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Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity
and behavioral performance in healthy volunteers. In addition, TMS is increasingly used
in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-
induced effects show large intra- and inter-subject variability, hindering its reliability, and
efficacy. One possible source of this variability may be the spontaneous fluctuations of
neuronal oscillations. We present recent studies using multimodal TMS including TMS-
EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and
concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance
imaging), to evaluate how individual oscillatory brain state affects TMS signal
propagation within targeted networks. We demonstrate how the spontaneous oscillatory
state at the time of TMS influences both immediate and longer-lasting TMS effects.
These findings indicate that at least part of the variability in TMS efficacy may be
attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations
during TMS. Ignoring this state-dependent spread of activity may cause great individual
variability which so far is poorly understood and has proven impossible to control. We
therefore also compare two technical solutions to directly account for oscillatory state
during TMS, namely, to use (a) tACS to externally control these oscillatory states and
then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered
TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for
establishing more robust TMS effects, and to allow enhanced control over the individual
outcome of TMS interventions aimed at modulating information flow in the brain to
achieve desirable changes in cognition, mood, and behavior.

Keywords: transcranial magnetic stimulation (TMS), inter-and intra-subject variability, neuronal oscillations,
multimodal TMS, closed-loop TMS
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INTRODUCTION

Barker et al. (1985) were the first to show that the human
brain could be stimulated non-invasively using rapidly changing
magnetic fields. This transcranial magnetic stimulation (TMS)
method was virtually painless, required minimal preparation,
and offered a flexible stimulation coil which could be rapidly
and easily moved between scalp locations (brain areas). When
the TMS coil was placed on the scalp above the motor cortex,
movements could be induced in contralateral body parts, and the
muscles’ responses could be measured using electromyography
(EMG) (Rothwell et al., 1999; Hallett, 2000, 2007). These so-called
“motor-evoked potentials” (MEPs) are caused by the excitation of
corticospinal neurons (Berardelli et al., 1990; Burke et al., 1993;
Di Lazzaro et al., 1998), and MEPs are still used in contemporary
research as a measure of motor cortex excitability (Boroojerdi
et al., 2002; Rossini et al., 2015).

Given its ability to directly influence brain processing
(Romero et al., 2019), TMS can serve several purposes. It can
be used to investigate whether and when a brain area is causally
relevant for a cognitive function (Sack, 2006; Sack et al., 2006;
de Graaf et al., 2009, 2015; Schuhmann et al., 2009; Jacobs et al.,
2012b), and to map the brain’s functional connectivity profile
(Pascual-Leone et al., 2000; Sack and Linden, 2003; Sack et al.,
2007; Bäumer et al., 2009; de Graaf et al., 2009, 2012; Reithler
et al., 2011; Arai et al., 2012). Since its development, TMS has
therefore been widely used in cognitive neuroscience research
(Walsh and Cowey, 2000; O’Shea and Walsh, 2007), not only
to map the motor cortex (Gunduz et al., 2020), but also to
study domains such as visual perception (Amassian et al., 1989;
Kammer, 2007; Jacobs et al., 2012a, 2014; de Graaf et al., 2014; de
Graaf and Sack, 2014; Janssens et al., 2020b), attention (Ashbridge
et al., 1997; Sack et al., 2002, 2007; Rushworth and Taylor, 2006;
Ronconi et al., 2014; Duecker and Sack, 2015), imagery (Sack
et al., 2002, 2005; Cattaneo et al., 2012), language (Pascual-Leone
et al., 1991; Schuhmann et al., 2012; Acheson and Hagoort, 2013;
Tarapore et al., 2013), learning (de Weerd et al., 2012; Platz et al.,
2012a,b), and memory (Osaka et al., 2007; van de Ven et al.,
2012; van de Ven and Sack, 2013; Bonnì et al., 2015; Rademaker
et al., 2017; Ferrari et al., 2018). In addition, TMS is increasingly
used in clinical practice for treating various neuropsychiatric
disorders (Lefaucheur et al., 2014, 2020; de Graaf et al., 2021a,b).
TMS is used during stroke rehabilitation (Hummel and Cohen,
2006; Di Pino et al., 2014; Wessel et al., 2015), and as treatment
for depression (Loo and Mitchell, 2005; Perera et al., 2016;
Donse et al., 2018; Baeken et al., 2019; Sonmez et al., 2019) and
schizophrenia (Cole et al., 2015).

IMMEDIATE AND AFTEREFFECTS OF
TRANSCRANIAL MAGNETIC
STIMULATION SHOW HIGH INTER- AND
INTRA-SUBJECT VARIABILITY

Given the widespread use of TMS in research and clinical
settings, one might assume that TMS generally leads to
positive and consistent findings. Yet, the effects of TMS

are not always robust and reliable. Inconsistent TMS effects
between experiments/clinical trials could partially be due to
methodological factors, such as differences in the coil placement
method (Beam et al., 2009; Rusjan et al., 2010; Gomez et al.,
2021). But even if methodological factors are kept constant,
TMS effects can show substantial variability. There are two types
of variability in the effects of TMS: different individuals may
respond differently to TMS (inter-subject variability), and the
effect of TMS may differ within the same individual over time
(intra-subject variability). We should furthermore distinguish
between two types of TMS effects: the immediate effects of single-
pulse TMS, and the aftereffects of repetitive TMS (“rTMS”).
Below, we present evidence that suggests that both the immediate
and aftereffects of TMS show substantial inter- and intra-
individual variability.

The immediate effects of single-pulse TMS to the primary
motor cortex are often measured with MEPs, which provide
a measure of the momentary TMS reactivity (Rossini et al.,
2015). Within the same individual, TMS-MEP amplitudes vary
over trials (Kiers et al., 1993; Burke et al., 1995; Wassermann,
2002; Rösler et al., 2008; Goetz et al., 2014; Goldsworthy et al.,
2016a). Interestingly, optimization of TMS target localization
does not necessarily improve the variability and reproducibility
of TMS-induced MEPs (Jung et al., 2010). This finding already
suggests that factors beyond the TMS parameters may contribute
to immediate TMS reactivity.

Such variability in immediate TMS effects is not limited to
the motor network. When stimulating early visual cortex, some
individuals can perceive “phosphenes” (an illusory percept). The
“phosphene threshold” (the minimal TMS intensity required
to perceive a phosphene in half of the cases) is often used
as a measure of visual cortex excitability (Boroojerdi et al.,
2002; Bestmann et al., 2007; de Graaf et al., 2017). The
probability of inducing phosphenes within the same participant
can vary over time (Gerwig et al., 2003; Romei et al., 2008a,b;
Dugué et al., 2011).

Variability in TMS aftereffects can be illustrated by evaluating
individual responses to rTMS protocols that were designed to
modulate synaptic plasticity beyond the duration of stimulation
(Pascual-Leone et al., 1998; Ridding and Ziemann, 2010). Low
(<1 Hz) and high (>1 Hz) frequency rTMS were originally
reported to decrease and increase the excitability of the human
motor cortex, respectively (Wassermann et al., 1998). This may
indeed be the case on average, but when inspecting individual
responses, not all participants showed these effects (Maeda
et al., 2000). Similarly, intermittent and continuous theta burst
stimulation (iTBS and cTBS, two forms of patterned rTMS) were
reported to enhance and suppress motor cortex excitability for
∼30 min after stimulation, respectively (Huang et al., 2005).
These findings have not always been replicated in another subject
sample (Goldsworthy et al., 2012; Hordacre et al., 2017), and
even if they are present at the group level, not all individuals
show these effects (Cheeran et al., 2008; Nettekoven et al., 2015;
Schilberg et al., 2017). In fact, one study reported that only 1 in
4 participants showed the expected pattern of results (Hamada
et al., 2013). Another TMS procedure aimed at modulating
neuroplasticity is called “paired associative stimulation” (PAS).
Originally, PAS involved peripheral nerve stimulation that was
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paired with single-pulse TMS to primary motor cortex in order
to enhance corticomotor excitability (Stefan et al., 2000), but PAS
has also been employed to facilitate communication between the
motor cortex and interconnected cortical areas (Veniero et al.,
2013). As for the other plasticity-inducing TMS protocols, there
is high inter-subject variability in the effects of PAS (Sale et al.,
2007; Florian et al., 2008; López-Alonso et al., 2014), with a recent
study reporting that only 61% of participants responded to PAS
(Minkova et al., 2019).

Besides inter-subject variability, TMS aftereffects also show
significant intra-subject variability. Some reports indicated that
the aftereffects of iTBS and cTBS were relatively stable within
the same individuals (Hinder et al., 2014; Vernet et al., 2014),
but a recent study showed the opposite (Schilberg et al., 2017).
Schilberg et al. (2017) further investigated the within-subject
reliability of iTBS effects over the course of 60 min, and across
two experimental sessions that were scheduled ∼8 days apart.
They found that the effect of iTBS on corticospinal excitability (as
measured with MEP amplitude) differed between sessions. The
average increase in MEP amplitude was approximately 23% in the
first session, but only approximately 6% during the second visit.

From these examples, it becomes clear that TMS effects
show considerable inter- and intra-subject variability, for both
the immediate effects of single-pulse TMS (MEP amplitudes,
phosphene induction) and the longer-lasting plasticity effects
as induced by rTMS, TBS, or PAS. The limited consistency of
TMS effects can have negative consequences in research and
clinical settings, because TMS effects are not always predictable
or optimized. If TMS effects are not sufficiently reliable, they
thus have limited use as a biomarker for individual changes in
neuroplasticity and concomitant desirable changes in cognition
and behavior (Schambra et al., 2015). It is therefore important
to identify the factors that contribute to the variability of TMS
effects (Corp et al., 2020, 2021), such that the consistency and
efficacy of TMS can be improved. We here discuss one possible
source of this variance, namely, spontaneous fluctuations in
neuronal oscillations (Buzsáki and Draguhn, 2004; Pasley et al.,
2009; Iscan et al., 2016; Bergmann, 2018). Below, we explain how
spontaneous fluctuations in oscillatory brain state contribute to
variability both in the immediate effects of TMS and in TMS-
induced plasticity effects.

SPONTANEOUS FLUCTUATIONS IN
NEURONAL OSCILLATIONS
CONTRIBUTE TO VARIATIONS IN
IMMEDIATE TRANSCRANIAL MAGNETIC
STIMULATION EFFECTS

To investigate the link between TMS effect variability and
ongoing neuronal oscillations, TMS can be combined with
magneto- or electroencephalography (M/EEG). Specific
characteristics of neuronal oscillations (i.e., their frequency,
power, or phase; Palva and Palva, 2007) might be correlated
with the immediate responsivity to single-pulse TMS. Indeed,
the probability of inducing phosphenes when applying TMS to
early visual cortex was negatively correlated with EEG alpha

power prior to TMS (Romei et al., 2008a,b). The probability of
perceiving TMS-induced phosphenes was also associated with
the phase of ongoing EEG alpha oscillations (Dugué et al., 2011).
Results have been less clear for the motor system. Some studies
reported a negative association between pre-TMS EEG alpha
power and TMS-induced MEP amplitude (Sauseng et al., 2009;
Zarkowski et al., 2016). Others reported a negative association
between TMS-MEP amplitude and oscillatory beta power
(Lepage et al., 2008; Mäki and Ilmoniemi, 2010; Schulz et al.,
2014), or no relation with oscillatory power in any frequency
band (Mitchell et al., 2007; Berger et al., 2014). Spontaneous
fluctuations in the phase of ongoing beta (Keil et al., 2014) and
alpha (Schaworonkow et al., 2018, 2019; Bergmann et al., 2019)
oscillations may also play a role in TMS-MEP variability. Note
that inconsistencies across studies may in part be explained by
methodological differences, such as differences in TMS intensity
(Pellegrini et al., 2018).

Schilberg et al. (2021) recently assessed the relation between
the power and phase of ongoing EEG alpha and beta oscillations
with motor cortex TMS reactivity. They found that TMS-
MEP amplitude correlated positively with pre-TMS oscillatory
power in the alpha and beta bands. The authors also reported
a significant effect of alpha phase on TMS-MEP amplitude,
but there was no consistent alpha phase that led to high
TMS-MEP amplitudes across participants. The latter is in
contrast with previous reports showing that higher TMS-
induced MEP amplitudes are mostly induced during alpha
troughs instead of peaks (Schaworonkow et al., 2018, 2019;
Zrenner et al., 2018). Interestingly, a standard FFT analysis
did not reveal a significant correlation between pre-TMS beta
phase and TMS-MEP amplitude, while a Hilbert transform
did show an effect (Schilberg et al., 2021). This discrepancy
between analyses may be partially explained by the variability
in individual beta frequency (IBF), which is larger than the
variability in individual alpha frequency (IAF) (Haegens et al.,
2014). The Hilbert transform is less affected by frequency
variations compared to the FFT approach, since the former
can be used for non-stationary time series (Schilberg et al.,
2021). Another contributing factor might be that participants
were not involved in any active motor task. Ongoing beta
power was therefore naturally low, making it more difficult
to reliably estimate beta phase. When TMS is applied at high
beta power, the relation between beta phase and TMS-MEP
amplitude indeed becomes evident (Torrecillos et al., 2020).
In any case, most of the evidence presented above is of
correlational nature, because oscillations were measured rather
than experimentally manipulated.

DIRECT EVIDENCE FOR A CAUSAL LINK
BETWEEN (CONTROLLED)
OSCILLATORY STATE AND VARIATIONS
IN IMMEDIATE TRANSCRANIAL
MAGNETIC STIMULATION EFFECTS

Transcranial alternating current stimulation (tACS) can be
used to establish the causal relevance of neuronal oscillations
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(Herrmann et al., 2016). TACS is a form of non-invasive
brain stimulation (NIBS) that involves electrical stimulation
with a sinusoidal waveform (Antal and Paulus, 2013). It can
be used to enhance the power of oscillations of a certain
frequency within the stimulated brain area (Herrmann et al.,
2013; Vossen et al., 2015; Vieira et al., 2020), potentially
through mechanisms of entrainment (Thut et al., 2011; Huang
et al., 2021) or spike-timing dependent plasticity (Herrmann
et al., 2013; Vossen et al., 2015). The causal relevance of
oscillatory phase can then be established by presenting stimuli
at certain phases of the tACS waveform (de Graaf et al.,
2020). It was previously shown that it is possible to apply
TMS at certain tACS phases with high temporal precision (ten
Oever et al., 2016), and that it is feasible to use simultaneous
tACS-TMS to investigate the causal relation between oscillatory
tACS phase and TMS-MEP amplitudes (Raco et al., 2016).
The same logic was applied by Schilberg et al. (2018), who
administered TMS pulses at eight equidistant phases of a
tACS waveform, using IBF-, IAF-, or sham tACS to primary
motor cortex. The authors found that tACS modulated TMS-
MEP amplitude only for the IBF-tACS condition, and this
effect seemed to be specific to individuals with lower IBF
frequencies. These findings suggest that beta-tACS phase at
the time of TMS influences the immediate effects of TMS
(intra-subject variability), and that this effect interacts with the
individual dominant beta frequency (between-subject variability)
(Haegens et al., 2014).

SPONTANEOUS FLUCTUATIONS IN
NEURONAL OSCILLATIONS
CONTRIBUTE TO THE PROPAGATION
OF TRANSCRANIAL MAGNETIC
STIMULATION PULSES THROUGH
FUNCTIONALLY CONNECTED
NETWORKS

Simultaneously combining TMS with M/EEG or tACS is an
excellent approach to investigate the link between ongoing
neuronal oscillations and the variability of TMS effects. However,
this approach does not allow an accurate (high-resolution)
visualization of the immediate effects of TMS at the level of
the brain. Functional magnetic resonance imaging (fMRI) can
be used to visualize TMS signal propagation, given its potential
to measure whole-brain activation with good spatial resolution
(Walsh and Cowey, 2000; Sack and Linden, 2003; Sack, 2006;
Bestmann et al., 2008; Reithler et al., 2011). Simultaneous TMS-
fMRI studies have shown that the effects of TMS pulses can
extend beyond the targeted brain area, since signals can spread
toward interconnected brain areas (Ruff et al., 2006; Sack et al.,
2007; Blankenburg et al., 2010). Though the local effects of TMS
pulses do not reach deeper than the superficial cortex, remote
effects can even be observed in subcortical areas (Bergmann
et al., 2021). Nonetheless, to achieve a full understanding of
how TMS pulses propagate through functionally connected

networks, it is important to investigate whether and how
TMS-evoked fMRI responses vary as a function of ongoing
neuronal oscillations on a trial-by-trial level. This was made
possible with a unique setup, which simultaneously combines
TMS, EEG, and fMRI.

This technically challenging experimental triad approach
was introduced by our lab in 2013 (Peters et al., 2013).
We demonstrated that concurrent TMS-EEG-fMRI is feasible
and safe in both phantom and human measurements, and
we showed that the EEG and fMRI data were of sufficient
quality. Yet, the full potential of this approach only became
apparent in a recent publication from our lab, in which we
mapped whole-brain TMS signal propagation as a function of
the pre-TMS oscillatory state as indexed by simultaneous EEG
(Peters et al., 2020). In four healthy individuals, we applied
triple-pulse (15-Hz) TMS to the right dorsal premotor area
(PMd), while continuously measuring EEG. Triple-pulse TMS
was used to probe the motor network with a sufficiently strong
stimulus, rather than to modulate neuroplasticity as with typical
rTMS protocols (the findings described here thus relate to
immediate TMS effects).

TMS to PMd evoked both local and remote fMRI activation in
a cortico-subcortical motor network, resembling the activations
as seen for voluntary movements. It again became evident
that different individuals may respond differently to TMS
(inter-subject variability): two individuals showed less/more
confined activations in response to TMS compared to the
other two individuals. These individuals also showed less
engagement of the motor network irrespective of TMS
(“low activators,” the others were called “high activators”).
It should be noted that the difference in TMS-evoked
responses may in part be due to differences in TMS intensity
between the “low activators” and “high activators.” In any
case, to evaluate immediate TMS-evoked responses within
the cortico-subcortical motor network as a function of
oscillatory state, it was crucial that participants showed
reliable engagement of the motor network. The EEG-informed
analyses were therefore performed only for the two “high
activators.”

The main question of interest was whether TMS signal
propagation within a cortico-subcortical motor network varies
with pre-TMS parietal alpha power. Pre-TMS alpha power was
negatively correlated with TMS-evoked fMRI responses in both
local and remote (including subcortical) areas of the motor
network. This negative association is in line with the supposed
inhibitory role of alpha oscillations (Klimesch et al., 2007).
From these findings, we can conclude that, within the same
individual, TMS pulses may propagate differently throughout
the motor network depending on pre-TMS oscillatory state
(intra-subject variability). Our group has recently also established
the feasibility of using simultaneous TMS-EEG-fMRI for
non-motor areas (Janssens et al., 2020a). This comes with
additional technical challenges, including the determination
of the TMS site and intensity, because most non-motor
areas are so-called “silent” areas that do not show any overt
response to TMS.

Frontiers in Human Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 802244

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-802244 November 26, 2021 Time: 11:47 # 5

Janssens and Sack Oscillatory State and TMS Variability

DIRECT EVIDENCE FOR A CAUSAL LINK
BETWEEN (CONTROLLED)
OSCILLATORY STATE AND VARIATIONS
IN TRANSCRANIAL MAGNETIC
STIMULATION AFTEREFFECTS

Thus far, we focused on within- and between-subject variability
in the immediate effects of TMS, and how such variability can
be linked to ongoing neuronal oscillations. There is reason
to believe that changes in oscillatory state also contribute to
variations in TMS-induced neuroplasticity (TMS aftereffects).
Goldsworthy et al. (2016b) applied cTBS to the primary motor
cortex, while phase-aligning the TMS pulses to either the peak
or the trough of concurrent alpha-tACS. They investigated
whether the response to cTBS, as measured with TMS-induced
MEP amplitudes, depended on the alpha-tACS phase. The
excitability of the motor cortex was suppressed (TMS-MEP
amplitudes were reduced) when cTBS was aligned with alpha-
tACS troughs. Crucially, cTBS did not modulate motor cortex
plasticity when cTBS was aligned with alpha-tACS peaks.
Furthermore, the effect of tACS-trough-aligned cTBS was greater
for individuals with higher IAFs (Goldsworthy et al., 2016b).
Thus, TMS-induced neuroplasticity may vary both as a function
of the controlled momentary oscillatory state and the intrinsic
dominant oscillatory frequency.

Besides oscillatory phase, the power of ongoing neuronal
oscillations might be relevant for TMS-induced neuroplasticity
as well. Guerra et al. (2018) showed that concurrent gamma tACS
enhanced and prolonged iTBS-induced increases in TMS-MEP
amplitude, in contrast to beta-tACS and sham-tACS (Guerra
et al., 2018). This positive effect of simultaneous gamma tACS on
iTBS efficacy was later replicated, but it seems that simultaneous
gamma tACS reduced the efficacy of cTBS (Guerra et al., 2020a).
These findings are especially relevant in a clinical context, where
the goal is to employ rTMS to modulate neuroplasticity for longer
periods of time. It would be beneficial to optimize plasticity-
inducing TMS protocols based on oscillatory brain state, such
that treatment efficacy can be improved.

ACCOUNTING FOR SPONTANEOUS
FLUCTUATIONS IN NEURONAL
OSCILLATIONS DURING
TRANSCRANIAL MAGNETIC
STIMULATION

Thus far, we have outlined that immediate and prolonged
TMS effects vary considerably within- and between-individuals.
We also showed that spontaneous fluctuations in neuronal
oscillations can explain at least part of the variability in TMS
effects, as can more stable oscillatory characteristics (individual
peak frequencies). The question then becomes: how can we
incorporate such oscillatory information into our TMS protocols?

The first step is to form a clear hypothesis regarding the to-be-
targeted oscillatory frequency, since different frequency bands are

associated with different functions (Başar et al., 1999; Ward, 2003;
Clayton et al., 2018). Even within the same (e.g., alpha) frequency
band, there might be different functionally relevant oscillation
generators in the brain, which are not easily disentangled in
the M/EEG signal (Bollimunta et al., 2011; Haegens et al.,
2015; Sokoliuk et al., 2019). More advanced techniques might
be needed to extract the relevant oscillatory frequency from
the M/EEG signal (Schaworonkow et al., 2018). Once the
relevant oscillatory frequency has been determined, there are
two potential technical solutions that can directly account for
oscillatory brain state during TMS: simultaneous tACS-TMS, and
M/EEG-based “closed-loop” TMS (Huang et al., 2017).

As discussed previously, TMS can be applied at the
(controlled) optimal tACS phase (Raco et al., 2016; ten Oever
et al., 2016; Fehér et al., 2017). Crucially, individuals differ in
terms of their oscillatory brain rhythms. For instance, peak
alpha frequencies (IAFs) can range between 7 and 14 Hz across
individuals (Haegens et al., 2014). To ensure optimal tACS
efficacy, it is therefore important to individually calibrate the
tACS frequency, for instance based on a resting state M/EEG
measurement (Janssens et al., 2021) or through functional
identification (Gundlach et al., 2017; Schilberg et al., 2018).
Besides personalizing the tACS frequency, it might also be
necessary to individually determine the optimal tACS phase to
deliver TMS, given the recent finding that no consistent alpha
phase was correlated to high TMS-MEP amplitudes (i.e., high
TMS responsivity) across participants (Schilberg et al., 2021).
Simultaneous tACS-TMS has already been used to link tACS
beta phase to motor cortex TMS reactivity (Guerra et al., 2016;
Schilberg et al., 2018). It has furthermore been shown that single
TMS pulses applied to dorsolateral prefrontal cortex propagate
differently through a cortical network depending on the phase
of concurrent theta-tACS (Fehér et al., 2017). Thus, by applying
single-pulse TMS at the optimal (controlled) tACS phase, TMS
signal propagation may be modulated. Besides its relevance for
immediate TMS effects, tACS can also be used to enhance and
prolong TMS aftereffects, as described above (Goldsworthy et al.,
2016b; Guerra et al., 2018, 2020a).

Simultaneous tACS-TMS is useful, but not perfect. Individual
peak frequencies show good within-subject test-retest reliability
(Grandy et al., 2013; Haegens et al., 2014; Janssens et al.,
2021), but peak frequencies can still fluctuate, and the extent to
which this happens differs across individuals. For example, IAF
decreased over the course of 1 h during visual task performance,
with some participants showing reductions of up to 2 Hz (Benwell
et al., 2019). If tACS were to be applied at the originally
determined peak frequency, tACS efficacy may be compromised,
since the matching between the endogenous dominant frequency
and the driving (tACS) frequency would not always be optimal
(Romei et al., 2016). The best approach might thus be to
continuously track the instantaneous dominant frequency, and
to adjust the tACS frequency accordingly. However, it is difficult
to recover EEG signals during tACS due to the sizeable tACS
artifacts (Kasten and Herrmann, 2019). Another complication
of the simultaneous tACS-TMS approach is that if the effect of
tACS on oscillatory activity is not verified through means of
concurrent M/EEG measurements, we cannot be certain that
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the applied tACS phase corresponds to the phase of ongoing
neuronal oscillations. Finally, it could be the case that there is an
“optimal” amount of oscillatory power, in the sense that if tACS
enhances oscillatory power above a certain threshold, it might
reduce the reactivity of a brain area to TMS.

In contrast to simultaneous tACS-TMS, the second technical
solution to account for oscillatory brain state during TMS
does measure ongoing neuronal oscillations. In this so-called
“closed-loop” TMS approach, the M/EEG signal is continuously
measured, and the timing of TMS pulses is adjusted to the optimal
power and/or phase of the ongoing oscillations (Bergmann
et al., 2016; Zrenner et al., 2016; Thut et al., 2017; Guerra
et al., 2020b). This method can only be successful if the
instantaneous phase can be reliably estimated (that is, if the power
of the ongoing oscillations is sufficiently high). This has two
important implications if the aim is to target specific oscillatory
phases. Firstly, it might be necessary to control participants’
cognitive state (i.e., task engagement vs. rest) to ensure high
oscillatory power. Secondly, the closed-loop TMS approach
might fail in individuals that show naturally/pathologically low
oscillatory power.

Irrespective of these technical challenges, EEG-based closed-
loop TMS has already been applied successfully. It was shown
that MEP amplitudes were higher during the rising phase of
ongoing slow (<1 Hz) oscillations compared to the falling phase,
when TMS was applied to primary motor cortex (Bergmann
et al., 2012). Interestingly, these findings were consistent across
two cognitive states (wakefulness and sleep). In another study,
rTMS applied to primary motor cortex at the troughs of the
ongoing alpha rhythm enhanced MEP amplitudes, while rTMS
applied at alpha peaks did not (Zrenner et al., 2018). These
findings clearly show that temporally targeting TMS pulses to
the optimal oscillatory state improves its efficacy both in terms
of signal propagation (immediate effects) and the induction of
neuroplasticity (aftereffects).

CONCLUSION

TMS is widely used in both research and clinical settings.
Still, its immediate and prolonged effects are not robust
and reliable, as is evident from both intra- and inter-subject
variability. One potential source of this variability may be the
spontaneous fluctuations of neuronal oscillations. We showed
this for both immediate TMS effects (TMS-MEP amplitudes,
TMS phosphene induction, TMS-fMRI signal propagation), and
for TMS aftereffects (of rTMS, TBS, or PAS). The oscillatory
brain state can be accounted for during TMS by using either
simultaneous tACS-TMS or closed-loop M/EEG-TMS. This may
reduce both inter- and intra-individual variability in TMS effects.
The described multimodal TMS approaches allow enhanced
control over the individual outcome of TMS protocols aimed
at modulating information flow and/or neuronal plasticity in
the healthy and diseased brain. They therefore pave the way to
stronger and more consistent TMS-induced improvements in
cognition, mood, and behavior.
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