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Reconstruction of stochastic temporal networks
through diffusive arrival times

Xun Li' & Xiang Li’

Temporal networks have opened a new dimension in defining and quantification of complex
interacting systems. Our ability to identify and reproduce time-resolved interaction patterns
is, however, limited by the restricted access to empirical individual-level data. Here we pro-
pose an inverse modelling method based on first-arrival observations of the diffusion process
taking place on temporal networks. We describe an efficient coordinate-ascent imple-
mentation for inferring stochastic temporal networks that builds in particular but not
exclusively on the null model assumption of mutually independent interaction sequences at
the dyadic level. The results of benchmark tests applied on both synthesized and empirical
network data sets confirm the validity of our algorithm, showing the feasibility of statistically
accurate inference of temporal networks only from moderate-sized samples of diffusion
cascades. Our approach provides an effective and flexible scheme for the temporally aug-
mented inverse problems of network reconstruction and has potential in a broad variety of
applications.

T Adaptive Networks and Control Laboratory, Department of Electronic Engineering, and Research Center of Smart Networks and Systems, School of
Information Science and Engineering, Fudan University, Shanghai 200433, China. Correspondence and requests for materials should be addressed to Xiang Li
(email: lix@fudan.edu.cn).

| 8:15729 | DOI: 10.1038/ncomms15729 | www.nature.com/naturecommunications 1


mailto:lix@fudan.edu.cn
http://www.nature.com/naturecommunications

ARTICLE

he collective functionality of complex networks emerges as

a consequence of the interactions among their constituents.

Recently, it has been empirically observed that, besides the
spatially or topologically structured organization, the temporal
constraints imposed on many complex interacting systems add a
further dimension crucial for understanding their generic
structure and dynamics. Internal links in these so-called temporal
networks! evolve over time and are inherently registered by a
series of rhythmically activated events among interacting actors at
discrete time stamps. The causal sequence of the time-ordered
links strikingly affects accessibility?, an essential and revealing
characteristic, especially in social and communication networks
related to human activities. Such a profound shift from static to
temporally intermittent interactivity properties has expanded,
challenged or even redefined many fundamental concepts of
networks, including path length®*, clustering correlation®*, node
centrality>>, communicability®, structural controllability”, motif®
and community structure’.

Of another interest are the anomalous patterns (for example,
bursts and heavy tails) embedded in the interevent time (IET)
distribution of temporal interactions'®!!, This marked departure of
human activities from Poissonian behaviour substantially alters
the dynamical process that takes place on networks, such as
epidemic spreading!®!4, random walks!>!6, synchronization!”,
cooperative evolution'®, consensus and coordination processes'*2.
Undoubtedly, identifying the temporal interaction pattern is a
first step in understanding and controlling collective dynamics of
empirical temporal networked systems.

The vast majority of generative models for temporal
networks—aimed at reproducing the empirical sequences of the
time-stamped interactions—by and large require a priori knowl-
edge of the raw data, or relevant statistics on the underlying
interaction patterns®!~24, However, strong limitations often arise
regarding the availability of time-resolved interaction data at the
individual level. Apart from increased technological expenditures,
data collection is also hindered by small observation windows or
samples reflecting individual activities only at coarse time
granularity. Some data sets potentially suffer from other
statistical ~deficiencies resulting from, for example, the
participants with highly correlated behaviour from a skewed
population. Another, even more problematic, restriction is
imposed by data observability issues. The specifics of temporal
interactions, particularly in social and financial networks, are in
general obscured due to the privacy concerns of the participants,
making their time-extended network structure unobservable, at
least in principle. Extracting temporal networks from measurable
data at the collective level has hence become a very desirable task.
In viral marketing, for example, mining social networks is of
critical value to identify highly influential customers who directly
affect other consumers’ decision making®>. However, the
interpersonal interactions (word-of-mouth recommendations)
are often rendered private and thus indirectly accessible. In
such circumstances, the recorded product dissemination history
(for example, when customers purchase the products) provides an
observable data source for the social network mining. Other
candidate data applicable to similar inferential tasks include
observed information cascades, such as propagating memes
through blog posts?® and tweets?” on social media.

In this paper, we focus on exploiting such time-of-arrival data
collected from the diffusion process taking place on networks,
partially because diverse temporal interactions serve as the local
propagation mechanisms for material or information exchange
across a population in a variety of realistic scenarios, ranging
from the spread of infectious diseases to the diffusion of cultural
fads and the proliferation of innovative ideas (see, for example, a
recent review?®). We show later on that it is fundamentally
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possible to learn latent networks by discovering both structural
and temporal regularities in diffusion process data.

Here we restrict on reconstructing a class of stochastic temporal
networks (STNs)—which can be generally taken as a null model
preserving temporal statistics for all dyads of interactin:
individuals but ignoring higher-order correlations across them!>.
Specifically, an STN builds, on the basis of a time-aggregated static
network, an extra temporal dimension by assigning to each link a
mutually independent random IET, denoting the interval of
activation of the events occurring on the link in a renewal
manner?’. This simplification was at first made for analytical
convenience!®, and a number of exact methods have in
recent years been developed for quantifying diffusion dynamics
of complex networked systems when temporal characteristics of
pairwise interactions are incorporated'®*83%31  Compared to
purely phenomenological (for example, regression-based)
models®>=34, the STN is endowed with better predictive power in
both theoretical and applied domains (see Supplementary Note 1
for a brief review on the related literature). Towards an effective
null modelling procedure for temporal networks in a data-driven
fashion, we conceive the STN model as a convenient descriptive
device for explaining time-course data of observed diffusion
processes thereon, and we carry out extensive benchmark tests on a
variety of simulated and empirical temporal networks to validate
the reconstruction efficacy of our approach. We further discuss the
inferential complexity of temporal networks in terms of entropy of
underlying diffusion pathways from an information-theoretic
viewpoint.

Results

Overall sketch of the reconstruction method. The null model-
ling method for temporal networks we develop is to some extent
intuitive and pragmatic. As sketched in Fig. 1, the topological
structure of underlying temporal networks can be directly
recovered using the superposed spreading paths encoded in the
observable arrival order in the diffusion processes. On the other
hand, the statistical temporal properties of dyadic interactions can
be also exacted from the time differences of arrivals in time
courses of diffusion, an incomplete observation of waiting times
associated with possible diffusion routes. We show that in both
cases, a soft (namely, probabilistic) censoring indicator whether a
link lies in actual diffusion routes, called branching coefficient,
plays a pivotal role in our inferential framework. In the following,
we first introduce the forward model for information diffusion on
temporal networks, and describe the construction of first-order
STNs by decorrelating the dyadic interaction sequences of an
empirical network. We then derive the likelihood of observing a
specific diffusion cascade as well as the corresponding branching
coefficients. Based on them, we exhibit a coordinate-ascent
scheme which alternates between estimating the latent time-
aggregated network by Markov chain Monte Carlo (MCMC)
techniques and determining the dyad-level WTDs from self-
consistency conditions. Additional details on mathematical
proofs, performance assessments of algorithms, empirical vali-
dation results, as well as further discussions are deferred in
Supplementary Notes 2-12.

Forward generative model. We first introduce the forward model
used to describe data-generating processes. The temporal network
N = (V,E) on which diffusion takes place is represented in
terms of a set of nodes ve )V as well as a set of events
(u,v,t,0t) € € observed within a time window [0, T"]. Each
event is depicted by a temporal link from node u to node v
activated during a time interval [¢t, t4 6t). Here, we assume for
simplicity that the duration of events is infinitesimally small
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Figure 1| Schematic representation of our inferential framework. (a) The STN tuple N5 = (G, p) to be inferred which confines the underlying diffusion
process, both spatially and temporally. Specifically, a diffusion cascade originated by any source node (red circle) can only proceed on the time-aggregated
graph G, and relay delay of diffusion along any network link (green arrow) is a random variable 7 (called waiting time) with the corresponding distribution
denoted by WTD p(1). (b) A simulated diffusion cascade using our generative model with realized waiting times attached to network links. Here, DAT data
D = [t,],c, are obtained from first-arrival observations of the diffusion cascade, with each entry t, equal to the length of the shortest diffusion path (blue
dashed arrow) connecting nodes s* and v. The dashed arrows highlight that the waiting times are unobservable in our problem settings. (¢) An illustrative
result of topology inference using multiple diffusion cascades. Intuitively, the network topology G can be recovered by uniting the realized (or inferred)
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diffusion paths, G «— U,; T; G — U,.C:1 ’17) Here, T; denotes the underlying diffusion tree associated with the observed cascade, which is inferable from
diffusion data as a spanning tree 7 with maximum link weights f3,, (called branching coefficient, see definition below). (d) Kernel density estimation for
WTD p(1) using D = [t,] as incomplete observations of underlying waiting times. For brevity, we adopt Dirac delta kernel function Kj,(t) = d(z). The sector
located at each node v represents its associated branching coefficients, each f,, defining the probability that an upstream neighbouring node u € Z,
spreads the information to node v in a specific cascade. Thus the self-consistent estimator p(t) simply sums over all observed cascades (only one is shown
here) Dirac deltas of amplitude f,, placed at the TDOAs, d,, =t, — t,, as well as p(z) itself truncated above d,, and then renormalized to f,, = 1— f,,. The
first term corresponds to the contribution from link (u,v) as a diffusion branch leading to the tight constraint 7,, =d,, with probability f,,, and the second
from link (u,v) as a chord having the censored waiting time 7., > d,, with the complementary probability f5,,. (e) The coordinate-ascent implementation of
our inferential method. The overall procedure is initialized with a first guess p, for the WTD, and alternates until convergence between the topology
inference and density estimation steps using observed diffusion data and the most recent estimates. Additional algorithmic details can be found in
Supplementary Note 7.

(0t—0) in order to avoid several links to be present simulta-
neously. Accordingly, the STN model N built on N consists of
two key ingredients. First, we obtain the time-aggregated graph G
by projecting the temporal events (u,v,t) € £ onto topological
links (u,v) € G, each having as its pre-image a list of events,
{(u,v,tl,), (u,v,22)), ...}, in order of their activation times.
Second, to generate statistically accurate temporal links, we sub-
stitute random sequences of synthesized events with IETs drawn

iid. from the probability density function v, (¢) fitted on the
empirical data {t.7! —# } for each link separately. It is note-
worthy here that the STN model defines ensembles of random
temporal networks with the realistic IET distributions at the
dyadic level, while being simplified by the automatic elimination
of inter-link correlations.

Consider now a node s* € V introduced as the information

source that initializes the diffusion process on A/, during which
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each node has one of two mutually exclusive states: (i) informed,
if it has already received the information through any incident
link; or (ii) ignorant, if it has not been informed so far. In a
broadcast manner, the information is transmitted along any time-
respecting path which consists of consecutive events of increasing
times [that is, {(s*,v1,t1),(vi,v2,82), ..., (vi—1,vi, 1))} C &
with #; < ... <t]. The diffusive arrival time (DAT) at node v is
defined as the instant at which node v enters the informed state,
and the path through which the information arrives first is
termed the fastest time-respecting path (FIP). Here, we assume
without loss of generality that #,< oo for any node v € V; in other
words, the underlying network is connected and contains at least
one time-respecting path between any source and receiver pair.

Likelihood functional for the observed cascade. We next cal-
culate the likelihood of observing a single diffusion cascade of
DATs D = [t,],, attempting to search the STN model N that
fits to the diffusion data. To this end, it is conventional to
introduce the concept of the waiting time t,, occurring on each
link (u,v) € G. It is defined as the relay interval for which node u
has to wait since it becomes informed until it activates a next link
incident to node v for transmitting the information. In the case of
uncorrelated IETS, 1, is randomly drawn according to a length-
biased probability law which takes the form3?

/ Y (£)dO (1), (1)

where m,, = [" ty,,(t)dt is the mean of the IET distribution
W,,(t), and ©O(-) is the Heaviside unit-step function. Denote
P = [uy(T)](u)eq bY the set of such WTDs assigned to respective
links of G, and the STN model is thus also fully described by
N = (G, p), as illustrated in Fig. la. Hence the likelihood of
observing a given cascade D considers all possible FTPs weighted
by their conditional probabilities of occurrence and is written

puv -

L(DIN) =Y LD, T|N,)
TcCg
- Z H puv H / puv(t)dfv (2)
T CG (uv)eT (u,v)%’]' dyy

where L(D,T|N) is the likelihood that the cascade D is
observed along a set 7 of underlying FTPs, and d,, = t, — t,
represents the time differences of arrival between nodes u and v.
Here 7 denotes any possible union of FTPs from source s* to
respective other nodes compatible with the diffusion cascade D.
Note that 7 constitutes an acyclic directed subgraph of G with
likelihood 1— O(ot), and ideally, we call 7 an (s*-rooted)
diffusion tree. Obviously, the condition of 7 coinciding with
actual diffusion pathways requires each branch (u,v) € 7 to
produce an exact waiting time, 7, = d,,, as well as each chord
(u,v)¢ T to produce instead a right-censored (namely, bounded
from below) waiting time, 7,, >d,,, in order to guarantee the
minimum-time optimality of the diffusion that occurs along 7, as
shown in Fig. 1b. After some algebra (see Supplementary Note 2
for details), we have the following logarithmic likelihood

functional:
((DIN)
= Y log Y uwl(dw)+ Y log®u(dw), (3)
veV\ s (u,v)eG (u,v)eg
where @y, (7) = [ p,,(t)dt and Ay (1) = p,,, (1) /Py (1) are the
survival and hazard functlons of WTDs®, respectively.

Route-specific branching coefficient. We are now in the position
to introduce the branching coefficient S,,(D,N;), the
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conditional probability of link (u,v) acting as a diffusion branch
(that is, u is the first to inform v) given a specific cascade D on
STN Ns. By uncorrelated properties of dyadic network interac-
tions, it is simply given by

Ay (duy)
Ao ()™

(w,v)eG

Bu(D,N) = (4)

Equation (4) has a clear 1nterpretat10n in terms of superposition
of inhomogeneous point processes®”. The simultaneous exposure
of v to any informed neighbour u constitutes a set of competing
risk events, leading to a cumulative hazard rate A,(t) =
Z(W)Eg Juy(t —1t,) at which diffusion will occur at time ¢. Thus
equation (4) immediately follows from Superposition Theorem by
equating t to the realized value of v’s DAT, t,. More detailed
derivation of f,,(D, Ns) is presented in Supplementary Note 2.

Note that to recover the underlying STN A/ requires observation
of multiple diffusion cascades triggered from different regions of the
network. Suppose we collect a sample of independent cascades D =

{D'} and aim at finding the optimal tuple Ny = (G, p) as the
maximizer of the following log-likelihood

c

i1

where C denotes the number of observed diffusion cascades.

To be concrete, we resort to an iterative coordinate-ascent
strategy to search G and p alternately. In what follows we specify
the two steps outlined above and present numerical results
obtained by applying to a variety of benchmark STNs and
empirical temporal networks.

Time-aggregated topology inference. This step takes as input
observed DATs D as well as WTDs p that are known or esti-
mated. However, finding the maximum likelihood (ML) time-
aggregated graph G(D, p) belongs to a wide class of submodular
function optimization problems, which is in general computa-
tionally hard (see Supplementary Note 3).

Alternatively, rather than picking out a single ML estimate, we
apply MCMC to integrate over all possible configurations G using
weights proportional to the1r likelihood values L(D|G, p). Here
we employ a Gibbs sampler®® which starts from an initial graph

and iteratively flips any link, say (u,v), with acceptance
probability p,, = [1+exp(—Aul(D|G,p))]”  one by one,
where A,,¢(D|G, p) represents the marginal gain of the link
flipping operation, that is,

UDIGUwY.p) —D|G.p) (V)G
(DIG\wv,p) ~(D|G.p) (u,v) €G.

C .
Z{log[l + ﬁuv(D g p)} + logq)uv(diw)}a

7 (6)

where S, (T, G, p) are the branching coefficients defined in
equation (4) using the current configuration G. Here we adopt the
shorthand notation GUuv (G\ uv) for the network obtained by
adding (removing) link (u,v) from G. As schematically shown in
Fig. 1c, the proposed procedure is inclined to sample links with
large aggregate branching coefficients. This is roughly equivalent
to reconstruction of the network topology using as building
blocks the diffusion trees inferred from independent cascades
(see Supplementary Note 2 for discussion on the role of
branching coefficients in our inferential scheme).

Next we quantify the performance of our inference procedure.
In view of the structural sparsity of many real-world networked
systems, we preferably select a measurement index, called break-

sutiG.p) = {!
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even point (BEP), which strikes the optimal balance between
precision and recall on true-positive links, as illustrated in Fig. 2.
To test our approach, we carry out extensive numerical
simulations for various types of benchmark time-aggregated
networks and WTDs. We evaluate the attained BEP, as well as
two other standard indices, the area under the receiver operating
characteristic curve and the area under the precision-recall curve
(AUPR) (see Supplementary Note 4). Because high inference
accuracy can always be achieved, we report in Table 1 the
minimum sample size for assuring at least 0.95 area under the
receiver operating characteristic, area under the precision-recall
curve and BEP, respectively, showing that universal high
inference accuracy can be achieved from only a moderate sample
size of diffusion observations. More detailed descriptions and
complete results of benchmark tests for our inference algorithm
can be found in Supplementary Table 5.

Waiting-time distribution estimation. This step takes as input
observed DATs D as well as an underlying time-aggregated net-
work G. To implement nonparametric estimation of WTD
p(D, G), the major difficulty stems from the indeterminacy of the
diffusion trees and the censored nature of waiting times occurring
on chord links during the diffusion cascades. Here, we adopt the
‘Redistribute-to-the-Right' formulation®® as an imputation
scheme to tackle this censored data problem, by which we
obtain the following self-consistent equations for estimating the
WTDs:

ﬁuv(Div g, I})Kh(f - d;v)

+ [l - ﬂuv(Di= g7 ﬁ)] 4

R

Q=

Puy(7) =

i=1

(7)

where Kj(+) is a kernel smoother with bandwidth s, ®(-) is the
Heaviside unit-step function, and ® denotes the convolution

operator. The first term in the braces corresponds to the
probability of link (u,v) acting as a diffusion branch, and the
second term corresponds to that of link (u,v) acting as a chord
which contributes a truncated WTD of pk (1) above d’, as
shown in Fig. 1d. Particularly, in the case of an underlying tree 7,
P () reduces to standard kernel density estimation’’ as
c! ZIC:1 Ku(t—d',). In the most general case of an arbitrary
network G, the consistency of the WTID estimator p(D,G) is in
essence guaranteed by our choice of weights [, (D', G, p)] in soft
assignments of respective links to diffusion branches in an
expectation-maximization manner*!. We numerically verify the
consistency of the estimator for non-identically distributed
WTDs attached to a small-size network, as illustrated in Fig. 3.
A rigorous proof is presented in Supplementary Note 5.

When only limited amount of diffusion data are available for
inference, the reconstruction accuracy undergoes a phase
transition as the sample increases (see Supplementary Fig. 6).
Hence we explore the minimum relative sample size for
simultaneously successfully reconstructing both underlying net-
works and associated WTDs only from observed diffusion
cascades, as displayed in Table 1. Somewhat surprisingly, the
same reconstruction accuracy can generally be achieved using
even less diffusion cascades in a considerable fraction of
benchmark tests, comparing to the case where the underlying
WTDs are explicitly known. This counter-intuition can be in part
explained by the fact that our self-consistent WTD estimator
provides an adaptive mechanism for the fitting of observed
diffusion data. Specifically, through the process of inference, the
estimator acquires subtle features of the empirical WID p in
accordance with the particular realizations of waiting times, and
hence outperforms the result given the true WTD p which, even if
observed data truly follow it, differs more or less from p,
especially when the sample size is small. We design a parametric
bootstrap procedure to provide confidence bands to assess the
variability in the estimated WTDs. Detailed implementation
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Figure 2 | Break-even point of topology inference using diffusion cascades. (a-e) The time-aggregated graph configuration with BEP optimality is
attained by equating the number of false-positive links (red solid lines) to the number of false-negative links (black dashed lines) in estimated
configurations. Percentages in parentheses correspond to the estimated BEPs. (f) Real and estimated PR curves with respect to increasing sample sizes of
C=5,10,15,20,25,30,40, respectively. The BEPs correspond to intersections of the PR curves with the diagonal of the unit square (dotted line). The time-
aggregated network G is an Erdos-Rényi random graph of size N=100 and average degree (k) = 6, and the real WTD is Gaussian of mean p=2 and
variance ¢ = 0.42, which is assumed here to be explicit for topology inference.
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Table 1 | Summary of critical relative sample sizes for STN reconstruction.
Networks N L Gaussian Weibull Pareto
Lattice 2D 100 180 0.03/0.07 0.03/0.08 0.04/0.08
0.08/0.10 0.12/0.10 0.11/0.m
Sierpinski 123 243 0.04/0.09 0.02/0.07 0.02/0.05
0.11/0Mm 0.10/0.07 0.08/0.07
Pseudofractal 123 243 0.10/0.23 0.20/0.36 0.11/0.20
0.48/0.24 0.58/0.59 0.27/0.38
Apollonian 124 366 0.13/0.29 0.24/0.49 0.18/0.33
0.63/0.31 0.67/0.82 0.45/0.54
Random graph 100 291 0.08/0.14 0.16/0.29 0.16/0.26
0.20/0.20 0.40/0.42 0.31/0.39
Small-world 100 300 0.05/0.10 0.08/0.19 0.10/0.18
0.18/0.14 0.33/0.25 0.28/0.24
Scale-free 100 291 0.08/0.17 0.20/0.34 0.17/0.29
0.24/0.24 0.49/0.49 0.35/0.45
Karate 34 78 0.15/0.30 0.31/0.66 0.30/0.47
0.55/0.24 1.06/0.76 0.72/0.72
Dolphins 62 159 0.07/0.17 0.10/0.42 0.12/0.27
0.36/0.15 0.55/0.40 0.43/0.31
Miserables 77 254 0.10/0.38 0.17/0.42 0.13/0.30
0.73/0.24 1.18/0.58 0.55/0.39
Football 15 613 0.08/0.17 0.15/0.39 0.13/0.30
0.27/0.20 0.73/0.51 0.46/0.40
Jazz 198 2,742 0.13/0.38 0.32/1.41 0.19/0.56
0.81/0.31 —/1.09 112/0.62
We apply our method to a variety of time-aggregated networks in combination with three types of benchmark WTDs, Gaussian, Weibull and Pareto distributions, to determine numerically the minimal
relative sample size required for different reconstruction goals. More precisely, the (1,1,)th-entry of each cell represents the critical value for assuring at least 0.95 AUROC, the (1,2)th-entry for 0.95
AUPR, the (2,1)th-entry for 0.95 BEP and the (2,2)th-entry (in blue) for simultaneous reconstruction of both underlying networks and WTDs, respectively. Here, N is network size, L is link number and
relative sample size C/N denotes the number of observed cascades relative to network size. Each critical relative sample size is an average over ten independent realizations and is obtained under the
homogeneous population assumption, that is, all the STN links produce i.i.d. waiting times.

and illustrative numerical results are present in Supplementary
Note 7.

We also apply our method to several realistic temporal
networks to test its validity under more practical situations.
Relative empirical validation results are reported in Table 2.
Keeping in mind the gap between our STN model from reality, we
introduce three statistical measures to quantify the deviation of
empirical data sets from the null model assumption of ii.d.
distributed WTDs: distributional standard deviation, Pearson
correlation coefficient and normalized mutual information. On
one hand, we find that the WIDs underlying these real-world
temporal networks have relatively small distributional standard
deviation, which partially justifies our null model assumption.
This considerable homogeneity in temporal interactivity of
individuals can be interpreted by the typical distribution of
human response time which is shown to be heavy-tailed with
power exponent between 1 and 2. On the other hand, large
Pearson correlation coefficient or normalized mutual information
of empirical WTDs implies the salience of inter-link correlations,
either (negatively) linear or non-linear, in many realistic temporal
networks. This leads to substantially decreased reconstruction
accuracy (see BEP; and BEP, in Table 2), suggesting correction of
the self-consistent relation of WTDs to incorporate such polyadic
correlations (see Supplementary Note 9 for discussion on the
extended higher-order STN models). In addition to the
discrepancy between empirical temporal networks and our STN
model, another bottleneck causing the reduced BEP; comes from
the iterative coordinate-ascent procedure. The reconstruction
accuracy often collapses due to the positive feedback loop
between topology inference and density estimation steps that
amplifies the estimation error caused by the unrealistic null
model assumptions. We further compare the reconstruction
results using empirical WTDs as prior input to break such
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unexpected feedback loops, showing an acceptable efficacy of our
topology inference method even when applied to realistic
temporal networks (see BEP; and BEP, in Table 2). We also
find that the reconstruction of G can be sensibly improved given
correct prior WTD p, and on the contrary, the estimation density
for p does not benefit from the addition of topological knowledge
G (see Supplementary Figs 20-21). A possible reason lies in the
extremely large supports of heavy-tailed WTDs, in which case our
equidistant binning-based WTD estimator has a large number of
parameters to be estimated from self-consistent iterations and
hence demonstrates poor convergence properties (see
Supplementary Note 10 for further discussion on the effect of
binning and the Fourier-domain density estimation).

Inferential complexity of temporal networks. Numerical results
of our benchmark tests reveal a complicated picture of how
structural and temporal properties of the underlying network
synergically affect the critical amount of diffusion data needed to
attain a given reconstruction accuracy. To more comprehensively
quantify the inferential complexity of diffusion structure embo-
died in temporal networks, we introduce a single entropic mea-
sure as follows:

ED,N) = = D Bu(D,Nlogh,(D,NY).  (8)
(u,v)€G

Note that £(D, N) reflects the entropy of possible diffusion trees
associated with a given cascade D on N, thus extending the
concept of network complexity which counts the (logarithmic)
number of spanning trees contained in a static graph?2.
Additional details on the derivation of equation (8) and related
discussion are presented in Supplementary Note 11.
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Figure 3 | Asymptotic consistency of the iterative WTD estimator. (a-h) Numerical verification is illustrated through large samples of diffusion cascades
synthesized on a small-size network, with several benchmark WTDs (black lines) assigned to departure links of respective nodes. The iteratively estimated
WTDs (gradient-coloured lines) ultimately converge to the correct distributions. (i) The illustrative network consisting of N=8 nodes and L =16 (double-
directed) links. The sample size of diffusion cascades used for the WTD estimation is C =10%, the kernel bandwidth is chosen as h=10 3, and the a priori

guess iJO as exponentials of mean u=1 (see Supplementary Note 6 for practical selection criteria of both [70 and h).

Table 2 | Empirical validation results using realistic temporal network data.

Data sets N L DSD PCC NMI BEP, BEP, BEP; BEP,
Hospital 75 32,424 0.076 0.021 0.516 0.25 0.98 0.70 0.76
Workplace 92 9,827 0.161 ~0.194 0.646 0.27 1.00 0.72 0.74
HTO9 13 20,818 0.109 0234 0.441 0.20 0.96 0.63 071

Primary 242 125,773 0.086 —0.280 0.164 0.36 0.97 0.76 0.80
High20T1 126 28,561 0175 —0.443 0.402 0.32 0.99 0.87 0.88
High2012 180 45,047 0m3 ~0.206 0.487 0.33 1.00 0.88 0.88
High2013 327 188,508 0.090 ~0320 0.278 0.32 1.00 0.97 0.97

Here, N is network size, L is the number of temporal links, DSD, PCC and NMI denote the distributional s. d., Pearson correlation coefficient and normalized mutual information of empirical WTDs fitted to
the data of empirical contact sequences, respectively (see Supplementary Note 8 for definitions). The inferential accuracies compared are the optimal precisions attained at break-even points of topology
reconstruction using (BEP;) empirical cascades realized on realistic temporal networks, (BEP,) synthesized cascades on the STN model fitted to realistic temporal networks, (BEP3) empirical cascades
and empirical WTDs, and (BEP,) synthesized cascades and empirical WTDs, respectively (see Supplementary Table 4 for detailed experimental settings). The relative sample size used for inference is
set to C/N=1. Relevant receiver operating characteristic and precision-recall curves for topology inference, as well as density estimation results for WTDs can be found in Supplementary Figs 20-21.

Next we examine the inferential complexity of diffusion structure
in various types of benchmark WTDs, finding a natural positive
correlation between the intrinsic complexity of the underlying
diffusion processes and the critical relative sample size for
reconstruction goals, as shown in Fig. 4. A more systematic analysis
requires parametric generation of network ensembles that are
tunable from both structural or temporal aspects to decouple the
underlying influences. Here we first focus on three important
structural properties of time-aggregated networks: clustering
coefficient, average path length and connectivity heterogeneity.
Numerical results show a nonlinear dependence of network
complexity on the topological indices. Particularly in the practically
relevant regime of salient small-world effects (characterized by large
clustering coefficient and small average path length), the inferential

complexity is positively (negatively) correlated with clustering
coefficient (average path length) of the time-aggregated network.
For most specific distributional shapes used as our benchmark
WTDs, the heterogeneity in degree distribution also increases the
inferential complexity of networks. Intuitively, diffusion on small-
world and/or highly heterogeneous networks is inclined to produce,
due to frequent occurrences of competing-risk censoring, indis-
cernible ‘downstream’ DATs that are close to each other, thus
complicating the task of network reconstruction. We further
examine the roles of the first three (normalized central) moments
of WTDs, finding that the inferential complexity is positively
(negatively) correlated with variance and skewness (mean, or lower
bound of the support) of underlying WTDs. Detailed numerical
results can be found in Supplementary Figs 24-30.
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Figure 4 | Inferential complexity of benchmark STNs. (a-d) Scatter plot of relative inferential complexity [= N~"(&(D,N))p] versus critical relative
sample size for ensuring at least 0.95 AUROC, AUPR and BEP, respectively, as well as that for simultaneously recovering both the underlying networks and
WTDs. Here, the angular brackets (-), denote the average over ensembles of diffusion cascades. Each point represents an average over at least ten
independent realizations with respect to a specific combination from benchmark networks and WTDs, and the critical values of respective relative sample
sizes are listed in Supplementary Table 5. Numerical results show that there is positive correlation between the inferential complexity and the critical
relative sample size for achieving network reconstruction at a given accuracy, implying that the more complex (or indeterminate) the underlying diffusion

structure, the more difficult the inference of temporal networks from data.

Discussion

In summary, we have developed a general framework to
reconstruct STNs as a null model of temporal networks by fitting
time-course observations of the diffusion process taking place on
them. To alleviate the ill-posedness of this time-extended inverse
problem, we have decomposed the task of network reconstruction
into structural and temporal aspects, that is, an unsupervised
topology inference for the time-aggregated networks using
MCMC sampling, and a nonparametric density estimation for
the associated WTDs via self-consistent iterations, respectively.
We have given a rigorous consistency proof for the proposed
WTD estimator, and have numerically shown that the iterative
algorithm frequently possesses good convergence properties given
properly selected, data-driven initial guesses. We have also
applied our method to various types of benchmark STNs and
empirical temporal networks, showing that it is statistically
possible to discover latent temporal networks with high accuracy
only from a moderate amount of diffusion data. Despite the
inability to recover actual serial snapshots of networks, the
reconstructed STN builds up both structural and temporal
statistics sufficient to enable reliable prediction of the popula-
tion-level diffusion behaviour, which can thus be of practical
interest in a broad range of applications, particularly in time-
critical and privacy-sensitive circumstances related to human
activities.

Our reconstruction method is not only restricted to the data
generative process considered in the paper, but is also adapted to
many variants of the original inference task. For example, recent
work?” has demonstrated the predictive power of the Hawkes
process method for quantifying and tracing information cascades
on social media, provided a well-defined memory kernel
(a mathematical equivalent to the WTD in our model) fitted to
the empirical mechanism for diffusion. Our method then

8

provides an alternative operative route for estimating the
memory kernel from early time courses of diffusion, as well as
for updating the posterior WTD self-consistently with new
available process data as diffusion proceeds, while not
necessitating access to possibly privacy-sensitive information at
the individual level. Another important extension is to use
observed time courses of disease outbreaks to deduce the
underlying population structure and temporal transmission
pattern in epidemiological studies. Here, the essential difference
between a generic epidemic process and the information
broadcasting considered here lies in that the recovery process
(for example, self-healing) prevents to a large extent the possible
transmission of diseases from infected individuals to the
remainder of the population. Restated in the language of
survival analysis, the observation of successful transmissions is
potentially ‘censored’ by the recovery events occurred among the
infected population. Under this circumstance, one can directly
make use of subdistributed WTDs (that is, [ p,,(t)dr<1) to
encapsulate arbitrary distributions of transmission and recovery
times’’, and apply the same inferential scheme with few
modifications. We note here that the residual probability mass
located at the infinity, r, =1— [ p,,(1)dr, meaning the
probability of endemic transmissions being interrupted by node
u’s recovery, causes a decrease in the effective number of diffusion
cascades that are helpful for predicting if link (u,v) is present—as
a consequence, the larger r,,, the less observably succeeded
transmission routes, the more diffusion data required to extract
the latent network. To exclude this nuisance factor we therefore
have focused on the information diffusion model that mimics
susceptible-infected epidemics (with r,,=0) to capture the
effective sample sizes for specific reconstruction goals.

In addition to the simplified forward diffusion model, we have
made several assumptions in this paper, of which the most
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important is that the STNs are assumed to have no cross-dyad
interdependence. This is the key property that enables the localized
computation of likelihoods and branching coefficients using only
neighbourhood information, thus ensuring an efficient implementa-
tion with polynomial complexity. We have discussed the second-
order STN model that assumes a joint distribution of waiting times
occurring on any successive dyads. Such polyadic correlations
destroy the applicability of Matrix-Tree Theorems, leading to the
necessity of a tree-enumeration procedure with exponential
complexity. Leaving aside temporarily the issue of implementation
expenditure, our inferential scheme can be naturally extended to the
higher-order correlated case (see Supplementary Note 9). We have
furthermore devised a pairwise approximation of branching
coefficients in order to speed up our algorithms. Another significant
one, mainly adopted in our benchmark tests, is the homogeneous
population assumption, stating that the underlying WTDs p,,,(t) are
identical, despite the individual heterogeneity or frailty widely
prevalent in many real-life populations. Again, it should be pointed
out that although our framework is applicable to non-identical
WTDs, as well as higher-order, polyadically correlated cases, the
established STN model to some extent sacrifices simplicity and runs
the risk of overfitting. The ultimate goal of null modelling is to
reproduce expected patterns that capture predictive information in
data, while not being overly complicated.

Let us further inspect the complexity and scalability of our
method. While it is generally difficult to quantify the complexity
of the iterative estimator even for the first-order STNs, bench-
mark test results numerically illustrate that the proposed
procedure, when initialized with appropriate first guesses
(see Supplementary Note 6), has quite good iterative convergence,
irrespective of either structural properties of the time-aggregated
topologies or distributional shapes of the dyad-specific WTDs.
Thus our algorithm can practically be implemented with
complexity O(CN%*M), where C, N and M are the numbers of
diffusion cascades, network nodes and MCMC iterations,
respectively. Because M only exerts influence on the precision
of a posteriori prediction of links and is independent of the
problem size, the actual complexity of our procedure is then
O(CN?), which reaches the theoretically optimal time complexity.
Put another way, the network reconstruction problem can be
regarded as a sequence of O(N?) likelihood-ratio hypothesis tests,
in which the marginal gain of each possible link calculated using
O(C) diftusion cascades is utilized to decide if the corresponding
dyad of nodes is truly connected. Despite the proposed method
with the (near-)inherent, quadratic complexity, there is a
widespread need for more scalable and efficient, hopefully
linear-time, inverse modelling approaches for empirical complex
systems, especially in the era of Big Data. The potential solution
to this impasse is to shift from predicting individual links to
zooming out to the coarse-grained or mesoscopic topological
scales using more sophisticated inference techniques borrowed
from, for example, large-scale hypothesis testing®® and
community-based time series analysis*%.

There are also numerous conceivable approaches for our
topology inference step. A closely related alternative one, which is
formulated in a Bayesian fashion, is to introduce prior
information about the underlying diffusion network into the
estimation scheme to encompass a broader spectrum of expected
structural features. Here we have exemplified this with the
standard ¢;-norm sparsity priors, turning the maximum like-
lihood into a maximum a posteriori (MAP) estimation by virtue
of slight differences in calculating the marginal gains of network
links (see Supplementary Note 12). Numerical results have
demonstrated the significantly improved reconstruction perfor-
mance for STNs. Furthermore, parametric network models (such
as exponential random graphs*®) and advanced optimization

techniques for the MAP problem, as well as practically available
prior information other than collective diffusion data (for
example, partially observed topology structure, relevant
metadata of network agents, and so on) can also be
incorporated into our reconstruction scheme with little
technical effort.

Another contribution of the proposed inferential framework is
the density estimation for underlying WTDs. Because of the
context in which we are interested, an ideal null model of
temporal networks would be reproductive of time variability in
empirical interactions, as well as predictive of their collective
dynamical properties at the desired level, in particular with the
help of the WTD extracted from true latent (usually anomalous)
diffusion patterns. When the goal is to solely create temporality
information with prior network structures, rather than to
reconstruct the topology of diffusion substrates, the density
estimation can be pursued by a radically sharpened diffusion
cascades. Under the homogeneous population assumption,
meaning a population-wide fitting of the WTD commonly shared
by all underlying dyadic interactions, one can expect a reliable
WTD estimation even from a single diffusion cascade, unless
either network size or observation window is very small.
Consequently, our method has potential applications in epide-
miological studies, especially for inverse modelling of general
epidemics with non-Poissonian behaviour®®, which range from
estimating parameters such as the effective reproductive number
using subdistributed WTDs to identifying the invasion routes of
epidemics using branching coefficients. Finally, the central role
played by branching coefficients—in the universal imputation
scheme for treating the censored data problem arising from
competing risk events of networked diffusion—has implications
for definition and refinement of the dynamics-based node or link
centrality and information-theoretic complexity measures for
temporal networks.

Methods

Benchmark test data. To test the performance of our inference algorithm, we have
carried out extensive numerical experiments using three categories of time-aggre-
gated benchmark topologies (deterministic, stochastic and empirical static networks)
in combination with several different types of benchmark WTDs, as listed in
Supplementary Tables 1 and 3. To provide further empirical validation, we also apply
our method to several realistic temporal contact networks, as listed in Supplementary
Table 2. Specifically, we reconstruct the STN model from synthesized diffusion
cascades respectively using empirical contact lists and the STN tuple that is fitted to
the original data (see Supplementary Table 4 for detailed experimental settings).
Network data or their generative models can be found in relevant references.

Gibbs sampler for time-aggregated graphs. We apply MCMC method with
Gibbs sampling to explore the configuration space of the underlying time-aggre-
gated network. The configuration transition is based on the link-flipping operation
with success probability according to the likelihood ratio between the new con-
figuration and the old configuration, that is, the marginal gain of the flipping
operation (equation (6)). In our benchmark test, the burn-in period and the
maximum lag are set to 10, and the number M =200 of MCMC samples are drawn.
See Supplementary Note 7 for detailed algorithm implementation.

Iterative procedure for the WTD estimator. To solve the self-consistent equa-
tions for p(D, G), the algorithm carries out an iterative procedure as follows: Start
with a priori guess for the underlying WTDs p° = [ﬁgv](u_v)eg and repeat the
following synchronous updates for all entries of p* until convergence

c [ BulD'. G0 )Ki(x—d,)

Hk+1(r :l ok (¢ —_d .

The convergence is judged by a small change in the estimated p* between successive
iterations. Here we adoEt the Kolmogorov-Smirnov divergence, and terminate the
iteration whenever || p R | ks= max,,)egmax; | O (1) —oF (1) | <&,
where @ (1) = [ p% (£)dt is survival function of WTD p¥,(z), and € is a pre-
determined error threshold. The detailed self-consistent iterative scheme is presented
in Supplementary Note 7.
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In our numerical validation, we assume for brevity that internal temporal
interactions among a population satisfy the homogeneity condition, corresponding
to first-order the STN with ii.d. dyad-level WTDs. To initialize the iterative
procedure, we use exponential WTD as the first guess, and set smoothing kernel
bandwidth h = 0.05. Practical parameter selection criteria, as well as their effects on
convergence properties and performance of the density estimator are discussed in
Supplementary Note 6.

Notations. We summarize the notations used throughout this paper in
Supplementary Table 6.

Data availability. All relevant data are available from the authors on request.
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