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Abstract: Cancer cells accumulate epigenomic aberrations that contribute to cancer initiation and
progression by altering both the genomic stability and the expression of genes. The awareness of
such alterations could improve our understanding of cancer dynamics and the identification of
new therapeutic strategies and biomarkers to refine tumor classification and treatment. Formalin
fixation and paraffin embedding (FFPE) is the gold standard to preserve both tissue integrity and
organization, and, in the last decades, a huge number of biological samples have been archived
all over the world following this procedure. Recently, new chromatin immunoprecipitation (ChIP)
techniques have been developed to allow the analysis of histone post-translational modifications
(PTMs) and transcription factor (TF) distribution in FFPE tissues. The application of ChIP to genome-
wide chromatin studies using real archival samples represents an unprecedented opportunity to
conduct retrospective clinical studies thanks to the possibility of accessing large cohorts of samples
and their associated diagnostic records. However, although recent attempts to standardize have been
made, fixation and storage conditions of clinical specimens are still extremely variable and can affect
the success of chromatin studies. The procedures introduced in the last few years dealt with this
problem proponing successful strategies to obtain high-resolution ChIP profiles from FFPE archival
samples. In this review, we compare the different FFPE-ChIP techniques, highlighting their strengths,
limitations, common features, and peculiarities, as well as pitfalls and caveats related to ChIP studies
in FFPE samples, in order to facilitate their application.

Keywords: FFPE tissues; archival samples; chromatin; chromatin immunoprecipitation (ChIP);
cancer epigenetics

1. Introduction

Chromatin in eukaryotes is a finely organized nuclear complex of genomic DNA, his-
tones, and non-histone proteins. The lowest level of chromatin organization is represented
by nucleosomes, which consist of 147 base pairs of DNA wrapped ~1.7 turns around a
histone octamer core. The octamer is composed of four heterodimers of the core histone
proteins H2A, H2B, H3, and H4, while a fifth histone, histone H1, binds to internucleosomal
DNA to stabilize higher-order structures. Chromatin function is mainly regulated by his-
tone post-translational modifications (PTMs), which consist of enzyme-mediated chemical
modifications of specific histone residues, among which those targeting the N-terminal
tail of histones seem to play a major regulatory role. Different ATP-dependent chromatin
remodelers are guided by these modifications to control the chromatin state and regulate
the gene expression by making chromatin accessible or not to transcriptional regulatory
complexes. Chromatin structure indeed has a crucial role in various processes including
activating or repressing transcription to control functions such as the cell cycle, DNA
damage repair, and cell fate [1].

Chromatin structure misregulation was found to play a main role in several human
diseases, including cancer. Many histone-modifying enzymes and chromatin remodeling
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complexes malfunction in cancer, and their alteration is believed to be a key mechanism
in tumor development and progression [2,3]. Aberrant expression and/or incorporation
of histone variants have also been linked to cancer and to more aggressive cancer pheno-
types [4,5]. In addition, recent studies demonstrated that some histone genes are frequently
mutated in cancer, and many investigations to sustain their role in tumor transformation
have been accumulated [6-8].

Chromatin immunoprecipitation (ChIP) has strongly enhanced our knowledge about
the meaning of protein-DNA interactions, as well as the significance of histone PTMs in
many different biological contexts. ChIP consists of the isolation of chromatin fragments
from a biological matrix and the consequent immunoselection of a protein of interest to
identify the genomic loci associated with it [9,10]. In this technique, the starting material
(cultured cells of fresh/frozen tissues) is normally fixed by formaldehyde, and chromatin
is extracted and fragmented by controlled sonication. Chromatin is then subjected to
immunoselection, using an antibody directed against a specific chromatin protein, and the
immunoselected chromatin is then decrosslinked, while the DNA is purified and, finally,
studied at single-locus or genome-wide levels. ChIP can be used to study transcription
factor (TF) binding but has attracted great attention for the study of histone PTMs after the
surge of interest in epigenetic research [11,12]. The advent of next-generation sequencing
(NGS) has expanded the potential of ChIP, opening the doors to the detailed mapping of
histone PTMs and TF binding sites over the entire genome [13,14].

For many years, ChIP has been mainly applied in studies through which the epigenetic
features of cancer have been investigated using cell lines that, unfortunately, are often
a poor model to investigate chromatin dynamics across cancer progression and, most
importantly, are subjected to epigenetic changes as a consequence of the adaptation to
culture conditions [15,16]. The investigation of cancer epigenetics in primary tumors is the
means to overcome these limitations. Formalin fixation followed by paraffin embedding
(FFPE) is the standard method for long-term preservation of most archived pathological
specimens. These samples indeed allow the pathological evaluation of tissue histology
by immunohistochemistry (IHC) and immunofluorescence (IF), while maintaining the
possibility to isolate not only high-quality DNA but also RNA [17-21].

In summary, the benefits of using FFPE include (i) the access to large tissue archives,
(ii) the analysis of real pathology samples, (iii) the possibility to isolate specific cellular
populations in the tissue, and, most importantly, (iv) the access to patients’ clinical history,
opening the way to retrospective studies and, thus, to the discovery of new potential
clinical markers.

In 2010, our research group was the first to propose a technique that allows epigenomic
studies in FFPE tissues [22]. From that date on, several other techniques (including an up-
grade of our first procedure) have been developed with the intent of improving chromatin
profiling in FFPE tissues, underlining the importance of demonstrating the applicability
of the ChIP procedure by using FFPE samples, paving the way to the development of this
new area of research [23-28]. In particular, the main hurdle to overcome is the difficulty
to reproducibly extract high-quality chromatin from FFPE samples, mainly as a result of
the extended and variable level of formalin fixation, as well as the different conditions and
timing of sample storage.

In this review, we aim to examine the ways through which different research groups
and companies have dealt with chromatin extraction and immunoprecipitation from FFPE
tissues, while also providing recommendations/guidelines and practical examples to
improve the success of chromatin studies in such intriguing samples.

2. The Development of FFPE-ChIP Techniques over Time

There are two main ways through which a tissue specimen can be stored: flash freezing
(or snap freezing) in liquid nitrogen, followed by storage at —80 °C, and fixation in formalin
followed by paraffin embedding (FFPE). FFPE samples have attracted attention in the last
years because they represent the standard way to preserve patient samples for diagnostic
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purposes. The first technique that allowed the study of histone marks and transcription
factors in FFPE specimens was developed by our research group and published in 2010
(Figure 1 and Table 1) [22,29].
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Figure 1. Timeline of the FFPE-ChIP procedures and kits introduced over time. Procedures are in
rectangles while kits are in ovals. Specific colors are used for each research group and company.

In this procedure, which we called pathology tissue chromatin immunoprecipitation
(PAT-ChIP), chromatin isolation from FFPE samples is achieved by both physical extraction,
using a probe sonicator at high amplitude, and controlled micrococcal nuclease (MNase)
digestion. We demonstrated that FFPE-isolated chromatin can be immunoselected, ap-
plying the procedure to both genome-wide (coupled with NGS) and to locus-specific (i.e.,
real-time qPCR) studies using different tissues such as seminoma, breast cancer, and lung
carcinomas [22,30]. In 2016, a further procedure named fixed-tissue chromatin immuno-
precipitation sequencing (FiT-seq) was proposed by Cejas and colleagues (Figure 1 and
Table 1) [23]. This technique, which is essentially based on a controlled proteinase K diges-
tion and chromatin shearing by sonication through a focused ultrasonication system, was
successfully applied to different archival human samples (seminoma, breast cancer, bladder
cancer, and colorectal cancer). However, as subsequently stated by the same authors, this
new technique fails to resolve H3K27ac, suggesting a possible degradation of H3K27ac due
to proteinase K activity that may potentially also affect other kinds of epitope in certain
experimental conditions [26]. In the meantime, we found that genome-wide studies from
FFPE archival samples by PAT-ChIP may be limited by the low efficiency of chromatin
isolation often due to extensive tissue fixation introduced during routine pathological pro-
cessing [24]. Thus, to overcome the issue of FFPE over-fixation we improved the procedure
by introducing, for the first time in this type of experimental approach, a heat-mediated
limited reversal of crosslinking (1 h at 80 °C) to partially revert the effects of extensive
formalin fixation. The new technique was named enhanced PAT-ChIP (EPAT-ChIP) and
was found to improve the success of genome-wide studies of both histone methylation and
acetylation in archival samples (invasive breast carcinoma) [24]. Other authors suggested
that this technique suffers from promoter bias when applied to the study of H3K27ac [26].
However, this seems not to be the case, since genomic annotations of H3K27ac obtained
by EPAT-ChIP were found to overlap with those produced by other research groups (e.g.,
ChIP-seq from ENCODE) [24]. To date, PAT-ChIP has been applied by different research
groups to locus-specific and genome-wide studies, supporting the reproducibility of the
entire procedure [31-43].
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Table 1. Overview of the FFPE-ChIP procedures and kits analyzed in this review.

ChIP-IT FFPE

PAT-ChIP FiT-seq EPAT-ChIP Chrom-EX FiTAc-seq RCRA FACT-seq Chromatin truChIP FFPE
PE ChIP-seq .
Preparation II
Type Procedure Procedure Procedure Procedure Procedure Procedure Procedure Commercial kit Commercial kit
Publication (or release) date ~ 11/2010 04/2016 11/2018 03/2019 07/2019 04/2021 09/2001 2018 (Pre;’(;i’i)s version: 12/2018
Time needed (library prep. 1 day (only chromatin 1 day (only chromatin
and seq. excluded) * 4 days N-A. 3 days 4 days 4 days 2-3days 5 days preparation) ** preparation) **
Sections thickness (um) 10 10 10 20 10 8 10-20 5-10 10
Number of starting sections 4 10 24 2 24 1-2 1 upto5 2
References [22,29] [23] [24] [25] [26,44] [27] [28]

N.A.: indicates that the information is not available in published manuscripts. * For all procedures, a further day may be required to evaluate chromatin abundance and fragmentation
prior to immunoselection. ** The reported commercial kits include only chromatin extraction, while other kits of the same suppliers are indicated for chromatin immunoselection.
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Notably, the last 2 years have seen the birth of three other procedures. In 2019,
Zhong and colleagues proposed chromatin extraction from FFPE tissues (Chrom-EX PE),
a technique that exploits heat (16 h at 65 °C) to extract high-quality chromatin through a
focused ultrasonicator [25]. Unfortunately, they applied their technique to genome-wide
studies only in livers and spleens from mice expressly produced for their study, and the
applicability to real FFPE archival tissues remains to be rigorously proved. One year later,
the developers of FiT-seq published the detailed protocol of a modified version of their
procedure, named FiTAc-seq (Figure 1 and Table 1), which, unlike their previous one, can
be used to map H3K27ac in archival samples (neuroendocrine tumors, bladder cancer,
breast cancer, brain metastasis, seminoma, and melanoma) [26]. The procedure makes
use of heat at the same temperature and duration of incubation of the method proposed
by Zhong and colleagues (16 h at 65 °C) and was applied by the same authors in a study
published the year before (even if the details of the method are not described there) [44].

A further procedure, named RCRA ChIP-seq, was published a few months ago by
Kaneko and colleagues (Figure 1 and Table 1) [27]; again, a heating step (1 h at 65 °C
followed by 30 min at 90 °C) was proposed to efficiently extract, through a focused ultrason-
icator, high-quality chromatin from archival lung adenocarcinoma samples. Interestingly,
the procedure was applied through a dual-arm robot to 69 samples, being the first attempt
to automate ChIP-seq studies from FFPE samples. In the meantime, two commercial kits
have also been developed. A first version, named ChIP-IT FFPE Chromatin Preparation
(Active Motif, Carlsbad, CA, USA, cat #53030), was marketed by Active Motif from 2014 and
joined in 2018 by a second version (ChIP-IT FFPE Chromatin Preparation II, Active Motif,
cat #53031—Figure 1 and Table 1). The two versions are quite different, with the second
one showing a high reduction of complexity with respect to the first and the introduction
of a heating step even if at very low temperatures (1 h at 50 °C). We found four studies
citing the usage of this kit which is, together with PAT-ChIP, the only procedure applied by
research groups other than their own developers [25,45-47]. Unfortunately, one of these
groups stated that the kit (ChIP-IT FFPE Chromatin Preparation II) did not work [25].
A second kit named truChlIP FFPE (truChIP FFPE Chromatin Shearing Kit, Covaris Cat.
#520257) was developed by Covaris and marketed in 2018 (Figure 1 and Table 1). This is
the only procedure in which chemical deparaffination and the rehydration of tissues are
omitted. This kit uses, similarly to FiT-seq, proteinase K digestion of proteins to facilitate
the extraction of chromatin, while paraffin is emulsified by focused ultrasonication. The
usage of this kit has never been cited in the literature. Taken together, the procedures
introduced to date suggest that controlled reversal of crosslinking using high temperatures
may be the key to the success of chromatin studies in FFPE archival samples. A schematic
representation of the main steps shared by the different procedures described above is
reported in Figure 2.

A few months ago, a further technique that combines a novel fusion protein of hyper-
active Tn5 transposase and protein A (pA—Tn5) transposition and T7 in vitro transcription
to perform chromatin studies in FFPE tissues was proposed (Figure 1 and Table 1) [24]. This
procedure is a first attempt to apply the principles of novel strategies for chromatin profil-
ing already used for fresh/frozen samples, such as CUT&RUN [48] and CUT&Tag [49], to
archival samples with the intent of reducing the quantity of starting material.

In the following sections, we aim to describe in detail and compare the different
experimental strategies used to achieve chromatin profiling in FFPE samples, from the
preliminary evaluation of the specimens to chromatin extraction and immunoselection,
including the final quality tests that might precede the NGS sequencing.
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Figure 2. Schematic overview of the main steps shared by the different procedures described in this
review. FFPE tissue sections can be collected from the block as a whole or dissected (macro- or micro-)
to enrich the starting material of specific tissue components. The sections are deparaffinized and
rehydrated prior to be subjected to limited reversal of crosslinking by heat and chromatin extraction
and shearing by focused ultrasonication or canonical probe sonication. Then, chromatin should be
checked prior to proceed with immunoselection: an aliquot of chromatin is taken and decrosslinked,
and the DNA is purified, fluorimetrically quantified, and separated by electrophoresis to evaluate the
size of fragments. Chromatin is then immunoselected using antibodies directed against the protein or
histone modification of interest. After capture of chromatin—antibody complexes and their washing
to remove the nonspecific chromatin binding, selected chromatin is decrosslinked and purified using
spin-column strategies. Finally, a preliminary evaluation of the specificity of the immunoselection by
real-time qPCR should be performed prior to library preparation and NGS sequencing.

2.1. Preliminary Evaluations

Tumor samples are commonly characterized by the presence of variable amounts
of normal tissue that hinders the correct identification of the cellular population con-
tributing to a specific phenomenon and decreases the reliability of final data. Thus, a
histological analysis by hematoxylin and eosin staining is strongly recommended, while
also considering its compatibility, already demonstrated, with chromatin extraction and
immunoselection [30]. When the tissue component of interest is not homogeneous, tissue
sections can be macrodissected or subjected to laser capture microdissection (LCM). Most
procedures make use of slides of 5-10 um thickness, and they have been demonstrated to
also be compatible with LCM [23,24,26,27,29]. Histological analysis plays an important role
in the success of a study since high and constant purity allows obtaining robust data for
final computational analysis.

As already stated, genome-wide studies from FFPE archival samples may be hindered
by the low efficiency of chromatin isolation, often due to extensive tissue fixation introduced
during routine pathological processing. A solution containing 3.7—4% of formaldehyde
(FA) is routinely used as fixative reagent with a length of fixation that is influenced by
different factors (e.g., day of tissue resection, operators/instrument availability, etc.) [50].
Despite the recent advancements in the standardization of FFPE tissue preparation, the
fixation times are extremely variable [51-53]. Time between surgery and tissue storage



Int. J. Mol. Sci. 2022, 23,1103

7 of 18

can also vary and may impact the preservation of epitopes, thus introducing significant
unwanted bias.

In addition, although preventing hydrolysis during prolonged storage minimizes
protein degradation, FFPE tissues deteriorate over time [54]. Thus, time and storage
conditions can further contribute to the variability of the starting material.

Given this evidence, it is suggested not to enroll, when possible, over-fixed samples
(e.g., samples fixed for more than 72 h) and samples stored for a long time to maximize the
chances of extracting large quantities of high-quality chromatin.

2.2. Chromatin Extraction from FFPE Tissues

Before starting to analyze how the different techniques deal with chromatin extrac-
tion from FFPE specimens, some additional considerations must be taken into account.
Independently from formalin fixation and paraffin embedding, the type of tissue is per se
an important source of variation. Cellular density and structural features of each tissue
may indeed impact chromatin extraction efficiency. Thus, it is strongly suggested to adjust
sonication conditions in function of the tissue processed and to test different conditions
before starting a new study.

For example, chromatin fragmentation should be checked by running decrosslinked
and purified DNA on an agarose gel or through automated capillary electrophoresis
prior to immunoselection. Best results are obtained when most of the fragments range
between 200 and 1000 bp, since lower-size fragments normally indicate high degradation
of the sample (due to excessive sonication and/or poor quality of the starting material),
while higher-size fragments are normally lost during library preparation and could reduce
the final resolution of the assay. Many of the FFPE-ChIP procedures herein described
agree to evaluate the fragmentation of the extracted chromatin before proceeding with the
immunoselection [22,24,25,27].

The amount of starting material can also influence chromatin extraction by limit-
ing the effect of sonication. Thus, chromatin should be extracted starting from equal
amounts of starting material to reduce possible bias deriving from extraction-dependent
chromatin selection.

With the intent of deciphering which procedural parts related to chromatin extrac-
tion from FFPE are most relevant, we conducted a comparative analysis of the differ-
ent procedures proposed in these years. The thickness of the sections processed varies
from 5 to 20 pm, while the number of sections required is normally quite low, ranging
from 1 to 4, with FiT-seq being the only one suggesting a higher number (10 whole sections—
Table 1). However, we found that the amount of starting material needed is not written
in stone and must be adjusted as a function of the kind of tissue, the size of the sample,
and the eventual execution of macro- or microdissection. Even in this case, a preliminary
setting must be performed before starting a new project.

Regarding the initial processing of samples, all the procedures agree to perform
paraffin removal and rehydration of tissue sections (Table 2).

Deparaffination is achieved with a few passages in a deparaffination agent, such as
xylene (FiT-seq, Chrom-EX PE, FiTAc-seq, RCRA ChIP-seq) or limonene-based agents
(PAT-ChIP and EPAT-ChIP). Rehydration is also quite standardized, with minor variations
in passages in decreasing alcohol concentrations, from 100% to 0% (Table 2). The only
exception is represented by the commercial kit truChIP FFPE from Covaris, which proposes
an interesting focused ultrasonication-mediated deparaffination (Table 2). After paraffin
removal and rehydration, all the procedures involve further processing of the sample prior
to chromatin extraction by sonication, although, in this case, the solutions proposed are
more variable. In PAT-ChIP and EPAT-ChIP, for example, sections are lysed in the presence
of a nonionic detergent and subjected to fragmentation by sonication at low amplitudes to
prepare the sample for subsequent processing (Table 2).

Concerning the issue of an extensive fixation of the tissue, introduced during routine
pathological processing [24], the FFPE-ChIP procedures are characterized by different
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strategies to overcome this problem. Excessive sonication indeed may alter the antigenic
properties of chromatin leading to loss of antigenicity and must be avoided. For example,
initial techniques, such as PAT-ChIP and FiT-seq, proposed controlled chromatin digestion
to reduce the complexity of the tissue facilitating the extraction of chromatin. The original
PAT-ChIP procedure indeed used MNase to partially digest DNA [22], while FiT-seq makes
use of proteinase K with the intent of, as stated by the authors themselves, “helping to
resolve the excessive number of crosslinks introduced by long exposure to formaldehyde”
(Table 3) [23].

However, while DNA digestion is quite easy to control through a simple run on an
agarose gel, protein digestion may be “dangerous” considering that a protein is just the
target of the assay. The failure in the application of the FiT-seq by our research group
and the statement by the authors themselves that FiT-seq fails to work with H3K27ac may
indicate the necessity of a tricky fine-tuning of the technique [26].

The main step forward in chromatin extraction from FFPE tissues is probably the
introduction of a heating step to partially revert the crosslinking of FFPE tissues. The first
technique to develop such strategy was EPAT-ChIP in late 2018 (Table 3) [24], followed by
all the subsequently published procedures, such as Chrom-EX PE, FiTAc-seq, and RCRA
ChIP-seq (Table 3) [25-27]. However, these four procedures differ in temperature, time
of incubation, and the presence of detergents. Summarizing, while both Chrom-EX PE
and FiTAc-seq indicate an incubation of 16 h at 65 °C, EPAT-ChIP and RCRA ChIP-seq
suggest shorter times and higher temperatures (1 h at 80 °C and 1 h at 65 °C followed by
30 min at 90 °C, respectively) reducing by 1 day the duration of the procedure (Table 3).
This can be an important advantage, especially considering the high time consumption that
characterizes all these procedures.

A final and important point to discuss regards the conditions of sonication. In addition
to the different types and concentrations of detergents used to achieve extraction and solubi-
lization of chromatin, the main distinction found is between the usage of probe sonicators or
focused ultrasonicators. PAT-ChIP and EPAT-ChIP, together with the procedure described
for the commercial kit ChIP-IT FFPE Chromatin Preparation II from Active Motif, are the
only procedures that involve the use of a “canonical” probe sonicator (Table 3) [22,24]. All
the other techniques make use of focused ultrasonication systems such as the one from
Covaris (FiT-seq, FiTAc-seq and the commercial kit truChIP FFPE—Table 3) [23,26] or
Bioruptor from Diagenode (Chrom-EX PE and RCRA ChIP-seq—Table 3) [25,27]. Although
focused ultrasonication offers advantages in terms of reproducibility and recovery, probe
sonicators are much more widely distributed, allowing the execution of the technique in all
standard laboratories.
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Table 2. Summary of the procedural steps used by the different FFPE-ChIP techniques and kits for tissue processing before chromatin isolation.

ChIP-IT FFPE

PAT-ChIP FiT-seq EPAT-ChIP Chrom-EX PE FiTAc-seq RCRA ChIP-seq Chromatin truChIP FFPE
Preparation II
. L. Histolemon, 5 times . Histolemon, 5 times . .
Deparaffination for 10 min Xylene, 3 times for 10 min Xylene Xylene Xylene, 3 times Xylene, 3 times None
Rehydration (%) 100, 95, 70, 50,20,0 95, 80, 70,50,20,0 100, 95, 70, 50, 20, 0 95, 70, 50, 20 100, 70,0 100, 952’(? 0(’) 70, 50, 100, 70, 50, 20, 0 None
30 min at RT with 1 h at 40 °C with 30 min at RT with
Lysis and RNA digestion  0.5% Tween-20 and 0.1% SDS 0.5% Tween-20 and None None None None None
10 pg/mL RNase A o 10 pg/mL RNase A
Sonication (sample Probe sonicator, Probe sonicator,
P 3 x 30 s at 40% None 3 x 30 s at 40% None None None None None

homogenization)

amplitude

amplitude

are reported.

Conditions are reported only if published or described in kit datasheets. Buffer composition: in the absence of other relevant features, only the concentrations of detergents and salts
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Table 3. Summary of the procedural steps used by the different FFPE-ChIP techniques and kits for chromatin extraction.
ChIP-IT FFPE
PAT-ChIP FiT-seq EPAT-ChIP Chrom-EX PE FiTAc-seq RCRA ChIP-seq Chromatin truChIP FFPE
Preparation II
1 min at 37 °C
MNase digestion with 0.1U None None None None None None None
MNase/ pg of
chromatin
40 ng/uL for 80 ng/uL for
Prot. K treatment None 510 min None None None None None 10 min at 40 °C
16 h at 65 °C with 60 min at 65 °C
. 1h at 80 °C with 0.5% Triton-X 100 16 h at 65 °C with followed by 1hat50°Cin
Heating (LRC) None None 0.05% Tween-20  and 0.1% sodium 1% SDS 30minat90°Cin  “ChIP buffer” None
deoxycholate 0.1% SDS
. 10 min in ice with
Lysis (I) None None None 0.5% IGEPAL None None None None
Covaris M220,
. . 5 min at 20 °C
Sonication (duty factor 20%
(paraffin None None None None None None None y rac 7
emulsification) peak incident 75
W, 200 cycles per
burst)
Bioruptor Twin Covaris M220,
Covaris E210, (UCpD- 400) Covaris E220 Bioruptor II 10-30 min at 7 °C
Sonication Probe sonicator, 40 min in 0.1% Probe sonicator, 3 % (30 x 30 s’) in 5 min in 1% SDS 60 x 35) sin 1; Y Probe sonicator, (duty factor 15%,
. 3 x 30 s at85% SDS (duty factor 3 x 30 s at 40% o) m (duty factor 5%, . (; 40 x 30 s at42% peak incident
(chromatin . . . . . . 1% Triton X-100, L. Triton-X 100, 0.5% ) .
extraction) amplitude in 0.1% 20%, intensity 8, amplitude in 0.1% 0.1% sodium peak incident IGEPAL (BM amplitude in 75 W, 200 cycles
SDS 200 cycles per SDS e 105 W, 200 cycles . “ChlIP buffer” per burst) after the
deoxycholate, Equipment) L
burst) A per burst) addition of
0.05% SDS “ - ”
shearing buffer

Conditions are reported only if published or described in kit datasheets. Buffer composition: in the absence of other relevant features, only the concentrations of detergents and salts

are reported.
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2.3. Chromatin Immunoselection

Once the objective of getting high amounts of good-quality chromatin is achieved,
the criticisms related to chromatin immunoselection are largely comparable to those of
standard ChIP techniques. Incubation conditions are influenced by the ratio between the
amount of chromatin and antibody, the volume of incubation, the presence of detergents
and salts, and the time and the temperature of incubation. All these aspects, together
with the system used to capture the chromatin-antibody complexes and the washes used
to eliminate the not specific binding of chromatin, must be carefully gauged. Each ChIP
technique, regardless of the starting material, makes use of its own strategy to reach the
final goal, which is to maximize the binding of the target epitopes, while reducing as much
as possible the noise caused by unwanted nonspecific binding of chromatin.

Regarding the chromatin required for each immunoselection (input), many of the
techniques examined suggest to decrosslink, purify, and quantify the DNA from an aliquot
of the extracted chromatin to precisely estimate its amount [24-26]. This step increases by
1 day the completion of the procedure but ensures the performance of the assay with both
controlled fragmentation and amount of chromatin. When declared, all the procedures
agree to submit to immunoselection a quantity of input between 0.4 and 4 pg (Table 4).

Interestingly, FiTAc-seq makes use of a carrier-assisted ChIP method developed by
other authors [55] that entails the mixing of input chromatin with large quantities of recom-
binant histone H2B and total RNA to improve the biochemical conditions of incubation
with the antibody [26], an approach similar to the Bryan Turner lab-pioneered Carrier-ChIP
(CChIP) method [56]. However, although useful, this strategy involves the use of high
amounts of immunoglobulins, which can have a significant impact on the final cost of
a project.

Although the composition of the incubation mixture can vary a lot, almost all the
procedures perform the incubation with the antibody for 16 h at +4 °C, with the intent of
optimizing the interaction between the antibody and its target epitopes (Table 4). However,
RCRA ChIP-seq is the only technique among those herein analyzed that uses short times of
incubation (40 s) exploiting an ultrasonic water bath (Table 4) [27].

Chromatin—antibody complexes are normally captured using protein G and/or A
beads that can be agarose or sepharose beads and magnetic or not magnetic (Table 4).
Column systems can also be used, as reported in FiT-seq technique (Table 4) [23]. Elution is
performed using solutions containing 1% SDS, while chromatin is fully decrosslinked by a
16 h incubation at 65 °C, often in the presence of 0.2 M NaCl, and proteins are eliminated
by proteinase K digestion (Table 4). Except for PAT-ChIP, all the FFPE-ChIP procedures,
including EPAT-ChIP, exploit fast column-based kits for the final purification of DNA
(Table 4).

As for all ChIP protocols, the quality of the antibody is fundamental for the feasibility
of the entire procedure. For this reason, it is strongly suggested to get, when available,
ChIP- or ChIP-seq-grade antibodies. However, based on our direct experience, the single
lots of antibodies may not be tested by suppliers and the observation of high lot-to-lot
variation is not to be considered a remote event. Thus, the preliminary test of different lots
of antibodies is fundamental to ensure a homogeneous experimental condition. In addition,
coupling this test with the real-time qPCR analysis of regions known to be enriched or
not enriched by the histone PTM under study can provide an idea of the enrichment that
can be reached with a specific immunoglobulin (see next section for details). The best
condition will be the one showing the higher level of specificity of the immunoselection
(the signal/noise ratio), while getting sufficient final DNA to produce a high-quality library
(the optimal amount of DNA can vary as a function of reagents or the kit used to prepare
the libraries). Details on the strategies to evaluate the specificity of the immunoselection
are described in the next section.
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Table 4. Summary of the procedural steps used by the different FFPE-ChIP procedures for chromatin immunoselection and DNA purification.

PAT-ChIP FiT-seq EPAT-ChIP Chrom-EX PE FiTAc-seq RCRA ChIP-seq
>0.4 ug (in the presence
Immunoselection: 0.5-4 NA 0.4-2 NA of 20 pg recombinant 0.4-2
input chromatin tested TEHE o STEHE o H2B and 1 pug reference STEHE
total RNA)
a0 s o ; o In an ultrasonic water
Immunoselection: 16 h at +4 °C in 0.02% 16 h at +4 °C in 0.02% 0 if/h 1211 i T(I;ton X}—ll(l)O; 110? }}a: 4 )(3_11%5) 1 S/BSDI\S/[’ bath for 40 min in 150
conditions SDS, 50 mM NaCl SDS, 50 mM NaCl B e mM NaCl, 1% Triton
e X-100, 0.5% IGEPAL
Chromatin-ab complex Protein G-Sepharose Protein G-Sepharose . . Protein A and protein G Protein G magnetic
1 Protein G magnetic beads .
separation beads beads magnetic beads beads
Protein G Agarose 4 times with: (i) 100 mM 4 times with: (i) 150 mM
1 o, 3 - OO 1 _
3 times with high Columns .(Actlve 3 times with high NaCl, l %o Triton X-100, NaCl, 1% Triton X 100,
o Motif) o 0.1% sodium deoxycholate; 0.5% IGEPAL (2 times);
volumes (10 mL) of 1% volumes (10 mL) of 1% .. o . . o . A
Triton X-100 and Triton-X 100 and (i1) 500 mM NaCl, 1% 6 times with 0.7% (ii) 300 mM NaCl, 1%
Washes increasing NaCl increasing NaCl Triton X-100, 0.1% sodium sodium deoxycholate, Triton X-100, 0.1% SDS,
ng 8 deoxycholate; (iii) 0.25 M 1% NP40, 0.5 M LiCl 0.1% Na-deoxycholate;
concentrations (50, 100, concentrations (50, 100, . o o . o
and 150 mM) and 150 mM) LiCl2, 0.5% NP-40, 0.5% (iii) 250 mM LiCl, 1%
sodium deoxycholate; Triton X-100, 0.5%
(iv) TE buffer Na-deoxycholate
Elution With 1% SDS With 1% SDS N.A. With 1% SDS With 1% SDS
.. 16 h at 65 °C in the 16 h at 65 °C in the 5 5 16 h at 65 °C in the
Decrosslinking presence of 0.2 M NaCl N-A. presence of 0.2 M NaCl 16hat65°C 6-16hat65°C presence of 0.2 M NaCl
QIAquick PCR
QIAquick PCR MinElute PCR purification QIAquick PCR P‘gifg:‘;“&ﬁ;??%ﬁ“
DNA purification Phenol-chloroform N.A. Purification Kit (Qiagen, kit (Qiagen, Hilden, Purification Kit (Qiagen, ! Y
Hilden, Germany) Germany) Hilden, Germany) Agencourt AMPure XP
’ ’ (Beckman Coulter, Brea,
CA, USA)
PreCR Repair Mix (New
Repair None None None None None England Biolabs, Beverly,
MA, USA)

N.A. indicates that the information is not available in published manuscripts. Conditions are reported only if published or described in kit datasheets. Buffer composition: in the absence

of other relevant features, only the concentrations of detergents and salts are reported.
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2.4. DNA Analysis and Experimental Controls

Once final DNA (bound) is obtained, it is strongly suggested to perform a few quality
checks before proceeding with library preparation and sequencing. DNA is normally
fluorometrically quantified, and the enrichment of total DNA, with respect to the input, can
be estimated. DNA quantitation is important to ensure library preparation under controlled
and comparable conditions, especially if several samples must be compared, limiting library
and sequencing bias that can negatively impact the final data. As already stated before,
some authors indicate that an evaluation of the specificity of the immunoselection should
be performed prior to library preparation [24,25]. To reach this aim, primer pairs that
allow the amplification of genomic regions known to be enriched and not enriched by
the histone modification or TF of interest must be available for a real-time qPCR analysis.
The regions of interest can be identified from previously published papers or exploring
ChIP-seq databases such as the one from UCSC Genome Browser. An example of this kind
of evaluation based on H3K4me3 ChIP-Seq data from the ENCODE project is shown in
Figure 3.

5kb Scale 5kb
143,665,000/ 143,670,000 143,675.000| chr15: 97,830,000| 97,835,000/ 97,840,000/
msHHEH— ACTB —Hi | J COL2A1
. [ | | |
50
A_ (

M _ o __ b

50

Figure 3. Identification of H3K4me3 control regions for the evaluation of the specificity of the
immunoselection by real-time qPCR. Regions known to be enriched or not enriched can be used
for antibody titration and to evaluate the specificity of the immunoselected DNA prior to library
preparation and sequencing. Snapshots of mouse H3K4me3-enriched (ACTB) and not enriched
(COL2A1) gene promoters are shown as example. ChIP-Seq data are from the ENCODE project and
were taken from UCSC Genome Browser (http://genome.ucsc.edu (accessed on 7 November 2021)).
The sequences we used to amplify as a control of specificity of H3K4me3 experiments on mouse
tissues are indicated by the light-red vertical bars.

Primer pairs for the analysis of histone PTMs such as H3K4me3, H3K27me3, H3K27ac,
H3ac, H4ac, RNA polymerase II, and CTCF in human and murine models are already
available in literature [22,24,29,30]. In addition, this analysis can be useful to control library
preparation and sequencing, since the level of enrichment identified by qPCR is expected
to be maintained after sequencing. However, the evaluation of the level of specificity of the
immunoselection through this analysis is not always easy to interpret, since a cutoff value
for the fold enrichment between the regions expected to be enriched and the one expected
not to be enriched (which should represent the noise or background) for a specific antibody
and sample is normally difficult to set. The titration of the antibody, already described in
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the previous section, can also contribute to get an idea of the level of enrichment that can
be reached with a specific immunoglobulin.

To ensure control over the reproducibility of the assays performed at different times, a
technical control of immunoselection might also be considered. For example, chromatin
extracted from a cell line routinely used in the lab and already immunoselected with the
same antibody can be used to this end. Lastly, negative controls, such as no antibody
(mock) or an unrelated antibody (e.g., an immunoglobulin of the same class but not able to
recognize chromatin proteins), can also be added to get an idea of the nonspecific binding
of chromatin. However, it should be remembered that both these controls have limitations
that can give a wrong idea of the specificity of the immunoselection; thus, the evaluation of
enrichment over background described above should be preferred.

2.5. A Novel Enzyme-Tethering Strategy

Recently, enzyme-tethering strategies, such as CUT&RUN [48] and CUT&Tag [49],
have become quite popular alternatives to canonical ChIP-seq procedures. These methods
were developed to map in situ histone modifications and TF binding using a limited number
of cells, while also allowing single-cell studies. In these techniques, chromatin is not
extracted, but the enzymatic activity of MNase or hyperactive Tn5 transposase, guided by
specific antibodies directed against the target under study, are exploited to isolate selected
DNA. In particular, CUT&Tag uses a Tn5 transposase-based tagmentation to fragment
chromatin while simultaneously introducing barcoded adapters for PCR amplification
within intact cells [49].

A few months ago, a further technique exploiting an enzyme-tethering strategy for
chromatin profiling in FFPE samples was published [28]. This technique is named FACT-
seq and combines a novel fusion protein of hyperactive Tn5 transposase and protein A
transposition and T7 in vitro transcription (IVT) to perform chromatin studies in FFPE
tissues. Interestingly, the procedure was developed to work with nuclei isolated after
enzymatic (collagenase and hyaluronidase treatment) and physical (syringe needle passing)
disruption of the FFPE tissue. Nuclei are then counted and subjected to partial crosslinking
reversal by heat before being incubated with the antibody directed against the target under
study [28].

Before setting their procedure, the authors demonstrated that the standard CUT&Tag
protocol is not suitable for FFPE samples, suggesting that fragmentation of DNA induced
during crosslinking reversal of archival FFPE chromatin may be the cause of such failure.
Thus, they thought to overcome this problem using pA-Tn5 loaded with an adapter con-
taining the T7 promoter sequence. They hypothesized that, even if there are DNA breaks
in the middle of DNA fragments, they could still decode the insertion sites of pA-Tn5
transposase by transferring broken DNA fragments into RNA molecules with IVT. The
IVT RNA is then reverse-transcribed in cDNA, purified, and converted to double-stranded
cDNA; then, the library is prepared using, again, Tn5 tagmentation [28].

Through their work, the authors reached the objective of being the first to develop a
technique based on enzyme-tethering strategies, which allows the epigenomic profiling
of a low number of nuclei (about 4000) from FFPE tissues. Unfortunately, unlike the
standard CUT&Tag procedure, the protocol is time-consuming (5 days of work, excluding
sequencing) and is based on several steps requiring enzymatic activities that may increase
the experimental variability, with the need of a complicated fine-tuning of the technique.
As declared by the same authors, the technique must be adapted as a function of the histone
modification investigated (in particular the antigen retrieval step) [28]. The FACT-seq
procedure represents an extraordinary starting point, but further studies are needed to
develop a technique sufficiently robust and less tricky to be widely applied.

3. Conclusions and Future Prospects

The chromatin regulatory landscape combines histone modifications, TF binding, and
the function of genomic elements to determine the biological function of chromatin. The
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large-scale epigenomic studies from the Roadmap Epigenomics Mapping Consortium
(http:/ /www.roadmapepigenomics.org (accessed on 14 November 2021)) has generated
detailed and accurate descriptions and classifications of the functional states of regulatory
elements in human stem cells and primary ex vivo tissues [11,57-62]. The combination of
these data with chromatin accessibility by ATAC-seq and gene expression profiles from
RNA sequencing (RNA-seq) will allow obtaining a wide picture of the tissue-specific
epigenomic landscape from a multidimensional perspective.

Chromatin is profoundly rearranged in cancer inducing the activation of oncogenes, as
well as the inactivation of tumor-suppressor genes, which play a role in cancer progression
and invasion. FFPE samples represent the gold standard for storage of pathology samples.
After our first proposal of a ChIP technique applicable to FFPE tissues, several other
procedures have been published in the last 5 years. Recent protocols share the introduction
of a heat-mediated limited reversal of crosslinking that facilitates the subsequent extraction
of chromatin by sonication, suggesting it as a useful way to overcome the problem related
to FFPE sample fixation.

However, in some cases, clinical biopsies may have very limited material, leading to
significant sensitivity problems. Enzyme-tethering strategies working in situ to produce
high-quality chromatin profiles are currently available for fresh/frozen cells and tissues. A
first attempt to apply such techniques to FFPE archival samples was recently developed,
although there is, in our opinion, considerable scope for improvement.

Single-cell technology is another important frontier in chromatin studies. Tissues
are complex mixtures of cells and, although strategies to enrich the content of a tissue
component such as macro- and microdissection can be useful, the presence of several
cellular components may normally impact the final resolution of the assay and gives
an incomplete picture of the epigenomic cellular landscape. scRNAseq and scATACseq
techniques are currently available, and a few ChIP techniques allowing single-cell analysis
have also been introduced in recent years [48,49]. We believe that the day is not far off
when single-cell approaches will be applied to FFPE tissues to reveal the signals associated
with the different cell types.
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