially in such an eluent. Therefore, the retention at least of 2- and 4-nitroanilines appears
to be of the neutral (unprotonated) species.

The result supporting this understanding is the retention of substituted anilines with
a neutral buffered eluent at pH 7.6. With this eluent, the retention of nitroaniline isomers
was not much altered, while the retention pattern among isomers of other substituted
anilines was drastically changed [16]. Thus, we rationalized that the characteristic retention
pattern, particularly the largest retention of the 2-isomer among isomeric nitroanilines with
eluent A, is not the result of ammonium ion interactions with the crown moiety but the
result of neutral molecular adsorption presumably by hydrophobic interaction.

In this connection, the retention of substituted aniline isomers on a common ODS
phase was studied under the analytical conditions given in Section 3. Materials and Meth-
ods. Table 3 shows the retention times of unsubstituted aniline (2) and certain substituted
anilines (3–8), (12–14) under 20 mM neutral phosphate buffer (pH 7.6). Figure 5 shows the
retention pattern of substituted aniline isomers and 2-substituted anilines, which exhibited
a higher or roughly the same retention in comparison with other isomers. The recognition
of isomerism was generally moderate in contrast with the retention selectivity of CR-I.
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Table 3. Retention times and retention factors of aniline (2) and substituted anilines (3–8) and (12–14)
on an octadecylsilyl (ODS) column 1.

Analytes Retention Time (Retention Factor 2) 3

aniline (2) 7.99 min (1.96)

2-methylaniline (3) 12.57 min (3.66)
3-methylaniline (4) 12.86 min (3.77)
4-methylaniline (5) 12.26 min (3.55)

2-chloroaniline (6) 22.82 min (7.46)
3-chloroaniline (7) 21.37 min (6.92)
4-chloroaniline (8) 18.81 min (5.97)

2-hydroxyaniline (12) 4.56 min (0.69)
3-hydroxyaniline (13) 3.81 min (0.41)
4-hydroxyaniline (14) 3.23 min (0.20)

1 The structures of analytes are shown in Schemes 2 and 3. 2 Retention factors are described in parentheses.
3 The analytical conditions are given in Section 3. Materials and Methods.

Figure 5. Plots of the retention times of aniline (2) and its methyl-, (3–5), chloro- (6–8), and hydroxy-
substituted (12–14) isomers evaluated using an ODS column. The eluent composition was 20 mM
phosphoric acid and 30 mM triethylamine in a 70:30 (v/v) mixture of H2O and ACN.

2.1.2. Separation of Benzylamine and Substituted Benzylamines

Chromatographic evaluations of benzylamine (18) and methyl-substituted benzy-
lamines (19–21) on CROWNPAK CR-I(-) were performed under the same HPLC conditions
as the aniline analysis (Scheme 4, Table 4, Figures 6 and 7). Table 4 shows the retention
times in Scheme 4. No significant decrease in the retention caused by the substituent at
the 2-position was observed. The insertion of one methylene group—that is, a longer
distance between the amino group and methyl substituent on benzene ring—presumably
relieved the steric hindrance effect observed in substituted anilines. Methyl-substituted
benzylamine, which is expected to be more hydrophobic than unsubstituted benzylamine,
was retained more than the bare benzylamine with eluent A, slightly more or even less
with eluent B and C—that is, the relationship with eluent polarity as was observed in the
case of anilines.

Scheme 4. Structure of the analytes appearing in Table 4.
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Table 4. Retention times and retention factors of benzylamine (18) and methyl-substituted benzy-
lamines (19–21) on a CROWNPAK CR-I(-) column with the three types of eluent 1.

Analytes Retention Time (Retention Factor 2)

Eluent (A) 3 Eluent (B) 3 Eluent (C) 3

benzylamine (18) 9.46 min (1.92) 11.32 min (2.50) 10.71 min (2.31)

2-methylbenzylamine (19) 13.33 min (3.12) 11.71 min (2.62) 10.75 min (2.32)
3-methylbenzylamine (20) 15.65 min (3.84) 13.11 min (3.05) 10.11 min (2.12)
4-methylbenzylamine (21) 13.52 min (3.18) 11.25 min (2.48) 10.04 min (2.10)

1 The structures of the analytes are shown in Scheme 4. 2 Retention factors are described in parentheses.
3 The eluent compositions are described in the text.

Figure 6. Plots of the retention times of benzylamine (18) and its methyl-substituted isomers (19–21) evaluated using
a CROWNPAK CR-I(-) column. The eluents are (a) eluent A, (b) eluent B, and (c) eluent C.

Figure 7. HPLC chromatograms of benzylamine (18) and substituted benzylamine isomers (19–21) evaluated by using
a CROWNPAK CR-I(-) column. The eluents are (a) eluent A, (b) eluent B, and (c) eluent C. The structures of the analytes are
shown in Scheme 4.

2.2. Examination of Retention Behavior by Quantum Chemical Calculation

Section 2.1 described that the retention behaviors of aniline, substituted aniline isomers,
and benzylamines on CROWNPAK CR-I (-) can be explained based on two points—the
steric hindrance and relative polarity of the eluent and analytes. In this section, we consider
the relationship among their elution behaviors and the stabilization energies and interaction
model obtained by a quantum chemical calculation with the solvent effect of water.

While a CR-I(-) column was used in the above-mentioned chromatographic study, in the
following in silico study, the crown ether 22, the selector of a CROWNPAK CR-I(+) column in
Scheme 5, was taken as the model. This is because a CR-I(+) column is more often used as the
elution order, D-amino acid first is usually more convenient in the chiral analysis of amino
acids. Needless to say, CR-I(+) should give the same selectivity in achiral separation.
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Scheme 5. Ligand structure of CR-I (+), (S)-(+)-(3,3-diphenyl-1,1′-binaphtyl)-20-crown-6 (22). (Teth-
ering is omitted.).

First, the calculation for the optimized structure of 22 was performed using the force
field calculation by molecular mechanics-3 (MM-3) [18]. Ten types of crown ether structures
were extracted as metastable structures with the largest stabilization energies. The quantum
chemical calculations (described in Section 3. Materials and Methods) were applied to
these 10 types of structures as an initial structure.

Consequently, the most stable structure among them was determined. An ammonium
ion was placed at arbitrary positions on each molecule, and the stable structure of the
aggregate was obtained by performing the quantum chemical calculations at the same level
of assuming in water (dielectric constant ε = 78.39). In some cases, we confirmed that, even
if the position of an ammonium ion in the initial structure of the aggregate was arbitrarily
changed, the aggregate structure converged to the same stable one after optimization.

Quantum Chemical Calculation of Aniline, Methyl, and Chloroanilines

The aggregate structure between CR-I(+) and substituted anilines and the stabilization
energy was determined by quantum chemical calculation. The calculated stabilization ener-
gies well supported the decreased retention of substituted anilines at the 2-position, which
can be characterized as the feature of CR-I selectivity as shown in 1-1 (see Figures 1 and 3).
Surprisingly, this form of aggregate was significantly different from the three-point bind-
ing form (tripods) proposed by Cram et al. [15], which will be discussed in detail in the
next section. Table 5 shows the stabilization energies of aniline and aniline derivatives,
and Figure 8 shows each stabilization energy on the vertical axis and the analytes on the
horizontal axis.

Table 5. Stabilization energy of aniline, methylanilines, and chloroanilines.

Analytes Stabilization Energy, ∆E (kcal/mol)

aniline (2) 25.31

2-methylaniline (3) 24.51
3-methylaniline (4) 24.98
4-methylaniline (5) 24.85

2-chloroaniline (6) 37.48
3-chloroaniline (7) 47.04
4-chloroaniline (8) 48.70

As shown in Figures 1a and 8, a good agreement was found between the stabilization
energy and the retention of substituted isomers for both methylanilines and chloroanilines.
Among them, the lowest stabilization energy (unstable) and short retention time of the ani-
lines substituted at the 2-position can be intuitively understood due to the steric hindrance
by the substituent at the 2-position.
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Figure 8. Stabilization energy between anilines and CR-I(+) (22), aniline and methylanilines (left), and aniline and
chloroanilines (right).

To gain an insight into the assumed steric hindrance, the hydrogen-bonding pattern
was further simulated. We predicted 3- and 4-methylaniline to make two hydrogen bonds
with oxygen atoms at positions 6 and 15 of 22 (Figure 9a,b), and 2-methylaniline to make
bonds at positions 6 and 9 (Figure 9c) as the global minimum (the most stable) structure.
To see what would be expected if 2-methylaniline would make hydrogen bonds with
oxygen atoms at positions 6 and 15, the calculation was performed starting from the above
hydrogen bonding form as an initial aggregate structure. While a local minimum keeping
the two hydrogen bonds was predicted, the stabilization energy was less than that of the
global minimum, (Figure 9d) by 1.78 kcal/mol presumably due to the crowded structure,
in particular of the surroundings of the methyl group (yellow arrows). Thus, it seems
reasonable that 2-methylaniline is forced to make two hydrogen bonds with oxygen atoms
numbered 6 and 9.

Figure 9. Calculated interaction models of methylanilinium-ion-substituted isomers and 22.
(a) 3-methylaniline, (b) 4-methylaniline, (c,d) 2-methylaniline.
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2.3. Insight into the Interaction between CR (+) Ligand and Aniline by Quantum Chemical Calculation

The stable aggregate structures between the CR-I(+) ligand (22) and the substituted
anilines were predicted by quantum chemical calculation as mentioned in Section 2.2. The
calculation suggested that the 3- and 4-substituted anilines make two hydrogen-bonds
with the oxygen atoms at the 9 and 12 positions, respectively, of the crown ether. This
interaction model is different from the three-point binding model as described in Scheme 6.
In this section, we discuss how the interaction form varies depending on the crown ether
and the ammonium structures by in silico experiments.

Scheme 6. Interaction form between 1, 4, 7, 10, 13, 16-hexaoxycyclooctadecane (18-Crown-6) and
ammonium ions.

2.3.1. The Calculation Study of Various Crown Ethers and Anilines

To clarify whether this discrepancy (two hydrogen bonding vs. three hydrogen bond-
ing) is due to the calculation method or the structure of the CR-I ligand having a symmetric-
ity different from that of 18-crown-6, we performed calculations for several kinds of crown
ethers with aniline. First, the most stable aggregated structure between 18-crown-6 (23) and
aniline is shown in Figure 10. This apparently shows three-point binding with alternating
oxygen atoms of 23 and 2·H+. It seems likely from the result that the two-point binding
model is not due to our calculation method but to the structure of 22.

Figure 10. The structures of 23 and 2·H+ (right) and the calculated stable aggregate between them (left). The number in the
figure indicates the interatomic distance (angstrom).
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Next, the aggregate between the crown ether incorporating a 1, 1′-binaphthyl moiety
without phenyl substituents at 3, 3′-positions (24), and 2·H+ was performed. In the resulting
model, all three protons on the protonated nitrogen make hydrogen bonds with three of
the crown ether oxygen atoms. However, unlike the case of 23 (Figure 10), the hydrogen
bonds were predicted to be with oxygen atoms at the 3-, 6-, and 15-positions (Figure 11).
This crown ether is no longer an 18-crown-6 (23) but a 20-crown-6 (24) by incorporating a 1,
1′-binaththyl moiety and has C2 symmetry instead of the C3 symmetry of 23.

Figure 11. The structures of 24 and 2·H+ (right) and calculated stable aggregate between them (left).

The novel pattern of ammonium-crown ether aggregation is likely the result of the
crown ether structure. We presumed that, in the case of 22, the hydrogen bonding with the
oxygen atom at position 3 of 22 in the aggregate does no more work owing to the steric
congestion caused by the phenyl groups at the 3- and 3′-positions resulting in a two-point
binding interaction with two oxygen atoms at the 6 and 15 positions as shown in Figure 12.
The remaining one hydrogen appears to form an NH-π bond as an alternative interaction.

Figure 12. The structures of 22 and 2·H+ (right) and calculated stable aggregate between them (left).

Because the anilines substituted at position 2 further increase the steric hindrance, the
crown ether oxygens accepting hydrogen bonds move further apart from the binaphthyl
moiety, i.e., the oxygen atoms at positions 6 and 9 (Figure 9c); the third proton has no
counterpart of hydrogen bonding; and the stabilization energy is smaller than for the 3- and
4-substituted anilines. The above is our understanding of the interaction pattern varying
according to the structural change of both the crown ether and analytes.
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2.3.2. Interaction of Chiral Amino Acids and CR-I(+)

While three-point binding mechanisms based on Cram’s model have been usually
supposed to rationalize chiral recognition, this study predicted an anomalous two-point
binding mechanism based on the quantum chemical calculations for the aggregate model.
To confirm whether the similar two-point binding model was also predicted in chiral recog-
nition, the calculation for the aggregate between (R) or (S)-phenylglycine (25, 26) and 22 was
performed. The stabilization energies and interaction models of each enantiomer and 22 are
shown in Table 6, Figures 13 and 14. There was a good agreement between the stabilization
energy of the aggregate and the elution sequence obtained from chromatography—that is,
the stabilization energy of the more strongly retained (S)-enantiomer with 22 was calcu-
lated to be −23.91 kcal/mol, and the weakly retained (R)-enantiomer was calculated to be
−19.41 kcal/mol.

Table 6. The stabilization energies of phenylglycine enantiomers and chiral crown ether 22.

Chiral. Crown Ether Amino Acid Stabilization Energy,
∆E (kcal/mol) Elution Order 1

22 (R)-Phenylglycine (25) 19.41 1st
22 (S)-Phenylglycine (26) 23.91 2nd

1 The chromatographic condition is described in [19].

Figure 13. The structures of 22 and 25·H+ (right) and calculated stable aggregate between them (left).

Figure 14. The structures of 22 and 26·H+ (right) and calculated stable aggregate between them (left).
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The aggregate model of (R)-enantiomer 25 and 22 is similar to Figure 13 with an
anomalous three-point binding mechanism in which three hydrogens are bonding with
three oxygens at the 3, 6, and inner 15 positions in the crown ether ring. The aggregate
model of (S)-enantiomer 26 and 22 (Figure 14) is rather similar to the 2-substituted aniline
model shown in Figure 9c. The two hydrogen bonds with two oxygens at the 6 and 9
positions, which were predicted for the aggregate of 2-substituted anilines, are thought to
be due to an unconfirmed effect, for example, the influence of the polar carboxyl group of
amino acids.

3. Materials and Methods
3.1. Apparatus

Chromatography was performed using an HPLC consisting of an LC 20AD Liquid
Chromatograph, SOL 20AC Auto Sampler, DGU-20A3R Degassing Unit, SPD-M20A Diode
Array Detector, CTO-20AC Column Oven, and CBM-20A Communications Bus Module,
all purchased from Shimadzu Corporation (Kyoto, Japan), and the data were processed
with LCsolution, Shimadzu Corporation. The operating flow rate, UV wavelength, and
temperature are described in each table. The sample material was dissolved into the mobile
phase at a ca. 1 mg/mL concentration, and 1 µL or 2 µL of the sample solution was injected.
CROWNPAK CR-I (-) (150 mm × 3 mm I.D., 5 µm packing) was used as a brand new
column from Daicel Corporation (Tokyo, Japan).

3.2. Chemicals

Aniline and 60% perchloric acid were purchased from Nacalai Tesque (Kyoto, Japan);
2-aminophenol and 4-aminophenol, from Wako Pure Chemical (Osaka, Japan); and all
other substituted anilines, benzyl amine, and methylbenzylamines, from Tokyo Chemical
Industry Co., Ltd. (Tokyo, Japan) Liquid chromatography (LC) grade ACN “Acetonitrile-
plus-” was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan) Pure water was
prepared with Millipore Elix Essential 3 UV (Burlington, USA).

3.3. Eluent

The water/ACN mixtures were prepared based on the weight. For example, the
70:30 (v/v) mixture was prepared by mixing 234.9 g of ACN and 700.0 g of water. 20 mM
perchloric acid in the above mixture was prepared as follows. Perchloric acid (60%, titrated
to confirm the concentration) was weighed targeting 1674.3 mg. It was transferred into
a 500 mL volumetric flask with the above ACN/water mixture and around 225 µL of ACN
to compensate for the water contained in the perchloric acid up to the graduation marking.

3.4. HPLC Conditions
3.4.1. Analysis on a CROWNPAK CR-I (-) Column

The analysis on a CROWNPAK CR-I was performed under the following conditions
(except Figure 4):
Column: CROWNPAK CR-I (-) (Daicel Corporation) Size: 150 × 3 mm ID
Eluent A: 20 mM HClO4 in 70:30 (v/v) mixture of H2O and ACN
Eluent B: 20 mM HClO4 in 10:90 (v/v) mixture of H2O and ACN
Eluent C: 100/100/4/1 (v/v/v/v) mixture of n-hexane, ethanol, water, and trifluoroacetic acid
Flow rate: 0.25 mL/min., Temperature: 30 ◦C, and Detection: UV 254 nm under all conditions.
V0 was determined with formamide as the marker to be 0.809 mL.

3.4.2. Analysis of ODS Column

Column: L-Column A5206 290-W, Size: 250 mm × 4.6 mm ID (Chemicals Evaluation
Research Institution, Tokyo, Japan)
Eluent: 20 mM phosphoric acid, 30 mM triethylamine in water/ACN 7:3(v/v)
Flow rate: 1.0 mL/min., Temperature: 30 ◦C, and Detection: UV 254 nm
V0 was determined with foramide as the marker to be 2.698 mL.
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3.5. Calculation

Molecular orbital calculations were performed with the Gaussian16 programs [20].
The geometries of all the compounds were optimized with the density functional theory
(DFT) method with the hybrid Becke3 parameter hybrid (B3) [21] as a functional and
1991 [22] by Perdew and Wang (PW91) as a gradient correction functional by using the
6-31G (d) [23] basis (denoted as B3PW91/6-31G(d)). The solvent effect for each molecule
used a polarized continuum model (PCM) [24]. The dielectric constant was ε = 78.39,
assuming that the solvent was water. Theoretical harmonic vibrational frequencies were
obtained from analytical second derivatives calculated at the B3PW91/6-31G(d) level and
performed to confirm that the structure was stable.

4. Conclusions

The achiral selectivity of CROWNPAK CR-I, an immobilized crown ether type chiral
stationary phase for isomeric substituted anilines, and the related analytes was studied.
Fluids of a wide polarity range can be adopted as the eluent, which made it possible to
control the retention of the analytes with different polarities. While this exhibited a good
recognition of positional isomeric anilines, there was a remarkably smaller retention of
2-substituted aniline compared to other isomers as the outstanding feature of the phase.
For the purpose of understanding the interaction occurring here, we attempted to predict
the structure of the aggregate between the crown ether and methyl- or chloro-substituted
aniline through quantum chemical calculations.

The results suggested that the protonated anilines make two hydrogen bonds with
two of the crown ether oxygen atoms in two patterns (two-point binding mechanisms);
aniline, 3-substituted anilines, and 4-substituted anilines with oxygen atoms at No.6 and
No.15; and 2-substituted anilines with oxygen atoms at No.6 and No.9. This is different
from the three-point binding mechanism that is well accepted for 18-Crown-6, and further
simulation study suggested that a crown-6 with incorporated 1,1′-binaphthyl moiety takes
an anomalous three-points binding mechanism. When two phenyl groups are substituted
at the 3 and 3′ positions in the naphthalene ring, it takes a two-point binding model. Finally,
quantum chemical calculations were applied to a chiral amino acid and predicted the correct
enantiomeric elution order, and two types of hydrogen bonding models were predicted.
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