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Abstract

The rapid advance of sequencing technology, coupled with improvements in molecular methods for obtaining genetic
data from ancient sources, holds the promise of producing a wealth of genomic data from time-separated individuals.
However, the population-genetic properties of time-structured samples have not been extensively explored. Here, we
consider the implications of temporal sampling for analyses of genetic differentiation and use a temporal coalescent
framework to show that complex historical events such as size reductions, population replacements, and transient
genetic barriers between populations leave a footprint of genetic differentiation that can be traced through history
using temporal samples. Our results emphasize explicit consideration of the temporal structure when making inferences
and indicate that genomic data from ancient individuals will greatly increase our ability to reconstruct population
history.
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Introduction
Recent advances in molecular genetics have opened up the
possibility of using temporal genetic samples to answer bio-
logical questions, including studies focusing on viruses
(Rodrigo and Felsenstein 1999) and studies of animal and
human remains (Shapiro and Hofreiter 2014). DNA extraction
from fossils or ancient material was pioneered some 3 decades
ago (Higuchi et al. 1984; Pääbo 1985), but the field of ancient
DNA has been plagued by problems such as contamination
from modern-day DNA, postmortem DNA damage, and low
levels of endogenous DNA. However, many problems have
been resolved in the last few years. For example, the high
frequency of postmortem damage in ancient DNA sequences
(Briggs et al. 2007) can be difficult to distinguish from biolog-
ical polymorphisms, but experimental solutions have been
developed, such as using enzymes to repair damaged nucleo-
tides (Briggs et al. 2010). Likewise, problems arising from con-
tamination from present-day individuals can be
circumvented using these same postmortem damage pat-
terns (Krause et al. 2010; Meyer et al. 2014; Skoglund et al.
2014), coupled with an assessment of whether the DNA orig-
inates from a single individual (Green et al. 2010; Krause et al.
2010). These advances have resulted in a remarkable devel-
opment, exemplified by the explosion in genomic studies of
ancient hominid remains such as the sequencing of the
Neandertal genome (Green et al. 2010; Prufer et al. 2014),
the Denisova genome (Reich et al. 2010; Meyer et al. 2012),
and genomic investigations of several prehistoric humans
(Rasmussen et al. 2010; Keller et al. 2012; Sánchez-Quinto

et al. 2012; Skoglund et al. 2012; Raghavan et al. 2014).
There are even isolated examples of DNA preservation in
fossils that are hundreds of thousands years old (Orlando
et al. 2013; Meyer et al. 2014). The new sequencing technol-
ogies have been instrumental for this development simply
because they work with massive amounts of short-frag-
mented DNA, which is the state in which we find postmor-
tem DNA.

Theoretical aspects of temporal genetic differentiation
have not been extensively investigated even though many
of the classical population-genetic parameters, such as
Wright’s F-statistics (Wright 1949), stem from temporal
models. For example, temporal differences between ancient
samples, as well as between ancient samples and modern-day
ones, complicate interpretations of population-genetic struc-
ture. Even in the absence of population structure, genetic drift
is expected to produce genetic differences between genetic
data from different points in time (Krimbas and Tsakas 1971;
Waples 1989; Nordborg 1998; Anderson et al. 2000; Wang
2001; Berthier et al. 2002; Beaumont 2003; Depaulis et al.
2009; Nyström et al. 2012), which in practice makes separating
historical scenarios of replacement and genetic drift difficult
(Nordborg 1998; Serre et al. 2004; Haak et al. 2005; Castroviejo-
Fisher et al. 2011; Sjödin et al. 2014). However, it may be de-
sirable to use the temporal structure within a sample to make
inferences, because time-structured data offer a new dimen-
sion of information for learning about the demographic his-
tory. That important information can be extracted from
temporal samples is illustrated by the long tradition of using
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variance in allele frequencies between multi-individual sam-
ples from discrete time points to infer effective population size
(Krimbas and Tsakas 1971; Waples 1989; Anderson et al. 2000;
Wang 2001; Berthier et al. 2002; Beaumont 2003) and methods
for using single-locus nonrecombining markers, such as mito-
chondrial DNA, to infer population size changes (Drummond
et al. 2005; Ramakrishnan et al. 2005; Chan et al. 2006;
Drummond and Rambaut 2007; Ramakrishnan and Hadly
2009; Navascues et al. 2010; Ho and Shapiro 2011).
Furthermore, the coalescent model (Kingman 1982) is readily
adapted to accommodate time-serial samples (Rodrigo and
Felsenstein 1999) and several simulation tools that handle
temporal samples have been developed (Anderson et al.
2005; Jakobsson 2009; Excoffier and Foll 2011). However, the
use of genomic data from temporal samples for inferring more
complex population histories remains largely unexplored. As
the quality and quantity of ancient genomic data is increasing,
we need a better understanding of how temporal structure
affects genetic differentiation and diversity. In this article, we
first illustrate how temporal structure relates to classical
models of population structure by calculating Wright’s fixa-
tion index, FST, in simple demographic models, which provides
an intuitive understanding of the problem at hand. Second,
we demonstrate that genetic data from temporal samples can
greatly aid inferences of population history by highlighting
several instances where wide temporal sampling can provide
insights that would be hard to obtain otherwise.

Fundamental Properties of Temporal Genetic
Structure

Genetic drift results in differentiation between structured
populations (Wright 1940, 1951). In a coalescent framework
(Kingman 1982; Hudson 1990; Slatkin 1991), genetic differen-
tiation between populations can be viewed as the effect of a
shorter expected time of coalescence for lineages from the
same population E[TW] compared with the expected time of
coalescence for lineages from different populations E[TB]. A
fundamental metric of genetic differentiation in structured
populations is Wright’s fixation index FST which, in coalescent
terms, corresponds to 1�[E[TW]/((E[TW] + E[TB])/2)], where
E[TW] and E[TB] are averaged across populations and com-
parisons (Slatkin 1991). Taking mutations into account, this
can be expressed in terms of probabilities of identity by de-
scent (IBD) such as FST = (fw� fb)/(1� fb). Here, fb is the prob-
ability of IBD for lineages picked from different populations
and fw is the probability of IBD for lineages picked from the
same population (averaged over the different populations).
For instance, if f1 and f2 are the probabilities of IBD in two
different groups 1 and 2

FST ¼
0:5 f1 þ f2ð Þ � fb

1� fb
: ð1Þ

In this article, we consider FST for models where samples are
drawn from two time points and compare this situation to a
model where the two samples are drawn from different pop-
ulations that diverged at some point in the past (fig. 1).

If the population size N is constant, the probability of IBD
in both the temporal model and the divergence model for
lineages picked from the same population is

f1 ¼ f2 ¼
2Nð Þ�1

2Nð Þ�1
þ 2m

¼
1

1þ y
; ð2Þ

where m is the mutation rate per site per generation and
� = 4Nm. This is simply the probability that two lineages co-
alesce before a mutation occurs (2m is the mutation rate in
the two lineages [ignoring m2 terms] and (2N)�1 is the coa-
lescence rate). As for the probability of IBD between popula-
tions, in the divergence model (fig. 1A) it is

fb ¼ ð1� mÞt1ð1� mÞt2
2Nð Þ�1

2Nð Þ�1
þ 2m

&
expð�yðT1 þ T2Þ=2Þ

1þ y
;

ð3Þ

where T1 = t1/2N and T2 = t2/2N and t1 and t2 are the times (in
generations) to the split of the two populations. This expres-
sion is derived from considering that neither lineage can have
a mutation before they reach the ancestral population, and
once in the ancestral population, they must coalesce before a
mutation occurs (as above). Applying the same argument for
the temporal model (fig. 1C), two lineages sampled t gener-
ations apart will be IBD if there is no mutation in the younger
lineage during t generations and, once in the ancestral pop-
ulation, the two lineages coalesce before any of them mutate.
Hence,

fb ¼ ð1� mÞt
2Nð Þ�1

2Nð Þ�1
þ 2m

&
expð�yT=2Þ

1þ y
; ð4Þ

where T = t/2N. If T = T1 + T2 then FST in the temporal and
divergence model is the same and

FST ¼ 1�
y

yþ 1� exp �yT=2ð Þ
: ð5Þ

A B C

FIG. 1. Additivity of genetic drift can result in equivalent genetic differ-
entiation (FST) under temporal structure and population divergence. (A
and B) Thirty individuals are sampled from two populations (15 individ-
uals from each population) that diverged at a given time in the past. In
(A), both samples are taken at the present, and in (B), one of the samples
is taken at 0.5� 2Ne generations before present and the other sample is
taken at present. (C) Thirty individuals are sampled from two discrete
time points (15 individuals from each time point) in the history of a
continuous population. In all three scenarios, the total time that passes
between each sample is T = 2Ne generations. The 15 individuals in each
sample are illustrated as a series of red circles or a series of blue circles.
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Note that this extends naturally also for models with
both divergence and temporal samples, such as the model
in figure 1B. However, this simple relationship between
temporal structure and divergence models only holds
when the population size is constant. When the population
size is not constant, FST in the temporal and divergence
models is expected to be equal only under very specific con-
ditions (see supplementary fig. S1, Supplementary Material
online).

Nei’s Estimator of Divergence Time between
Populations

Based on a result from Nei (1973), it is commonly stated that
expected FST in a divergence model with constant size equals
1�e�T/2 (letting T denote the total time in coalescent units
that separates two populations as above). This result was
derived under a very specific model assumption—namely
that all polymorphisms were present in the ancestral popu-
lation. Furthermore, this only applies when sampling times
are equal, because for a temporal model where polymor-
phisms were present in the ancestral population, we find
instead that FST = (1�e�T)/2 (supplementary material,
Supplementary Material online). Curiously, simulations high-
light the generality with which FST responds to genetic drift
under constant-size scenarios, because Nei’s case with ascer-
tainment of polymorphic loci in the ancestral population of
the divergence model (FST = 1�e�T/2) corresponds to the
temporal case if ascertainment of polymorphisms is per-
formed at the midpoint between the two temporal
samples (fig. 2). Likewise, the expectation when polymor-
phisms are ascertained in the ancestral population of the
temporal model (FST = (1�e�T)/2) corresponds to ascertain-
ing in one of the two populations of the divergence model
(fig. 2).

FST and the Combined Effect of Migration and
Temporal Structure

We study the effect of migration by considering a simple
island/stepping-stone model with two populations/demes
of equal size N and a symmetric migration rate, m, between
them and with the two populations being sampled t gener-
ations apart. In this case, FST can be shown to be

FST ¼ 1�
2y

2yþ 1� expð�yT=2Þ

þ
y

yþ 4M
½1þ expð�ðyþ 4MÞT=2Þ�

8<
:

9=
;;

ð6Þ

where � = 4Nm, M = 2Nm, and T = t/2N (see supplementary
material, Supplementary Material online). As M increases, this
expression converges to the formula for FST in a pure tempo-
ral model with a population of constant but twice as large
effective population size (so that the scaled mutation rate is
larger by a factor 2, whereas the scaled time is half as large,
compare to eq. 5 above). Intuitively, increasing the migration
rate lowers FST, whereas an increase in time between the
sampled time points increases FST (fig. 3). Importantly, for a
fixed value of FST (and �), there is no definite solution in terms
of M because this will depend on T, so that FST is not a direct
measure of migration rate under this model unless T is known
(which requires that N and t are known). This is similar to the
difficulty associated with differentiating between population
split time and migration in spatial divergence models (Nielsen
and Wakeley 2001).

Results
The simple theoretical models considered above indicate that
both temporal structure and spatial structure affect FST in a
rather similar manner but that their effects are sufficiently
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FIG. 2. Dependence of FST in temporal and divergence models conditioning on the allele being polymorphic. (A) FST as a function of T, the total time
that separates two populations (two times the population divergence time) or the time that separates two samples in model of samples taken at two
different time points. The gray line shows the function FST = 1�e�T/2 (Nei 1973). (B) The models used for simulating population-genetic data and
computing FST. The split model illustrates a population split T/2 time units in the past and the temporal model that illustrates a single population (of
constant size) from which samples have been taken at two time points. Arrows point to where, in time, sites have been ascertained for variation (see
main text for a full description of the procedure).
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different to prompt caution in interpretations of FST, in par-
ticular for cases where temporal samples are involved. To
investigate more complex scenarios of continuous sampling
over time, we now turn to a simulation-based approach.

Stepping-Stone Migration Model with Temporal
Samples

In contrast to isolation models, stepping-stone migration
models—where populations (demes) are connected in one-
or two-dimensional landscapes—typically result in continu-
ous differentiation between individuals rather than discrete
genetic clusters of individuals (Novembre and Stephens 2008;
Engelhardt and Stephens 2010). Given that temporal genetic
structure also affects expected coalescence times between
lineages, it can be expected that temporal differentiation
would display similar behavior. To demonstrate this phenom-
enon, we designed a temporal simulation algorithm (see
Materials and Methods) based on Hudson’s “ms” coalescence
simulation software (Hudson 2002) and simulated a model
with 100 demes in a two-dimensional habitat (10� 10 lattice)
with stepping-stone migration. We used 4Nem = 2, where m is
the fraction of each subpopulation made up of new migrants
each generation (note that scaling in ms is slightly different to
the theory above) and sampled one haploid individual from
each deme at ten time points separated by t = 4Ne genera-
tions, creating a three-dimensional model comprising the two

spatial dimensions and the temporal dimension (fig. 4A).
Because of the increased complexity of the data, pairwise
comparisons such as FST are poorly suited to analyze the
results. Instead, we used principal component analysis
(PCA) to summarize and visualize the resulting population-
genetic data (see Materials and Methods). PCA and FST have
strong conceptual connections, with principal components
(PCs) being closely related to the average coalescent times
between pairs of haploid genomes (McVean 2009). We find
that the first three PCs mirror the three dimensions of the
model (three-dimensional Procrustes correlation: 0.984,
P< 10�5) (fig. 4B). Specifically, PC1 and PC2 represented iso-
lation-by-distance in the two-dimensional habitat, whereas
PC3 represented temporal differentiation (supplementary
fig. S2, Supplementary Material online), but this order of
PCs will depend on the relative magnitudes of the scaled
migration rate and genetic drift between time points
(McVean 2009).

Temporal Genetic Differentiation Can Be Informative
about Complex Population Histories

As illustrated in figure 1C, genetic differentiation can also
occur in the absence of any spatial structure, that is, in sam-
ples taken at different time points from a single continuous
(unstructured) population. To investigate temporal differen-
tiation more closely, we simulated a single continuous pop-
ulation with an effective population size of 5,000 diploid
individuals and a generation time of 25 years, sampling 20
diploid individuals from the present, and an additional 20
diploid individuals evenly distributed over the period 500–
10,000 years ago with a 500-year interval between each sam-
pled individual (fig. 5A). In a PCA, we see that PC1 captures
the temporal genetic differentiation, separating the samples
from the most recent to the most ancient as a monotonic
(but not linear) cline, where individuals close in time are also
more genetically similar (fig. 5D and supplementary fig. S3,
Supplementary Material online). To investigate the effect of
population size fluctuations (i.e., fluctuations in the magni-
tude of genetic drift), we reduced the population to a tenth of
its original size between 5,000 and 5,500 years before present.
Under this sampling scheme, the bottleneck is easily detected
as a discontinuation in the monotonic cline (fig. 5B and E and
supplementary fig. S3, Supplementary Material online).

We also simulated population-genetic data under a diver-
gence model of two populations that diverged 10,000 years
ago (fig. 5C). Ten ancient individuals were sampled at different
time points between 10,000 and 5,500 years from one popu-
lation, and 30 individuals were sampled from the other pop-
ulation, between 5,000 years ago and the present (ten ancient
individuals spread out in time and 20 present-day individuals).
This simulation could correspond to a scenario where the
older population was replaced with new colonizers from an-
other population. In the simulated data, individuals sampled
before the replacement event show a trajectory along PC1
through time that is angled away from the individuals in the
population that replaced the previous population (fig. 5F and
supplementary fig. S3, Supplementary Material online). In
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tion rate. The X axis shows the separation in (scaled) time between the
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contrast, in the bottleneck scenario, the sampled individuals
from before the bottleneck event show a trajectory along PC1
as a function of time that is angled toward the individuals in
the descendant population (fig. 5E and supplementary fig. S3,
Supplementary Material online). However, FST between the
ancient individuals from before and after the event was in-
distinguishable under the bottleneck model and the replace-
ment model (0.0154� 0.0003 and 0.0153� 0.0003,
respectively; fig. 6). To complement the PCA approach, we

reconstructed maximum-likelihood trees (supplementary fig.
S4, Supplementary Material online) using the covariance in
allele frequencies between individuals (Pickrell and Pritchard
2012) and other pairwise FST comparisons (fig. 6). This analysis
gave different results depending on the way the samples were
obtained. The two scenarios were (again) indistinguishable if
the samples were grouped into three separate temporal sam-
ples. In contrast, if the full temporal structure was accounted
for so that each sample was treated independently, the

A B C

D E F

FIG. 5. Temporal sampling distinguishes genetic drift from population structure. (A) Constant population size model. (B) Bottleneck model. (C)
Replacement model. (D) PC1 stratified by sample time under the constant population size model. (E) PC1 stratified by sample time under the
bottleneck model. (F) PC1 stratified by sample time under the replacement model. Each colored circle corresponds to a single-sampled individual
except for the large circles at time zero which corresponds to 20 sampled individuals in A, B, and C (in D, E, and F, the 20 individuals sampled at time zero
end up on top of each other). FST between samples from before and after the bottleneck/replacement events at 5,500 years ago fails to distinguish
between the models (FST = 0.0154� 0.0003 and 0.0153� 0.0003, respectively, see fig. 6).
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maximum-likelihood trees revealed a difference between the
bottleneck model and the replacement model. These obser-
vations illustrates that many inference tools can lead to in-
correct conclusions for temporally sampled data, and they
emphasize the importance of considering detailed temporal
sampling structure for distinguishing between bottleneck and
replacement models. It also illustrates that the considerable
power to distinguish different models that we report is not
directly linked to the use of PCA methods but is mainly due to
the temporal sampling schemes.

Transient Genetic Barriers

To study more complex population models, we simulated a
population split model which involved two populations (A
and B) that diverged 8,000 years ago. We kept the same sim-
ulation parameters and temporal sampling scheme as above
but assigned the 4 ancient individuals from 3,500, 4,500, 5,500,
and 6,500 years ago to population B and the remaining 16
ancient individuals to population A (fig. 7A). Strikingly, the
population split event is readily identifiable when PC1 is strat-
ified by sampling time (fig. 7C and supplementary fig. S3,
Supplementary Material online). In a further modification
of the model, we simulated secondary admixture between
the two populations 3,000 years before present and where
75% of the genetic material of the recent population was
contributed by population A and 25% was contributed by
population B (fig. 7B). A plot of PC1 versus sampling time
shows the two series of individuals represented by samples
from the two populations becoming more similar as time
approaches the time of admixture (fig. 7D and supplementary
fig. S3, Supplementary Material online), suggesting that tran-
sient genetic barriers can be investigated using continuous
temporal genetic data.

Approximate Bayesian Computation Using Temporal
Genetic Differentiation

The observation that some statistics of temporal genetic dif-
ferentiation can recapitulate population history suggests that

those statistics can be used to infer population history in
more formal settings. We used approximate Bayesian com-
putation (Tavare et al. 1997; Pritchard et al. 1999; Beaumont
et al. 2002) to exemplify that temporal genetic data can be
used to infer parameters of a demographic model based solely
on PC1 loadings of sampled individuals as summary statistics.
We applied this approach to a data set consisting of 44
Siberian Woolly Mammoth samples spanning 50,000 years
and genotyped at four microsatellites (Nyström et al. 2012).
The original study used conventional summary statistics and
aggregated temporal groups to show that a population size
reduction during the Holocene transition could explain the
fact that two temporal groups were genetically differentiated.
Here, we expand the inference to a three-parameter model
(fig. 8): The time of change, the effective population size
before the change, and the effective population size after
the change, allowing for either a reduction or expansion in
population size (see Materials and Methods). The estimated
posterior distribution indicates a size reduction at around
11,200 years ago with the effective population size in the
more recent time period being approximately ten times smal-
ler than before the change (table 1 and fig. 8). The inferred
timing of this population size reduction coincides with the
isolation of Wrangel Island from the Siberian mainland
(Vartanyan et al. 1993) and thus corroborates the hypothesis
that this restriction of the habitat triggered a founder event in
the resident mammoth population (Nyström et al. 2010,
2012).

Pitfalls When Comparing Ancient Genomes to
Modern Populations

A common situation is that a single ancient genome is avail-
able from a certain time point, and the goal is to investigate
the historical relationship between the ancient individual and
present-day populations. To investigate the differentiation
between a single ancient genome and more recent popula-
tions, we simulated ten individuals from each of two popu-
lations (A and B) which diverged 20,000 years ago
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FIG. 6. Genetic differentiation between temporal sample groups. (A) FST computed on aggregated sample groups is unable to differentiate the
bottleneck and replacement models. “Moderns”: 20 samples from time 0. “Young”: 10 samples from time 0–5,000 years ago. “Old”: 10 samples
from 5,500 to 10,000 years ago. (B) FST between individuals adjacent in time is able to detect a sudden increase in FST between the pair of individuals that
flank the demographic event (both bottleneck and replacement), but we are unable to separate the replacement and bottleneck scenarios. Standard
errors are not shown but ranged between 0.002 and 0.003. (C) FST between 20 modern individuals and each ancient individual. Standard errors are not
shown but ranged between 0.0010 and 0.0014.

2521

Temporal Population-Genetic Structure . doi:10.1093/molbev/msu192 MBE

maximum 
,
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu192/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu192/-/DC1
vs 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu192/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu192/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu192/-/DC1
using 
Approximate 
Computation 
(ABC) 
; Tavare, etal. 1997
4 
the 
&sim;
10
;
,
; Nystr&ouml;m, etal.
To 
10 


A B

C D

FIG. 8. Approximate Bayesian Computation of Woolly Mammoth demographic history using PC1 loadings as summary statistics. (A) Plot of PC1 versus
the age of the mammoth individuals. (B) Illustration of the three-parameter model of instantaneous size change. (C) Estimated posterior distribution for
the time of size change. (D) Estimated posterior distributions of effective population size before and after the size change. Prior distributions in (C) and
(D) are shown by the gray lines.
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FIG. 7. Temporal sampling can be used to detect transient genetic barriers. (A) Split model. (B) Split-admixture model. (C) PC1 stratified by time for
data simulated under the split model. (D) PC1 stratified by time for data simulated under the split-admixture model. Each colored circle corresponds to
a single sampled individual except for the large circles at time zero, which corresponds to 20 sampled individuals in A and B (in C and D, the 20
individuals sampled at time zero overlap). The 4 ancient individuals from 3,500, 4,500, 5,500, and 6,500 years ago (marked circles) were sampled from
population B (bottom population in the model illustrations) and the remaining ancient 16 individuals were sampled from population A (top population
in the model illustrations).
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(Ne = 10,000) and a single 18,000-year-old individual from the
lineage leading to population B (fig. 9). Using PCA, we found
that PC1 captures the spatial differentiation between popu-
lations A and B, whereas PC2 captures the temporal differen-
tiation between the ancient sample and the modern sample
(fig. 9C). The ancient sample appears closer to population B,
recapitulating the population history. However, when we
modified the model to include a 10-fold population size re-
duction in population B after the time of sampling of the

A B

C D

E F

FIG. 9. Comparing a single ancient genome to modern populations. (A) Population divergence model with constant effective population size. (B)
Population divergence with a 10-fold population size reduction postdating the ancient individual. (C) PCA of 100,000 SNPs simulated under the model
in (A). (D) PCA of 100,000 SNPs simulated under the model in (B). (E) Population topology inferred using C tests and D tests based on 100,000
independent SNPs simulated under the model in (A), and (F) population topology inferred using C tests and D tests based on 100,000 independent
SNPs simulated under the model in (B). Values for the C-statistic are only positive for the correct topology, and absolute values of the D-statistic are
lowest for the correct topology. The tree topologies displayed in (E) and (F) represent the three possible topologies tested and the larger trees represent
the true topology (and also the one supported by the statistics). The gray circles in (E) and (F) represent an outgroup individual constructed from the
ancestral alleles of each simulated locus. For details on these tests, see Materials and Methods.

Table 1. ABC Inference of Northeast Siberian Woolly Mammoth
Demographic History Using PC Loadings as Summary Statistic.

Parameter Prior (Uniform) Posterior
Mode

Posterior
95% CI

Ne before change 200–50,000 23,500 16,900–29,400

Ne after change 200–50,000 1,800 1,000–8,300

Time of change
(years ago)

3,000–40,000 11,200 5,100–23,100

NOTE.—ABC, approximate Bayesian computation. Ne is the effective population size.
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ancient genome (15,000 years ago; fig. 9B), the ancient sample
instead clustered closer to population A (fig. 9D), despite the
fact that the ancient individual was sampled from the popu-
lation that is ancestral to the extant sample from population
B. This pattern is due to the fact that less time (on the coa-
lescent scale) has passed between the ancient sample and the
extant sample from population A, and the genetic differenti-
ation between the ancient individual and the extant sample
from population A (FST = 0.030� 0.001) was also smaller than
the genetic differentiation between the ancient sample and
the extant sample from population B (FST = 0.055� 0.001).
Thus, if the demographic history was unknown, one could
possibly mistakenly conclude that the ancient sample shares a
more recent genetic history with population A, solely due to
the different magnitudes of genetic drift. Indeed, the param-
eter of historical interest is often the degree of shared history,
that is, the amount of shared genetic drift and not the relative
degrees of differentiation. Accordingly, we were able to iden-
tify the correct topology (fig. 9E and F) using concordance
tests (Schlebusch et al. 2012; Skoglund et al. 2012) and D
statistics (Reich et al. 2009; Durand et al. 2011; Patterson
et al. 2012) that are less sensitive to lineage-specific genetic
drift.

Discussion
The main insight that arises from our analyses is that wide
temporal sampling provides information that can be hard to
attain using modern-day data alone or more clustered tem-
poral groups. The importance of wide temporal sampling
could also explain previous results suggesting that not
much statistical power is gained solely by adding one or a
few temporal sample groups (Mourier et al. 2012). Spatial
sampling structure can also have a substantial impact on
inferences of population history using modern-day data
(Serre and Pääbo 2004; Rosenberg et al. 2005; Chikhi et al.
2010; DeGiorgio and Rosenberg 2013) in which case differen-
tiating between the relative contributions of migration and
genetic drift because population divergence is a serious chal-
lenge (Nielsen and Wakeley 2001). In contrast to the many
similarities between spatial and temporal structure that we
have highlighted, the possibility of migration in the different
dimensions represents a fundamental difference, because mi-
gration of lineages is not possible in the temporal dimension
(except in the case of overlapping generations or seed bank
models, see Kaj et al. [2001]), resulting in a more constrained
set of models that may be consistent with a particular pattern
of genetic variation.

One of the enduring challenges in population-genetic anal-
ysis of ancient DNA is whether some observed level of genetic
differentiation between temporal sample groups is the result
of genetic drift (possibly enhanced by a bottleneck) or the
result of a replacement of the older population with new
colonizers from another population (Nordborg 1998). We
show that this question can be addressed by considering
the trajectory of genetic relatedness within a temporal
sample that spans the time of the putative event.
Additional hypotheses about population history that are dif-
ficult to address with genetic data from one or a few time

points but that can be addressed with wide temporal samples
include the timing of bottlenecks and transient genetic bar-
riers. Conventional inference of the timing of population size
reductions usually requires assumptions about mutation rate
and/or recombination rate (Ramakrishnan et al. 2005; Voight
et al. 2005; Li and Durbin 2011; Mourier et al. 2012; Sheehan
et al. 2013). As illustrated, for example, in figure 5E, the use of
continuously distributed temporal data allows accurate iden-
tification of the time of population size reduction that is
robust to assumptions about mutation and recombination
rates. For these reasons, ancient genomic data promise to
advance our understanding of the recent evolutionary history
of many species.

Materials and Methods
To investigate temporal structure under an infinitely many-
sites mutation model and population structure (see also
Excoffier and Foll 2011; Skoglund et al. 2011), we developed
a temporal coalescent simulation algorithm based on
Hudson’s (2002) ms. The idea here is to use the versatility
of ms to simulate a genealogy but use in-house custom code
for the mutation process to accommodate different branch
lengths due to temporal structure. The algorithm proceeded
as follows: For a sample of size L ancient diploid individuals,
we instruct the program ms to create 2L isolated subpopu-
lations and sample a single lineage from each. At the desired
time th of each historical sample, each of the 2L subpopula-
tion is joined (command “-ej”) with the appropriate popula-
tion to which they belong. From the gene tree output of ms
(command “-T”), we subtract th from the external branch of
each ancient sample and add a single mutation on the result-
ing genealogy with probability equal to branch length
(Hudson 1990) using custom code. For example, if there is
one individual to be sampled at time 0.3 and five additional
individuals at time 0.4, two lineages are joined to the popu-
lation at time 0.3 and the remaining ten lineages join the
population at time 0.4. To increase precision, we modified
the source code of ms to produce 12 decimal digits for each
branch in the gene tree output. The custom code is available
upon request. We validated the algorithm by comparison
with COMPASS (Jakobsson 2009), which allows temporal
samples but not from multiple populations. Under the
model in figure 1A, we obtained identical estimates of
FST = 0.337� 0.001 for both algorithms, as well as highly sim-
ilar site frequency spectra (supplementary fig. S5,
Supplementary Material online). For all simulations above,
except the two-dimensional spatial lattice and the Woolly
Mammoth analysis (see below), we simulated 2� 100,000
independent (unlinked) SNPs for each individual and com-
bined pairs of lineages to create a diploid genotype for each
individual. When time is given in years, we assumed a 25-year
generation time, except in the case of the Woolly Mammoth,
where we assumed 15 years as in Nyström et al. (2012).

FST was estimated using equation (5.3) in Weir (1996) with
standard errors estimated using a block jackknife, dropping
blocks of 1,000 loci in turn. PCA was performed using the
prcomp function in R 2.11.1 (R Development Core Team
2010). Except in the case of microsatellites and the three-
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dimensional stepping-stone model with temporal samples,
we used the normalization suggested by Patterson et al.
(2006). For the 44 mammoth individuals in Nyström et al.
(2012) that had no missing data for the four microsatellites,
we considered each unique microsatellite allele to be a sep-
arate marker, which were given a count of 0, 1, or 2 copies in
each individual. Maximum-likelihood trees were inferred
using TreeMix version 1.11 (Pickrell and Pritchard 2012) as-
suming no migration and using a block size of 1,000 SNPs for
estimating standard errors.

To confirm the relationship between temporal structure
and divergence models, we estimated FST between two sam-
ples of 15 diploid individuals each for three simulated demo-
graphic models with a constant effective population size (Ne)
(fig. 1). In the first model (A), both samples were from the
same time point but from two populations that had diverged
T = 0.5 time units into the past (fig. 1A). The second model
(B) assumed that one sample was T = 0.5 time units older
than the other and that the two samples were from different
populations that diverged T = 0.75 time units into the past
(fig. 1B). The third model assumed a single continuous pop-
ulation but with one sample T = 1.0 coalescent time units
(2Ne generations) older than the other (fig. 1C). Most impor-
tantly, in all three models, the total coalescent time that
passes as one follows the history from one sample to the
other is T = 1.0. In all three models, we also estimate FST to
approximately 0.33 (0.337� 0.001 [�1 standard error],
0.334� 0.001, and 0.335� 0.001, respectively).

To simulate microsatellite data, we implemented a step-
wise mutation model with �= 10�3 for COMPASS
(Jakobsson 2009) as in Nyström et al. (2012), where each
mutation event either (with equal probability) adds or sub-
tracts one unit from an arbitrarily chosen starting length
(100). After this simulation, we considered each simulated
(unique) microsatellite allele as its own marker, which was
counted as above, and used that information as input for the
PCA. We used the PC1 loading of each individual as summary
statistic (in total a vector of 44 summary statistics). We sim-
ulated 100,000 replicates from which 0.2% of the replicates
with the smallest Euclidian distance to the empirical PC1
loadings were used to obtain posterior distributions using
local linear regression (Beaumont et al. 2002) after log trans-
formation as implemented in the abc R package (Csillery et al.
2012).

To investigate the population topology inferred from
single individuals, we applied tests that utilize sharing of de-
rived alleles. D-statistics were computed using a strategy of
sampling a single haploid gene copy from each population
(Reich et al. 2009; Durand et al. 2011; Patterson et al. 2012).
We tested all three possible topologies that could be con-
structed using four taxa: Population A, population B, the an-
cient individual, and an outgroup individual (gray symbol in
fig. 9E and F) that was taken to carry the ancestral allele
(which is given in the ms simulations). Specifically, the topol-
ogies tested were (Outgroup, (Ancient, (population A, pop-
ulation B))); (Outgroup, (population A, (Ancient, population
B))); and (Outgroup, (population B, (Ancient, population
A))). For a proposed topology of the form (Outgroup, (J, (Y,

Z))), we denote the count of all observations of a shared
derived allele (“B”) for J and Y that is absent from
Outgroup and Z by “ABBA” (here “B” symbolizes the derived
state and “A” the ancestral state), and the count of all obser-
vations of a shared derived allele for J and Z that is absent
from Outgroup and Y by “BABA.” The D-statistic is given by

D ¼
BABA� ABBA

BABAþ ABBA
; ð7Þ

and a deviation from zero suggest a violation of the proposed
topology. We computed concordance statistics (Schlebusch
et al. 2012; Skoglund et al. 2012) using the same data and
testing the same topologies, but these tests also use the con-
figuration where Z and Y share a derived allele that is absent
from Outgroup and J, which we denote “AABB.” The concor-
dance statistic is given by

C ¼
AABB�maxðABBA; BABAÞ

AABBþmaxðABBA; BABAÞ
; ð8Þ

and positive values of C indicate concordance with the pro-
posed topology.

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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