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Pheochromocytoma is very rare at a pediatric age, and when it is present, the probability of a causative genetic mutation is high.
Due to high costs of genetic surveys and an increasing number of genes associated with pheochromocytoma, a sequential
genetic analysis driven by clinical and biochemical phenotypes is advised. The published literature regarding the genetic
landscape of pediatric pheochromocytoma is scarce, which may hinder the establishment of genotype-phenotype correlations
and the selection of appropriate genetic testing at this population. In the present review, we focus on the clinical phenotypes of
pediatric patients with pheochromocytoma in an attempt to contribute to an optimized genetic testing in this clinical context.
We describe epidemiological data on the prevalence of pheochromocytoma susceptibility genes, including new genes that are
expanding the genetic etiology of this neuroendocrine tumor in pediatric patients. The clinical phenotypes associated with a
higher pretest probability for hereditary pheochromocytoma are presented, focusing on differences between pediatric and adult
patients. We also describe new syndromes, as well as rates of malignancy and multifocal disease associated with these
syndromes and pheochromocytoma susceptibility genes published more recently. Finally, we discuss new tools for genetic
screening of patients with pheochromocytoma, with an emphasis on its applicability in a pediatric population.

1. Introduction

Pheochromocytoma (PHEO; MIM #171300) is a rare
neuroendocrine tumor of chromaffin cells originating in the
adrenal medulla, whereas paragangliomas (PGLs; MIM
#168000) are even rarer tumors arising in the paraganglia

along the parasympathetic and sympathetic chains [1].
PHEO is rare among a pediatric population, representing
9.6–17.7% of all cases [2, 3]. In the last fifteen years, several
new genes have been implicated in the development of this
tumor [4, 5]. Besides the three classical PHEO-associated
cancer syndromes, namely, multiple endocrine neoplasia
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type 2 (MEN2), von Hippel-Lindau (VHL) disease, and
neurofibromatosis type 1 (NF1), new entities have been asso-
ciated with PHEO: the PGL syndrome types 1 to 5 [(PGL1–5)
caused by mutations in succinate dehydrogenase (SDH)
subunits D/AF2/C/B/A genes (SDHx), resp.], familial
PHEO [caused by mutations in Myc-associated protein X
(MAX) and transmembrane protein 127 (TMEM127) genes]
[6–15], and several new susceptibility genes. These include
hypoxia-inducible factor 2 alpha (HIF2A), fumarate hydra-
tase (FH), prolyl hydroxylase types 1 and 2 (PHD1 and
PHD2), Harvey rat sarcoma viral oncogene homolog
(HRAS), kinesin family member 1B (KIF1B), and X-
linked alpha thalassemia mental retardation (ATRX) genes
[16–20]. Thus, nearly one-third of all patients with PHEO
have germline mutations [5, 21], and this number is signifi-
cantly higher at younger ages [3, 22]. Consequently, all
patients ≤ 18 years old (yo) diagnosed with this tumor should
be considered for genetic testing [23, 24]. Besides young age,
there are other clinical features where a PHEO is more likely
to be associated with a genetic etiology. Syndromic presenta-
tions, multifocal disease (adrenal and extraadrenal), bilateral
and recurrent PHEO, and metastatic disease are all associ-
ated with a higher likelihood of a hereditary PHEO [3, 22].

Considering the growing number of PHEO susceptibility
genes and the well-established genotype-phenotype correla-
tions for some of these gene mutations [3, 22], it is recom-
mended that clinicians follow an algorithm based on the
phenotype when requesting a genetic analysis [22, 23]. Also,
it may be clinically unsuitable to order a genetic study for
genes that have never been associated with specific features
of a patient’s phenotype [23, 24]. Furthermore, two other rea-
sons should be taken into account while considering genetic
testing: (1) the high rate of metastatic PHEO associated with
some mutations, which may aid in tailoring the appropriate
follow-up [25], and (2) the finding of a mutation in the index
case and their relatives, which allows for an individualized
surveillance program to timely detect and treat chromaffin
and other nonchromaffin cell tumors or disorders [26]. Addi-
tionally, when a genetic mutation is suspected to be linked to
PHEO, other parameters may aid in the selection of the
molecular analysis, namely, the type of catecholamine pro-
duction [27] and/or the pattern of SDHA/B immunostaining
in pathology specimens [28, 29] and a specific imaging phe-
notype [30].

Due to the rarity of pediatric PHEO, few cohort studies in
this age range have been published that allow for precise
genotype-phenotype correlations for all associated muta-
tions. The majority are based on small samples and takes into
account small susceptibility gene panels [2, 25, 31–37]. Thus,
the amount of published data may hinder, at least in some
cases, the appropriate selection of genetic analysis for a pedi-
atric PHEO. Here, we review the clinical phenotypes of pedi-
atric patients with PHEO and associated mutations in
susceptibility genes reported in the literature, in an attempt
to contribute to a comprehensive genetic screening of PHEO
in pediatric age.

The present review was conducted taking into account
the English literature retrieved from PubMed until August
2017. Main keywords used were “pheochromocytoma,”

“paraganglioma,” “genetic testing,” “mutation,” “genotype,”
“phenotype,” “malignant,” “metastatic,” “pediatrics,” “child,”
“preschool child,” “VHL,” “RET,” “NF1,” “SDHB,” “SDHD,”
“SDHA,” “SDHC,” “SDHAF2,” “TMEM127,” “MAX,”
“HIF2A,” “FH,” “PHD1,” “PHD2,” “MDH2,” and “KIF1B.”
We included clinical and molecular studies (single cases
and case series); we did not exclude any age to minimize
missing pediatric cases of cohort studies that considered all
ages. We also considered leading reviews in the field of genet-
ics of PHEO. We then excluded genes not reported to be
associated with pediatric PHEO.

2. Mechanisms of Hereditary PHEO

The susceptibility genes involved in the development of pedi-
atric PHEO may be grouped according to three primary
mechanisms of oncogenesis: a pseudohypoxic cluster [muta-
tions in VHL, HIF2A (or EPAS1), PHD1, PHD2, FH, SDHx,
andMDH2], a cluster composed of kinase receptor signaling
and protein translation pathways (mutations in RET, NF1,
andMAX), and a Wnt-altered pathway cluster [38–40]. This
last cluster comprises only somatic driver mutations (CSDE1
truncating mutations, and MAML3 fusion genes) that cause
sporadic aggressive/recurrent PHEO [40].

In the pseudohypoxic cluster, there is a common denom-
inator of overexpression of hypoxia-inducible factor alpha
(HIF-α), which is expressed predominantly by its HIF-2α
isoform in the neural crest cells [41, 42]. Under hypoxia (or
pseudohypoxia, a condition where there is normal concen-
tration of oxygen that is not consumed due to a defect in
the oxygen sensor pathways), the cell develops a set of adap-
tive responses in which HIF-α plays a central role in regulat-
ing genes involved in erythropoiesis (e.g., EPO), angiogenesis
(e.g., ADM and VEGFA), glucose metabolism (e.g., HK1 and
HK2), cellular proliferation (e.g., TGFB and CCND1), and
survival (e.g., BNIP3). However, a long-standing process of
hypoxia (or pseudohypoxia) causes HIF-α excess, which pro-
motes a nuclear overexpression of these genes, ultimately
leading to cancer development, migration, invasion, and
metastasis [41, 42].

In the Krebs cycle, the SDH complex (formed by its cat-
alytic subunits A and B, and anchorage subunits C and D)
and FH enzymes catalyze the oxidation of succinate to fuma-
rate and the conversion of fumarate to malate, respectively.
Loss-of-function mutations in SDHx or FH lead to succinate
and fumarate accumulation, respectively, and to a subse-
quent inhibition of HIF-α hydroxylation, a necessary signal
recognition step for its degradation by the VHL protein
[42, 43]. The PHD1 and PHD2 hydroxylate HIF-α isoforms
and loss-of-function mutations in their genes (PHD1 and
PHD2) cause an excess of HIF-α and its proneoplastic actions
[17, 42]. Mutations in HIF-α promote electrostatic changes
in the protein isoforms, which impair hydroxylation by
PHD molecules, preventing the signaling for degradation
by the VHL protein [44, 45]. Finally, VHL mutations orig-
inate defective proteins that do not recognize hydroxylated
HIF-α isoforms for degradation. This excess of HIF-α leads
to an overexpression of hypoxia-related genes, favoring
metastasis [44, 45].
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The proto-oncogene RET encodes a transmembrane
receptor tyrosine kinase involved in organ development
(e.g., gut, kidney, and neural crest), proliferation, and apo-
ptosis. Germline mutations in specific exons of the RET
may lead to constitutive activation of its protein tyrosine
kinase domain and subsequent downstream activation of
Ras/mitogen-activated protein kinase and PI3 kinase/AKT
pathways, promoting tumorigenesis through cell prolifera-
tion and reduced apoptosis [46]. Contrary to RET, the NF1
acts as a tumor suppressor gene. Its protein—neurofibromin
1—is a GTPase activator that inhibits Ras signaling through
the mTOR kinase pathway. Loss-of-function mutations in
NF1 result in an enhanced cell proliferation through
impaired Ras signaling inhibition [47]. The MAX gene
encodes a protein that acts as a nuclear transcriptional
repressor of Myc. Loss-of-function mutations inMAX gener-
ate a protein incapable of binding to Myc in the nucleus,
leading to proliferation, angiogenesis, and repression of cell
differentiation [14, 48].

3. Genetic Basis of Pediatric PHEO: Which
Genes Should We Think About?

3.1. Genetic Prevalence and PHEO-Associated Genes. Consid-
ering the largest cohorts of pediatric PHEO [31–33], where a
wider set of genes were studied, the prevalence of gene
mutations was estimated to be 68.2–80.0% in a total of
268 patients. To our knowledge, 10 genes have been
described in association with PHEO at a pediatric age: VHL
(MIM ∗608537), rearranged during transfection (RET;
MIM +164761), NF1 (MIM ∗613113), SDHD (MIM ∗602690),
SDHB (MIM ∗185470), SDHA (MIM ∗600857), MAX (MIM
∗154950), HIF2A (MIM ∗603349), FH (MIM ∗136850), and
PHD1 (MIM ∗ 606424) [17, 24, 31–33, 49–51]. The other
seven genes that have been associated with PHEO were
only reported in adults. These genes are TMEM127
(MIM ∗ 613403), PHD2 (MIM ∗ 606425), SDHAF2 (MIM
∗ 613019), SDHC (MIM ∗602413), HRAS (MIM ∗190020),
KIF1B (MIM ∗ 605995), and ATRX (MIM ∗ 300032)
[10, 11, 15, 17–20, 31–33, 52, 53].

3.2. PHEO-Associated Cancer Syndromes. A pediatric PHEO
can be included in one of the following five cancer syndromes:
VHL, MEN2, NF1, and those associated with PHD1/2 and
HIF2A mutations. The VHL disease (MIM #193300) is a
highly penetrant, autosomal dominant syndrome character-
ized by central nervous system and retinal hemangiomas
(60.0%), renal cysts (50.0–70.0%), renal cell carcinomas
(RCC, 28.0%), PHEO (7.0–20.0%), and pancreatic neuroen-
docrine tumors (5.0–10.0%) and cysts. The VHL disease has
an average age onset of 27 years, and by 65 yo, almost all car-
riers have developed clinical disease [7, 54, 55]. The most
common cause of death is RCC, but this tumor almost always
develops after 20 yo [7]. Pediatric PHEO tends to present ear-
lier when VHL is mutated, compared with other PHEO-
associated germline mutations: The mean age of diagnosis
of PHEO is 12 years, and the youngest age reported to date
is 4 years [31]. Large deletions and truncating mutations of
VHL predispose to hemangiomas of central nervous system

(including retina) and RCC, but not to PHEO (VHL disease
type 1). Missense mutations predispose to PHEO (VHL dis-
ease type 2), which may be associated with hemangioblasto-
mas (VHL disease type 2A), hemangioblastomas and RCC
(VHL disease type 2B), or only PHEO (VHL disease type
2C) [56]. VHL mutations are the most prevalent in pediatric
patients with PHEO, ranging from 28.0% to 49.0% of cases
[31–33]. However, although syndromic features that raise
suspicion for VHL disease have a high penetrance across
the age spectrum [7, 56], pediatric patients with PHEO-
associated VHL mutations often present without other
syndromic features of the disease [31–33]. In the largest
cohort of pediatric PHEO, published to date, only 10 of
93 VHL patients had the prototypic lesions at study entry
[31]. Additionally, more than half of patients with VHL
disease have de novo mutations; that is, the family history
is unremarkable in these cases. Thus, in a seemingly sporadic
case, clinicians should always bear in mind the relatively
high frequency of VHL-germline mutations in pediatric
PHEO [6, 31–33].

MEN2 is a syndrome caused by RETmutations inherited
in an autosomal dominant pattern. It may be subdivided into
two clinical subtypes: MEN2A (MIM #171400) and MEN2B
(MIM #162300). MEN2A is the most prevalent, with a mean
age of onset of disease (first prototypic tumor) of 37.5 years.
Patients are susceptible to medullary thyroid carcinoma
(MTC, 97.0%), PHEO (68.1%), and primary hyperparathy-
roidism (13.4%) [57]. MEN2A patients with specific muta-
tions in RET codons 631 and 634 have the highest
incidence of PHEO [58]. MEN2B patients are usually diag-
nosed earlier (average age of first prototypic tumor: 13–22
years) than are MEN2A individuals. MEN2B is associated
with an aggressive form of MTC (100.0%; usually incurable
if diagnosed ≥13 yo), PHEO (58.0%), marfanoid habitus,
and ganglioneuromatosis of the gut and oral mucosa
[57, 59–61]. Pediatric PHEO is part of MEN2 syndromes
in 1.0–5.4% of cases [31–33]. Contrary to adults, where
PHEO can be the first manifestation of MEN2 in 24.0–
37.3% of cases [6, 57, 62], the vast majority of pediatric
patients with MEN2 have a previous history of MTC
or family history of typical tumors of the syndrome
[62–64]. PHEO may develop as early as 8 yo in
MEN2 [64], although the majority of the reported cases
were >12 yo [31–34, 62].

NF1 (MIM #162200) is a multisystem autosomal domi-
nant disorder, characterized by a progressive development
(since birth) of café au lait spots (~100.0%), axillary/inguinal
freckling (90.0%), neurofibromas (84.0%), Lisch nodules of
the iris (>70.0%), typical osseous lesions (14.0%; scoliosis,
sphenoid wing, and/or long bone dysplasia), and optic gli-
oma (4.0%) [65]. NF1 also predisposes to breast, lung, and
colorectal carcinomas (16.0%); PHEO (7.7%); sarcomas
(7.0%); gastrointestinal stromal tumors (7.0%); melanoma
(0.1–5.4%); and pancreatic neuroendocrine tumors [66–69].
The mean age at a first tumor diagnosis is 44 years [67],
including PHEO (43 yo) [8]. Pediatric PHEO is associated
with NF1 in 3.0% of cases, and the clinical diagnosis is often
straightforward since 97.0–100.0% of patients develop at
least two cardinal features of the syndrome by 8 yo [31, 65].
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The youngest age of diagnosis of PHEO in NF1 is 7 years
[70], but it usually develops ≥14 yo [8].

The syndrome of PHEO/PGL and somatostatinoma
associated with polycythemia, caused by HIF2A mutations,
is a new PHEO-associated cancer syndrome described ini-
tially in 2012 [71]. Patients are prone to a set of clinical fea-
tures, occurring isolated or in different combinations:
polycythemia since early childhood, PHEO, PGL, duodenal
somatostatinomas, and retinopathy [50, 72–82]. The full
syndrome—“Pacak-Zhuang” syndrome—is considered if
the patient develops polycythemia, PHEO/PGL, and soma-
tostatinoma [50]. Overall clinical manifestations and their
frequency in the 62 published cases with HIF2A mutations
are as follows: isolated polycythemia in 29 patients (45.0%);
polycythemia and PHEO/PGL in nine patients (14.5%); poly-
cythemia, PHEO/PGL, and somatostatinoma in six patients
(9.6%); isolated PHEO/PGL in 14 patients (22.6%); brain
hemangiomas in three patients (4.8%, one with a concomi-
tant PGL); and duodenal gangliocytic PGL in two patients
(3.2%) [50, 72–82]. The median age of diagnosis of PHEO
is 40 years (range: 13–78), whereas for PGL, it is 20 years
(range: 8–78) [50, 72–82]. The prevalence of HIF2A muta-
tions associated with pediatric PHEO is unknown, as no case
series in this age range have been published that included the
analysis of this gene. Considering all ages, the prevalence of
HIF2A mutations is estimated to be 5.3% [74, 77, 78] in
cohorts of PHEO/PGL. Of these, 25.0% and 42.8% are
patients that developed PHEO and PGL, respectively, at a
pediatric age [50, 72, 74, 75, 77]. These tumors are initially
benign and multiple, but later on, they recur frequently,
requiring repeated surgeries, and develop metastases, espe-
cially PGLs [50]. Somatostatinoma occurs only in females
at the median age of diagnosis of 32 years (range: 22–59),
and they are always located around the duodenal ampulla
[50, 72]. Considering all cases published to date, these tumors
are associated with symptomatic gallbladder disease; occur in
the duodenum (100.0%) and pancreas (50.0%); carry a
considerable risk of recurrence (50.0%) and malignancy
(50.0%); and are diagnosed after the development of
PHEO/PGL [50, 72]. The majority of HIF2A mutations are
somatic, and thus, the family history is negative. However,
some patients have somatic mosaicism, where the mutation
is found in tumor cells and in a fraction of normal tissues
(e.g., leukocytes and buccal cells) [50, 72, 74, 78, 83]. Thus,
there may be a possibility of transmission of a HIF2A muta-
tion to the next generation by an affected member who has
mosaicism that includes the gametes; however, such cases
have never been described until now [72]. Additionally, there
are seven familial cases ofHIF2Amutations, but the majority
had only polycythemia [50], and two nonrelated cases of
germline mutations in adult patients with isolated PHEO
[78]. This evidence has led experts to develop recommenda-
tions regarding the genetic testing and counseling, as well as
to the clinical follow-up of patients with HIF2A mutations
[50, 72].

Germline mutations in PHD1/2 were reported in patients
with polycythemia and PHEO/PGL [17, 53]. In this syn-
drome, patients develop polycythemia at a later age relative
toHIF2Amutation carriers, but they appear to have a similar

high risk of recurrent chromaffin cell tumors, especially PGL
[17, 53]. To date, only a PHD1 mutation was reported in
association with pediatric PHEO. The patient was a
female with no family history that presented with polycy-
themia diagnosed at 6 yo and developed a PHEO at 14
yo. Subsequently, she had a contralateral PHEO and a
thoracic PGL [17].

3.3. Multifocal Disease. Pediatric patients with PHEO and
PGL usually have germline mutations in the SDHB, SDHD,
or VHL [31–33]. SDHB mutations cause PGL4 (MIM
#115310) [13], an autosomal dominant disorder character-
ized mainly by the development of sympathetic abdominal
(67.0%) and thoracic PGL (17.6%), parasympathetic head
and neck (HN) PGL (27.5%), and/or PHEO (11.4%) [49,
84]. The mean age of presentation is 34 years, and the pene-
trance reaches 65.0% by 40 yo [49]. Pediatric patients with
PHEO harbor an SDHB mutation in 13.6% of cases, and
the majority develop this tumor at ≥8 yo [31]. PGL4 is asso-
ciated with the highest incidence of PHEO (96.0%) of all the
PGL syndromes in this age range; an SDHBmutation is most
likely present when a pediatric PHEO occurs concomitantly
with an abdominal PGL (68.0%) [28, 31, 32] but is less likely
than other SDHx mutations when it occurs in association
with thoracic (8.0%) and HN PGL (4.0%) [31]. SDHB muta-
tions are also associated with the development of RCC (14%),
gastrointestinal stromal tumors [GIST; 2%; isolated or asso-
ciated with PGL (Carney dyad or Carney-Stratakis syn-
drome) or PGL and chondroma (Carney triad)] and
pituitary adenomas (rare) [85–90]. Germline SDHD muta-
tions predispose carriers to PGL1 (MIM #168000) [9]. This
syndrome is characterized by parasympathetic HN PGL
(89.0%), sympathetic thoracic PGL (16.0%), and/or PHEO
(10.5%), with a particularly high incidence of multiple
tumors (66.9%). The mean age of presentation is 28 years,
and the penetrance reaches >80.0% by 40 yo [49, 84]. Pediat-
ric PHEO is associated with SDHD mutations in 6.7% of
cases. The mean age of diagnosis of PGL1 is 14 years, and
the earliest presentation reported is at 5 yo [3, 31]. An
SDHD-related PHEO is more likely—rather than SDHB or
VHL—when thoracic (24.0%) or HN PGL (6.0%) is also diag-
nosed in pediatric patients. PGL1 is also characterized by
recurrent PGL that occurs with a lower latency period in this
age range [31]. Nonchromaffin cell tumors may also occur in
patients with SDHD mutations (RCC, 8%; GIST rare, iso-
lated, or part of Carney dyad/Carney-Stratakis syndrome/or
triad; and pituitary adenomas, rare) [85–90]. PGL1 almost
always manifests when the SDHD mutation is paternally
inherited, due to a selective somatic loss of the maternal chro-
mosome 11. Lack of the paternal chromosome 11 does not
lead to tumor initiation due to a maternal oncosuppressor
locus in the 11p15 region (imprinted in the father) [91].
Thus, the family history may show a “skip-generation” pat-
tern [49, 92, 93]. Very rarely, loss of the paternal 11q (where
SDHD allele is located) and a mitotic recombination of the
maternal 11q (carrying an SDHD mutation) with the pater-
nal 11p15 imprinted oncosuppressor region may lead to the
phenotypic expression of the disease, inherited from the
mother [49, 91–93].
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VHL disease is rarely associated with PGL across the age
spectrum [7, 56], but these tumors tend to occur with a
higher frequency in pediatric (4.6–5.6%) compared with
adult (0.96%) patients [94]. Indeed, recent case series reveal
that pediatric PHEO harboring VHL mutations can occur
in association with abdominal (20.0%) and/or thoracic
(3.0%) PGL [31], with a small study reporting this phenotype
in 38.0% of cases [32]. Additionally, pediatric patients with
PHEO-associated VHLmutations have a significantly higher
likelihood of new contralateral adrenal and extraadrenal
tumors than have mutations in other genes [31].

HIF2A mutations are typically associated with the devel-
opment of multifocal PGL. The youngest age reported to date
is 8 years [50], and although the age of diagnosis of PGL is
younger than that of PHEO, PGL may occur simultaneously
(33.3%) or develop after PHEO (33.3%) in patients with
HIF2A mutations [45, 50, 72, 73]. Additionally, PGL has a
particularly high recurrence rate of new tumors in these
patients during the follow-up, mainly in the abdomen [45,
50, 73]. Thus, recommendations include screening by imag-
ing studies (MRI for pediatric patients) starting at 8 yo, and
from there every 1-2 years [50]. As previously stated, PHD1
mutations may cause a phenotype (pediatric penetrance,
multifocal, and recurrent PGL) [17] similar to that of HIF2A
mutations, as proteins coded by both genes are partners in
the PHD/HIF-α/VHL pathway [42]. Patients with PHD1/
PHD2/HIF2A mutations should be closely followed up with
functional imaging techniques for recurrence, with 18F-fluor-
odihydroxyphenylalanine (18F-FDOPA) position emission
tomography (PET)/computed tomography (CT) being the
most accurate among all the available techniques [50]. This
evidence highlights the importance of genetic screening for
the delivery of the best clinical practice to patients with
PHEO/PGL.

FH mutations are among the rare genetic etiologies of
PHEO, with an estimated prevalence of 1.05% in two
cohorts of PHEO/PGL patients (totalizing 670 cases)
[16, 51]. Considering the seven unrelated cases published
to date, the median age of diagnosis is 41 years (range: 6–
70) [16, 51], with one single pediatric patient reported
(14.2%) who developed a unilateral PHEO at 6 yo [51].
FH mutations have shown to predispose patients to PHEO
and multifocal PGL (mainly abdominal) with a significantly
higher rate than mutations in other PHEO susceptibility
genes [16].

The familial PHEO syndrome caused byMAXmutations
has a prevalence of <2.0% among the genetic etiologies of
PHEO [14, 24]. Besides a paternal pattern of heritability
(“skip-generation” pattern) [14], probands do not have a
positive family history in >65.0% of cases, which may hinder
the identification of a hereditary disease. The mean age of
diagnosis is 32 years, and the youngest age published is 13
years [14, 24].MAXmutations may predispose patients with
PHEO to thoracic and abdominal PGL (18.5%) [14], includ-
ing at a pediatric age (14.3%) [14, 32, 33].

3.4. Bilateral PHEO. Bilateral PHEO (bPHEO) at a pediatric
age is associated mainly with VHL disease, and less fre-
quently with MEN2 syndrome, PGL1, and familial PHEO

caused by MAX mutations [14, 31–33]. VHL disease may
be associated with bPHEO at presentation in 6.2% of
patients, but at a pediatric age, bPHEO tends to occur with
a higher frequency, ranging from 19.0% to 39.0% [31, 33,
94]. Additionally, 35.0% of pediatric patients with VHL
disease and a unilateral PHEO may develop a contralateral
tumor in the long-term follow-up [31].

MEN2 is associated with the highest incidence (50.0–
78.0%) of bPHEO among the susceptibility genes for PHEO
[95, 96], and a contralateral tumor often (16.0–40.0%)
develops 1–14 years after unilateral presentations (consider-
ing all ages) [61, 95, 96]. As stated above, RET mutations
are rare in cohorts of pediatric PHEO, but when present,
there is a usually high incidence of bPHEO (66.0–100.0%)
[31–36, 95]. The high frequency of high risk RET muta-
tions [in particular, the NM_020975.4(RET):c.1900T>C
(p.Cys634Arg)] for bPHEO in published cohorts could be
an explanation, although sample bias (small sample sizes)
should also be considered [32, 34, 63, 96].

PGL1 is rarely associated with bPHEO across the age
spectrum [84]. However, pediatric patients with bPHEO
may harbor an SDHD mutation in 6.9–12.5% of cases, and
its presence might thus be considered in these cases [31, 33].

MAX mutations predispose carriers to a high risk of
bPHEO or multifocal synchronous unilateral tumors (68.4%)
[14, 24], including at a pediatric age (41.0%) [14].

3.5. Metastatic PHEO. Metastatic PHEO is defined by the
presence of metastasis in tissues where chromaffin cells are
not normally present (e.g., bone and lymph node) [1]. Its
prevalence is reported to be 10.0%, considering all age groups
[5, 21, 24]. The current rate of metastatic pediatric PHEO is
difficult to establish, as most cohort studies do not distin-
guish between PHEO and PGL when reporting metastatic
frequencies [2, 31, 32, 36]. However, two studies totalizing
95 pediatric patients reported an incidence of metastatic
lesions of 8.1–12.0% [33, 35]. The majority of malignant
pediatric PHEO cases are associated with PGL4, and less fre-
quently with VHL disease, NF1, PGL5, familial PHEO due to
MAX mutations, and FH mutations [14, 16, 25, 31, 32].

PGL4 is associated with the development of metastatic
PHEO and/or PGL in 37.0% of patients across the age spec-
trum [13, 49]. Thoracic and abdominal sympathetic PGL
carries the highest risk of metastasis, mainly to the lymph
nodes, liver, lungs, and bones [13]. At a pediatric age, meta-
static PHEO occurs in the context of SDHB mutations in
57.0% of cases [25]. Additionally, considering the largest case
series of pediatric PHEO, the metastatic rate of PHEO and/or
PGL associated with SDHB mutations (18.2–26.0%) was sig-
nificantly higher when compared with that of carriers of
mutations in other susceptibility genes; a lower lifetime
expectancy of carriers of SHDB mutations was also recog-
nized [31]. Thus, these patients need a rigorous follow-up
for timely detection of metastatic disease. When comparing
all the available functional imaging techniques for this pur-
pose, the most accurate for patients with SDHx mutations
is [68Ga]-DOTA(0)-Tyr(3)-octreotate ([68Ga]-DOTATA
TE) PET/CT, followed by [18F]-fluoro-2-deoxy-D-glucose
PET/CT [97]. Again, this evidence emphasizes the
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importance of knowing the patient genotype for the deliv-
ery of precision medicine.

VHL disease has a prevalence of metastatic PHEO
that is variable between studies, ranging from 0.0% to 8.0%
[6, 98, 99], with an extensive review quoting it at 3.4% [24].
In pediatric patients, the reported rate of metastatic tumors
was estimated to be 12.5–28.0% in two small sample studies
[25, 32], but in the largest cohort, the incidence of malignant
PHEO and/or PGL was 4.3% [31]. While the metastatic risk
does not appear to be high, it may be worth to consider the
analysis of VHL in a pediatric patient with a metastatic
PHEO, due to the high prevalence of VHL mutations at this
age range [31–33].

Although associated with PHEO in ≤6.0% of cases,
NF1 has a prevalence of metastatic PHEO of 7.7–12.0%
[8, 100]. In pediatric patients with NF1, metastatic PHEO
occurs at a rate of 33.3–66.6% [31, 100], and similar to
PGL4, these individuals have lower lifetime expectancy
[31]. However, NF1 patients are represented in small sub-
samples (three to six patients) of pediatric PHEO cohort
studies [31, 100], precluding the establishment of their
metastatic risk.

The familial PHEO syndrome caused byMAXmutations
is associated with metastatic PHEO in 10.5% of cases, consid-
ering all ages [14]. No cases of MAX-related metastatic
tumors have been reported so far in cohorts of pediatric
PHEO [31, 32]. However, in a study of patients with
PHEO-associated MAX mutations, five patients were ≤18
yo, of which one had a metastatic tumor [14].

PGL5 (MIM #614165) is caused by mutations in the sub-
unit A of the SDH complex [12], which are found in 3.0% of
all PHEO/PGL patients [101, 102]. This syndrome has a
median age of presentation of 33 years, and the penetrance
reaches 38% by 40 yo [12, 28, 31, 101]. The youngest age
reported is 8 years, with four pediatric cases published to date
[31, 33, 101]. SDHA mutations predispose patients to HN
PGL (38.9%), abdominal PGL (27.8%), and unilateral PHEO
(24.0%) [12, 28, 31, 33, 101–107]. SDHAmutations also con-
fer susceptibility to GIST (30% of SDHx deficient GIST) and
pituitary adenomas (rare) [85–100, 108]. The metastatic rate
of pediatric PHEO in PGL5 is difficult to establish, due to its
rarity. In the largest case series (totalizing 38 patients) of
PHEO/PGL-associated SDHA mutations, the reported prev-
alence of metastatic PHEO/PGL in general was 11% [101].
Of the four pediatric cases, three presented with unilateral
PHEO, one of which was metastatic, and one displayed an
abdominal PGL [31, 33, 101].

FH mutations are associated with a high rate of meta-
static PHEO. Although only 7 PHEO/PGL cases have been
reported to date, three have developed metastasis, of which
two (28.6%) were PHEO [16]. In the largest collaborative
cohort study of PHEO/PGL where the main susceptibility
genes were analyzed, PHEO/PGL caused by FH mutations
had a significantly higher rate of malignancy than had
tumors associated with other gene mutations [16]. Thus,
similar to NF1 and MAX mutations, where small sam-
ples have been shown a propensity for malignant PHEO
[8, 14], it may be important to maintain a higher index
of suspicion for the presence of malignancy when

following up pediatric patients with PHEO-associated
SDHA and FH mutations.

3.6. Solitary PHEO. A unilateral PHEO is the most common
presentation of this tumor in clinical grounds [2, 5, 31]. In
pediatric patients with a solitary PHEO and an associated
gene mutation, VHL accounts for the vast majority of cases,
followed by SDHB and SDHD [3, 31–34]. Considering 84
patients with a solitary and apparently nonsyndromic PHEO
(the largest case series at a pediatric age), mutations in VHL,
SDHB, and SDHD were found in 62, 8, and 3 cases, respec-
tively [31–33].

3.7. Ancillary Surveys to Support the Genetic Screening. The
pattern of catecholamine secreted by the PHEO may yield
clues to the genetic background of the patient, especially
when no family history or syndromic features are evident
[23, 27, 109]. PHEO associated with MEN2 or NF1 usually
produces and/or cosecretes norepinephrine/normetanephr-
ine and epinephrine/metanephrine [27]. However, PHEO
associated with VHL disease produces and/or secretes nor-
epinephrine/normetanephrine, but not epinephrine/meta-
nephrine, due to the lack of the enzyme that catalyzes the
conversion of norepinephrine to epinephrine [27]. Similar
to VHL disease, tumors associated with SDHx, HIF2A, and
FH mutations produce and/or secrete noradrenaline/norme-
tanephrine but rarely adrenaline/metanephrine [16, 27, 50].
However, PHEO associated with SDHx mutations also
produce and/or secrete dopamine/methoxytyramine, which
is rarely detected in VHL disease [27]. In agreement with
these findings, the discriminatory rate of the pattern of
catecholamine production and/or secretion between NF1/
RET- (normetanephrine and metanephrine) and VHL/
SDHx-associated PHEO (normetanephrine but not meta-
nephrine) was quoted at 99.0%. This last cluster may be
correctly discriminated in 78.0% of cases by the levels of
methoxytyramine (elevated in SDHx, but not in VHL-
associated PHEO) [27]. MAX-associated PHEO secretes
high levels of normetanephrine and moderate levels of
metanephrine [14].

Immunohistochemistry to SDHA and SDHB in the
tumor sample may also provide useful information to prior-
itize the genetic screenings [28, 102, 110]. Lack of staining
for SDHB in PHEO is highly suggestive of germline muta-
tions in SDHx genes (90.0%), whereas immunonegative
staining for SDHA (75.0%) is indicative of SDHA mutations
[28]. False negatives (positive or weakly positive staining)
may occur in SDHD-related lesions for SDHB staining
[111], and SDHD immunohistochemistry may aid in these
cases (positive staining predicts SDHx mutations) [112].
Contrarily, all RET-, HIF2A-, and MAX- and majority of
NF1- (95.0%) and VHL-associated PHEO (84.0%) show
positive immunostaining for subunits A/B of the SDH com-
plex [28, 110].

Functional imaging is used in the management of PHEO
to localize the primary tumor or to define the tumor burden
of a metastatic PHEO that may be missed by CT or MRI, and
to characterize the metabolic activity of PHEO/PGL for
therapeutic purposes (e.g., pretreatment uptake avidity
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evaluation of metastatic disease with 123I-metaiodobenzyl-
guanidine scintigraphy) [23, 113]. The 18F-FDOPA PET/
CT is a highly accurate functional imaging tool in the inves-
tigation of PHEO [30]. However, false-negative results may
infrequently occur, mainly with abdominal PGL or PHEO.
These missed lesions on 18F-FDOPA PET/CT are often asso-
ciated with SDHB and SDHD mutations, and it is worth to
consider focused genetic screening for SDHx mutations in
18F-FDOPA PET/CT-negative PHEO/PGL [30, 113].

4. Next-Generation Sequencing: A New
Pediatric PHEO Diagnostic Tool?

Targeted next-generation sequencing (NGS) is a new tech-
nology that processes DNA samples for simultaneous parallel
sequencing of multiple genes [114, 116]. Considering the
high number of PHEO-related genes, NGS is attractive in this
context. Indeed, the application of NGS in cohorts of patients
with PHEO/PGL has proved to be faster with lower costs
than has that of the conventional Sanger sequencing tech-
niques [116, 117]. However, some limitations of NGS may
need to be resolved before its full implementation in the
everyday practice, namely, the clinical relevance of variants
of uncertain significance or methodological errors induced
by repetitive DNA sequences and pseudogenes [113–115].
Additionally, specific NGS panels may need to be con-
structed for samples of pediatric patients with PHEO, as sev-
eral susceptibility genes analyzed in the current commercially

available NGS technologies have never been reported in this
age range (e.g., TMEM127 and SDHAF2).

5. Conclusions

Genetic testing is of paramount importance in pediatric
patients with an apparently sporadic PHEO, because (1) the
rate of mutations found in this clinical setting is close to
80.0%; (2) 10 PHEO-associated genes have been reported in
pediatric patients, each gene conferring distinct profiles of
propensity for the development of chromaffin and nonchro-
maffin cell tumors and for biological behaviors; and (3) it
allows for tailoring specific diagnostic, treatment, and sur-
veillance programs to these patients, taking into account
the germline mutation founded and its genotype-phenotype
correlation [5, 22, 23, 30–33, 50, 118].

Considering the high costs of genetic screenings and the
increasing number of susceptibility genes for PHEO, clini-
cians should follow a phenotype-driven algorithm when
requesting a genetic test (see Figure 1 and Table 1) [22, 23].
Several genes (e.g., TMEM127 and PHD2) have only been
reported in adults [10, 11, 15, 17–20, 31–33, 52, 53, 101],
and the genetic analysis of a pediatric PHEO should initially
disregard them. VHL, SDHB, and SDHD are the most fre-
quently mutated, whereas other genes are rarely found in
pediatric patients [23, 31–33]. The high rate of malignancy
with SDHB mutations demands extensive initial diagnostic
surveys and a close surveillance program [25, 118]. Similarly,
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Figure 1: Algorithm for genetic testing in patients with pediatric PHEO, according to clinical presentation, tumor immunohistochemistry,
and biochemical profiles. −ve: negative; +ve: positive; 18F-FDOPA: 18F-fluorodihydroxyphenylalanine; PHEO: pheochromocytoma; PGL:
paraganglioma; A: adrenaline; D: dopamine; NA: noradrenaline; FH: fumarate hydratase gene; HIF2A: hypoxia-inducible factor 2 alpha
gene; MAX: Myc-associated protein X gene; NF1: neurofibromatosis type 1 gene; PHD1: prolyl hydroxylase domain protein 1 gene; RET:
rearranged during transfection gene; SDHA: succinate dehydrogenase subunit A gene; SDHA: succinate dehydrogenase subunit A protein;
SDHB: succinate dehydrogenase subunit B gene; SDHB: succinate dehydrogenase subunit B protein; SDHC: succinate dehydrogenase
subunit C gene; SDHD: succinate dehydrogenase subunit D gene; VHL: von Hippel-Lindau gene. ∗Consider SDHC mutations (PGL;
PHEO reported only in patients > 18 years).
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Table 1: Clinical features of PHEO-associated genes at a pediatric age.

Clinical features
Ancillary surveys

PHEO-
associated
genes

Youngest
age at

diagnosis
(years)

Most common associated tumors and
features

Frequency (%)

Multifocal
tumors

Bilateral
PHEO

Metastatic
PHEO

Biochemical
phenotype

SDHA/B
IHC

VHL 4

(i) CNS hemangiomas

4.6–5.6 19.0–39.0 4.3 NA +ve/+ve

(ii) Renal cysts

(iii) RCC

(iv) pNET

(v) Pancreatic cysts

(vi) Abdominal PGL

(vi) Thoracic PGL

RET 8

(i) MEN2A (MTC, pHPT)

Rare 66.0–100.0 Rare A +ve/+ve(ii) MEN2B (MTC, marfanoid habitus,
ganglioneuromatosis of the
gut/oral mucosa)

NF1 7

(i) Café au lait spots

Rare Rare 33.3–66.6∗ A +ve/+ve

(ii) Axillary/inguinal freckling

(iii) Neurofibromas

(iv) Lisch nodules of the iris

(v) Typical osseous lesions

(vi) Optic glioma

(vii) Carcinomas (breast, lung, colorectal)

(viii) Sarcomas, GIST

(ix) Melanoma

SDHB 6

(i) Abdominal PGL

68.0 Rare 57.0 NA; D +ve/−ve

(ii) Thoracic PGL

(iii) HN PGL

(iv) RCC

(v) GIST

(vi) Pituitary adenoma

(vii) Chondroma

SDHD 5

(i) HN PGL

66.9 6.9–12.5 Rare NA; D +ve/−ve

(ii) Thoracic PGL

(iii) RCC

(iv) GIST

(v) Pituitary adenoma

(vi) Chondroma

SDHA 8

(i) HN PGL

9.0 4.0 11.0 NA; D −ve/−ve
(ii) Abdominal PGL

(iii) GIST

(iv) Pituitary adenomas

HIF2A 8

(i) Polycythemia since early childhood

66.6 Rare Rare∗∗ NA +ve/+ve
(ii) Abdominal PGL

(iii) Duodenal somatostatinomas

(iv) Retinopathy

PHD1 14
(i) Polycythemia

100 ND ND NA ND
(ii) Abdominal/thoracic PGL

MAX 13
(i) Abdominal PGL

14.3 41.0 20.0 NA; NA, A +ve/+ve
(ii) Thoracic PGL
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the greater likelihood of recurrent tumors in pediatric patients
with VHL and SDHD mutations needs a proactive long-term
follow-up [31]. Also, pediatric carriers of PHEO-associated
mutations may differ in the clinical phenotype when com-
pared to adult carriers (e.g., the higher rate of bPHEO and
PGL in pediatric VHL disease) [31], findings that may change
the clinical attitude regarding the extent of diagnostic and
follow-up strategies. Due to the rarity of PHEO-associated
mutations in other susceptibility genes, data retrieved from
the published literature may hinder the establishment of
genotype-phenotype correlations for some of these genes.
Nevertheless, new mutations have been described at a pediat-
ric age that correlate with specific phenotypes (e.g., HIF2A
mutations and “Pacak-Zhuang” syndrome), opening new
options for sequential genetic testing approach and for indi-
vidualized strategies regarding diagnosis, treatment, long-
term follow-up, and genetic counseling [50, 51].
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