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Abstract: In this work, we have described the characterization of hybrid silica nanoparticles of
50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2

sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectro-
scopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms,
thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles
modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2

sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively
at 50 ◦C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm)
and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their
significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory
(IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 ◦C of the four materials of
study, which turned out to be >70, being in the range of performance of the most efficient microporous
materials reported to date, even surpassing those based on silica.

Keywords: functional silica nanoparticles; CO2 adsorption; CO2/N2 selectivity; hybrid nanomaterials;
surface spectroscopies

1. Introduction

Anthropogenic emission of greenhouse gasses, especially carbon dioxide (CO2), has
been the center of attention in the media, scientific, and public communities for over four
decades [1], reaching an inflection point in 1990, with the Kyoto protocol agreements [2].
Since then, and despite CO2 emissions in developed countries having stabilized [3] and
COVID-19 pandemic resulting in an extreme drop in daily carbon dioxide emissions, de-
veloping countries have doubled it, partially, as a consequence of their growing exports [4].
Indeed, it is estimated that around 80% of China’s power is associated to some extend with
fossil fuels [5], while neighboring India generates two thirds of its electricity using coal,
and many other Western economies also depend on coal for power generation.

Although many technologies exist, carbon capture storage (CCS) is still one of the
most applied technologies for the mitigation of CO2 emission. The process involves the
separation of CO2 from its anthropogenic point sources. In that context, amine scrubbing
is one of the most advanced and spread processes, where aqueous solutions of various
alkylamines, i.e., monoethanolamine (MEA) [6], remove H2S and CO2 from the flue gas
streams of conventional power plants. Amines react with CO2 to form carbamate showing
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great selectivity over other gases. However they face several limitations as energy require-
ments are non-negligible [7] and the amine-system is subjected to both corrosion [8] and
degradation [9]. Another liquid-based CO2 scrubber that is showing great potential are
ionic liquids; however, they also display a major drawback as the viscosity increases upon
CO2 sequestration [10].

This situation has led to extensive empirical search for alternatives where liquid
sorbents are replaced by porous-based materials, such as mesoporous silicas [11], metal-
organic frameworks [12,13], porous carbon materials [14,15], and zeolites [16,17]. These
materials have attracted a considerable interest as they usually possess large surface
areas, but also rise several questions regarding their selectivity, adsorption/desorption
kinetics, sorbent cost, etc. [18–20]. It is evident and undeniable that each material has its
own individual limitations hindering their large-scale deployment, i.e., (i) MOFs show
outstanding features including easily tunable and tailored structures, well-defined pore
properties, and high recyclability [20]; however, they are high-cost materials in terms of
production, making them economically unviable, and also their stability is compromised
in the presence of moisture [21]. (ii) Porous carbon materials, and in particular, their
heteroatom-doped counterparts, have emerged as promising CO2 uptake candidates [22,23].
The heteroatom improves the electronegativity of the material enhancing the CO2 capture;
however, there is an important discrepancy about the CO2 binding mechanisms, as it is
yet controversial whether the micropore distribution and not the heteroatom doping that
determines the CO2 capture and CO2/N2 selectivity [24]. Finally, (iii) SiO2 porous materials
benefits from their easy surface modification, low energy consumption, considerable
adsorption capacity, good selectivity, and tolerance to moisture [25–27]; thus, surface
modification by amine-based ligands is still a widespread tool for the improvement of the
sorption characteristics [28–31].

Based on our previous studies in silica nanoparticles (SiO2NPs) [32], where a series
of amine ligands were covalently anchored on 200 nm size non-mesoporous SiO2NPs
(SiO2 (200 nm)) and their efficiency towards CO2 was assessed, we here moved one
step further by selecting the most efficient moiety and incorporating it into 50 nm size
version of such materials, (SiO2 (50 nm)). Thus, in the present work, aminosilane-modified
SiO2 nanoparticles were synthesized in the presence of (3-aminopropyl) triethoxysilane.
The surface properties, morphology, and CO2 adsorption/desorption characteristics of
the novel 50 nm SiO2NPs before and after the modification were studied as well as a
comparative between the previously reported 200 nm size and the new nanomaterials
(Figure 1).
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Figure 1. Representation of the two silica-based nanoparticles coated with APTES.

Finally, and due to their promising characteristics, that will be discussed in this study,
i.e., easy functionalization, long-term stability, CO2 capture, and outstanding selectivity
for CO2 gas separation; these hybrid silica nanoparticles could be potential modifiers on
NC-CPEs, providing a customized surface for CO2 sensing and capture applications.
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2. Materials and Methods
2.1. Materials

For this study, we used: 50 nm size SiO2NPs (Nanocym, Scottsdale, AZ, USA).
(3-mercaptopropyl) trimethoxysilane (MPTMS) > 96%, 3-aminepropyltriethoxysilane
(APTES) > 98%, Ninhydrin 99%, from TCI Europe N. V., Zwijndrecht, Belgium; Toluene
99.8% was purchased from VWR Chemicals, PA, USA and Hexylamine 99% were purchased
from Merck Life Science S.L.U., Darmstadt, Germany All chemicals were used without
further purification. The gold wafers were acquired from Arrandee metal Gmbh & Co. KG,
Werther, Germany.

2.2. F3-Aminepropyltriethoxysilaneization of 50 nm SiO2 Nanoparticles

The APTES functionalization of the 50 nm size SiO2NPs was conducted following and
adapting a protocol by Chaix et al. [33], Scheme 1.
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Scheme 1. APTES functionalization of SiO2 nanoparticles.

A total of 600 mg of SiO2NPs were suspended in 25 mL of toluene anhydrous, after
that, 1 mL of APTES (4.3 mmol) was added. The reaction mixture was then heated up
at 50 ◦C and kept under stirring for 24 h. After that, the suspension was centrifuged at
10,500× g for 10 min, and the supernatant discarded. The crude was exhaustively washed
with EtOH and approximately 600 mg of APTES@SiO2 (50 nm) was recovered.

2.3. Quantification of APTES

The quantification of the chemically attached APTES ligands to the silica nanoparticle
was assessed by the colorimetric assay, Kaiser test. The overall mechanism involves the
monodehydratation of ninhydrin, followed by the formation of the Schiff’s base and
the condensation between two ninhydrin-based intermediates through a ketimine bond
leading in the Ruhemann’s purple dye (Scheme 2). A calibration curve of the Ruhemann’s
dye was recorded using hexylamine solutions in EtOH at different concentrations (showed
in the Results Section).
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Scheme 2. Formation of the Ruhemann’s purple agent.

Kaiser Test on APTES@SiO2 (50 nm)

Following the procedure of Poli et al. [34], 6.6 mg of APTES@SiO2 (50 nm) and 1 mL
of the ninhydrin solution were introduced in a sealed reaction glass tube, and diluted in
EtOH up to a total volume of 6 mL. The mixture was heated up at 100 ◦C and kept under
stirring for 90 min, after that the suspension was cooled down, centrifuged at 10,500× g for
15 min, and the supernatant was analyzed by UV-Vis.

2.4. Surface Characterization
2.4.1. XPS

X-ray photoelectron spectroscopy (XPS) analysis of the samples was carried out in an
ultra-high vacuum chamber equipped with a hemispherical electron analyzer and with
the use of an Al Kα X-ray source (1486.6 eV) with an aperture of 7 × 20 mm. The base
pressure in the chamber was 5 × 10−10 mbar, and the experiments were performed at



Nanomaterials 2021, 11, 2893 4 of 19

room temperature. The peak decomposition in different components was shaped, after
background subtraction, as a convolution of Lorentzian and Gaussian curves. Binding
energies were calibrated against the binding energy of the Au 4f7/2 peak at 84.0 eV for
the gold samples. With the aim of analyzing the SiO2 (50 nm) and APTES@SiO2 (50 nm)
elemental composition and chemical bonding, the nanoparticles were immobilized in a
11 × 11 × 1 mm size gold wafer following a protocol adapted from Cueto et al. [35]. To a
solution of 3-MPTS (40 mM) in MeOH was added a gold wafer and was kept submerged
for 3 h. After that, the wafer was rinsed with MeOH, dried, and submerged in a different
solution of NaOH 0.01 M for 3 h. In parallel, a pH = 9 suspension of SiO2 (100 mg) in 20 mL
of mQ water was prepared. The suspension was sonicated for 10–15 min, and a few drops
were placed over the Au wafer bearing the linker until dryness. The unreacted SiO2NPs
were removed by consecutive rinsing with EtOH and H2O.

2.4.2. Infrared Spectroscopy

The samples were recorded in a Nicolet IS50 (ThermoFisher Scientific, USA) equipped
with a DLaTGS detector and a XT-KBr beamsplitter. Sample aliquots of approximately
10 mg of both SiO2 (50 nm) and APTES@SiO2 (50 nm) were placed onto the ATR dia-
mond and each spectrum was recorded without additional sample preparation and by
accumulating 64 scans in the 4000–500 cm−1 spectral range with a resolution of 0.1 cm−1.

2.4.3. SEM Microscopy

The hybrid nanomaterials were immobilized into Au wafers following the protocol
adapted from Cueto et al. [35] and recorded in a ThermoScientific Apreo C-LV field emission
electron microscope (FE-SEM) equipped with an Aztec Oxford energy dispersive X-ray
microanalysis system (EDX)

2.4.4. AFM Microscopy

Surface morphology of the materials was measured by atomic force microscopy
(AFM) using a XE-150 SPM/AFM (Park Systems Corp., Suwon, Korea), operating in air at
room temperature. True Non-Contact ModeTM provided high-resolution images of SiO2
nanoparticles and allowed surface preservation. Heavily doped silicon tips (910M-ACTA)
with aluminum coating 30 nm thick (force constant 40 N/m, resonance frequency 300 kHz)
were used. The tip radius of curvature reported by the manufacturer is less than 10 nm.
Images were recorded at a scan rate of 0.3 Hz and a resolution of 256 × 256 pixels. For
a 3 × 3 micron2 scan area, one pixel in a 256 × 256 image corresponds to an area of
11.7 × 11.7 nm. XEI program was used for image processing and measurements of the
acquired data. Samples were analyzed without any pre-treatment.

2.5. Thermogravimetric Analisys (TGA)

TGA were carried out in a MK-M5 microbalance (CI Electronic, Salisbury, UK) under
an air flow of 50 cm3/min with a heating program of 10 ◦C/min from room temperature
up to 950 ◦C.

2.6. CO2 Adsorption and N2 Adsorption Isotherms

CO2 adsorption isotherms of the samples at 0, 25, and 50 ◦C and N2 adsorption
isotherms at 25 and 50 ◦C were measured in a volumetric device Autosorb-1 (Quantachrome)
in the 10−5 bar to 1 bar pressure range (gas purity; N2: 99.9996%, CO2: 99.995%). From the
CO2 adsorption isotherms at 0 ◦C, the narrow micropore volume (pore width smaller than
about 0.7 nm) was obtained by applying the Dubinin-Radushkevich equation [36] in the
10−4 to 0.03 P/P0 range. The isosteric heat of adsorption was calculated by applying the
Clausius-Clapeyron equation to the adsorption isotherms measured at the afore mentioned
three temperatures and also applying the Virial equation, simultaneously, to two couples of
isotherms (isotherms at 0 and 25 ◦C, and isotherms at 25 and 50 ◦C) following the method-
ology proposed in the bibliography [37,38]. More details are included in ESI (Figure S1).
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Samples (c.a. 250 mg) were degassed at 150 ◦C for 18 h under vacuum conditions before
each sorption measurement, with the aim of eliminating the sample humidity and any
other adsorbed gases. The porous texture of the materials was probed by physical adsorp-
tion/desorption of N2 at −196 ◦C in a volumetric device (ASAP 2010 from Micromeritics).
The samples were degassed under the same conditions as described above. The surface
area, SBET, was calculated by the Brunnauer-Emmet-Teller (BET) equation from the N2
adsorption data in the relative pressure range of ca. 0.015–0.25, the external surface area,
Sext, was obtained by applying the t-plot method to the adsorption branch and the total
pore volume VT, was obtained by the Gurvich rule from the amount of adsorbed N2 at
the relative pressure of 0.95. The micropore volume, VDR, N2, was calculated by applying
the Dubinin-Radushkevich method at P/P0 < 0.1, and the mesopore volume, Vmp, was
estimated as Vmp = VT − VDR, N2 [39].

2.7. Adsorption Selectivity of Binary Mixtures of CO2/N2

The adsorption selectivity of CO2 over N2 on the SiO2 nanoparticles both pristine and
functionalized were estimated by applying the Ideal Adsorbed Solution Theory (IAST)
proposed by Myers and Prausnitz [40] to the pure CO2 and N2 adsorption isotherms
measured at 25 and 50 ◦C. The detailed thermodynamic deduction of the IAST theory can
be found in the original work of Myers and Prausnitz [40] and many other articles [41,42].
Here, we briefly summarized IAST to introduce the main equation and define the notation.
IAST allows to predict the amount of each gas adsorbed on the surface of an adsorbent
in equilibrium with a multicomponent gaseous mixture. The following assumptions are
made for the isothermal adsorption process: (1) the adsorbent is thermodynamically inert
(i.e., the change on its thermodynamic properties is negligible compared to the change in
the same property of the adsorbate); (2) the surface area of the adsorbed is invariant for all
gases (i.e., the adsorbed gases have access to the same area of the adsorbent); and (3) the
Gibbs definition of adsorption applies for the process.

With the assumptions of this adsorption model, the thermodynamic equations can
be written for the adsorbed phase by changing the volume for area A, and the pressure
for the spreading pressure π, which is the analog to pressure in two dimensions. Thus, for
example, the Gibbs free energy, G, of the adsorbed phase is defined as:

dG = −SdT + Adπ +
N

∑
i=1

µidni (1)

where, ni is the moles of gas adsorbed in the surface area, A, at the spreading pressure,
π and µi are the chemical potential of the adsorbed phase.

The spreading pressure cannot be measured, but can be calculated from adsorption
isotherms of the pure gases (Equation (2)):

π0
i =

RT
A

∫ P0
i

0

ni
Pi

dPi (2)

where, P0
i is the partial pressure of pure component i at the spreading pressure and

temperature of the mixture. The integral fitting in Equation (2) can be calculated by two
different methods: (i) by fitting the experimental adsorption isotherms data to a model
from which an analytical solution can be found or (ii) by a numerical calculation. Here, we
used the second method. In the case of an ideal solution, the partial pressure is calculated
using an analog to Raoult’s law (Equation (3)):

Pi = yiP = xiP0
i (π) (3)

yi and xi are the mole fraction of component i in the gas and adsorbed phases, respectively.
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Additionally, the following relations are followed for an ideal solution where the
mixing process is carried out at constant spreading pressure, π:

N

∑
i=1

xi = 1 (4)

N

∑
i=1

yi = 1 (5)

π = π0
1 = π0

2 = · · · = π0
N (6)

In the case of a binary mixture, there are nine unknowns and seven independent
equations. Thus, to calculate all the variables, two of them have to be set (for example,
P and y1). The procedure to solve IAST consists of the following steps: (i) to calculate the
spreading pressures for each component from the pure isotherms, (ii) at a given P and y1,
P0

i at the same spreading pressures (Equation (6)) for each component are determined, and
(iii) the other variables are calculated by using Equations (3)–(5).

The total adsorbed amount, nT, is calculated from the pure isotherms taking into
account the mole fractions of each component in the adsorbed phase, xi (Equation (7)):

1
nT

=
N

∑
i=1

xi

n0
i

(7)

The adsorption isotherm of each component in the mixture can be calculated by
Equation (8):

ni = xinT (8)

Finally, the selectivity coefficient of component i over j is defined by the following
Equation (9):

Si,j =

xi
yi
xj
yj

=
P0

j

P0
i

(9)

3. Results

Typically, at nanoscale, particles exhibit many thermo-physical features distinct from
those found at the microscale. Therefore, as the size decreases, the increased surface-
to-volume ratio and the associated higher surface energy enhance the reactivity of most
nanoparticles. In our case, a comparison study between 50 and 200 nm was needed.

3.1. Characterization of the Nanomaterials
3.1.1. Colorimetric Assay

The preparation of the hexylamine calibration curve (Figure 2a) was performed
as follows:
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A stock solution of hexylamine and ninhydrin were prepared at a concentration of
1.43 × 10−2 M and 1.56 × 10−2 M, respectively, keeping the ninhydrin solution in the dark
during the course of the analysis. Analyte solutions containing hexylamine concentrations
ranging from 2.48 × 10−5 M to 1.41 × 10−3 M were freshly prepared (0.1 to 0.5 mL of the
hexylamine solution, 1 mL of the ninhydrin solution, and absolute ethanol up to a total
volume of 6 mL were introduced in each sample). The flasks were sealed, stirred for 90 min
at 100 ◦C, and the UV-Vis spectroscopy experiments (Figure 2b) were conducted once the
solutions were cooled down.

Kaiser tests were then conducted in the two samples bearing the unknown concen-
tration of APTES, (i) APTES@SiO2 (200 nm), and (ii) APTES@SiO2 (50 nm) (Figure 2 and
Scheme 2). The tests were performed as follows: (i) 60.2 mg of APTES@SiO2 (200 nm) was
suspended in 6 mL solution EtOH/ninhydrin (5:1) stirred for 90 min at 100 ◦C and the
UV-Vis spectrum was recorded of the filtered solution (Figure 3, red); similarly (ii) 6.6 mg of
the APTES@SiO2 (50 nm) was suspended in 6 mL solution EtOH/ninhydrin (5:1) stirred for
90 min at 100 ◦C and the UV-Vis spectrum was recorded of the filtered solution (Figure 3,
navy blue).
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The recorded Absorbance at λ = 579 nm for the Ruhemann’s purple were 0.60 and
0.66 respectively, which corresponds to concentrations of (C)APTES = 6.85 × 10−4 M for
APTES@SiO2 (200 nm) and (C)APTES = 8.55 × 10−4 M for APTES@SiO2 (50 nm). Resulting
in coverages of 69 µmol (APTES)/g SiO2 and 780 µmol (APTES)/g SiO2 respectively, we
observe a clear improvement in the grafting capacity of the nanoparticles, which was
expected as the effective surface per nanoparticle is four times larger and the surface energy
is increased.

3.1.2. X-ray Photoelectron Spectroscopy

A XPS analysis of the SiO2 (50 nm) nanoparticles before and after APTES adsorp-
tion was performed in order to confirm the success of the APTES grafting on the silica
NPs. As presented in Figure 4, C 1s and N 1s core levels peaks were compared before
(SiO2 (50 nm)) and after (APTES@SiO2 (50 nm)) APTES functionalization.

XPS spectra of the N (1s) region (Figure 4, left) shows a remarkable increase of the nitro-
gen intensity after APTES functionalization process, deconvolution of the signal shows only
one component at a binding energy of 400.5 eV, which is attributed to NH2 groups [43,44],
due to the chemical composition of the APTES molecule. A deconvolution study of the
C 1s peak (Figure 4, right) shows three components for both cases, the first component has
a binding energy (B.E.) at 284.8 eV is attributed to the C–H and C–C group [35], the second
component at 286.6 eV corresponds to O–CH3 (MPTS-mediated binding by Au wafers
to NPs) and C–N groups (APTES chemical composition), whereas the third component
observed at 288.7 eV is assigned to the C=O groups. After APTES functionalization there is
a remarkable increase, four times the intensity for the first component (at 284.8 eV, assigned
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to the C–H and C–C group [35]), and three times the intensity for the second component at
286.6 eV related to the C–N groups, both carbon components are strongly related to the
functional groups forming part of APTES ligand structure. Then, the increment of the XPS
signal for both elements, nitrogen and carbon, confirm the successful linkage of the APTES
molecule onto the silica nanoparticles’ surface.
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3.1.3. ATR-FTIR

IR spectra (Figure 5) of both SiO2 (50 nm) and APTES@SiO2 (50 nm) samples are
governed by a broad band (950–1250 cm−1) with a maximum at 1050 cm−1, which corre-
sponds to the Si–O–Si bonds [45]. However, after APTES functionalization, two new bands
appears at 1490 (Figure 5a) and 690 cm−1 (Figure 5b), being ascribed to bending vibrations
of –NH2 [46] and –CH2 and deformation of –CH out of plane [47]. These results are in
agreement with a successful SiO2 modification after APTES functionalization.
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3.1.4. TGA Analysis

The relative thermal stability of the nanoparticles was evaluated by thermogravim-
metry. The TGA-DGT and their derivative (DGT) curves (Figure 6) were conducted from
room temperature to 950 ◦C and are depicted in Figure 5. It is interesting to notice quite
similar degradation patterns in the four cases: SiO2 (50 nm), SiO2 (200 nm), APTES@SiO2
(50 nm), and APTES@SiO2 (200 nm). A mass loss in the temperature range of 50–180 ◦C is
approximately 7 wt %, attributed to the evaporation of physically adsorbed water. Then,
a weight loss from 200–600 ◦C is mainly due to the condensation of silanol groups to
give siloxane through the loss of a water molecule [48,49]. In the case of functionalized
samples, the decomposition of the aliphatic chains occurs in the same interval of tempera-
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tures. The weight loss is higher in the sample APTES@SiO2 (50 nm) than in its counterpart
APTES@SiO2 (200 nm), which is in agreement with the greater amount of APTES that was
grafted in the former one, and previously demonstrated by colorimetry. Above 600 ◦C and
up to 950 ◦C, a light and very constant weight loss is observed and attributed to residual
condensation of silanol groups.
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Regarding the weight loss of functionalized vs. un-functionalized pristine silica
nanoparticles, it is clear the increase of weight loss in the 50 nm series, APTES@SiO2
(50 nm) vs. SiO2 (50 nm), compared to their 200 nm counterparts. This is also in agreement
with the coverage values obtained with the colorimetric analysis.

3.1.5. Morphology of the Nanoparticles

The morphology of the nanoparticles as well as the immobilization details were
investigated by both Scanning Electron Microscopy (SEM, Figure 7) and Atomic Force
Microscopy (AFM, Figure 8).
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As shown in Figure 7, the SEM micrographs displayed the silica nanoparticles as
nanoobjects of 50 nm size, exhibiting a typical nanosphere morphology with smooth
surface and homogeneous diameter.

In addition to SEM, Atomic Force Microscopy (Figure 8) was conducted in the same
sample. Here, the average size measured by AFM was similar to SEM (40–50 nm); also, the
smoothness and dispersity of the nanomaterial was assessed displaying similar results as
for the SEM studies. Nevertheless, due to the axial (z)-displacement of the piezoelectric,
the height of SiO2 (50 nm) was measured and found to be relatively constant at 40–50 nm.

3.1.6. Textural Characterization of the SiO2 (50 nm) and SiO2 (200 nm)-Based Nanoparticles

The N2 isotherms for both the SiO2 (50 nm) and APTES@SiO2 (50 nm), and for
comparative issues SiO2 (200 nm) and APTES@SiO2 (200 nm), are displayed in Figure 9.
The two first ones (50 nm) showed typical type IV isotherms with H2 hysteresis loop,
which is characteristic of mesoporous adsorbents, whereas the 200 nm size nanoparticles
displayed a type II isotherm, distinctive of non-porous materials. It is expected that these
materials do not have pores and that the adsorption takes place on the outside of the
nanoparticles. Nevertheless, the theoretical specific surface areas of silica nanospheres
are 200 and 50 nm in diameter, assuming a density of 2.65 cm3/g are 11 and 45 m2/g,
respectively. These values are about 40% lower than the external surface areas obtained
by applying the t-plot method to the adsorption data (see Table 1), indicating that the
surface of the silica nanoparticles might show certain roughness or porosity. The decrease
in the nanoparticle size produces an expected increase in area (in this case the BET surface
area increases from 20 to 129 m2/g and the external surface area Sext, from 20 to 76 m2/g,
as seen in Table 1) due to the increase in the area/volume ratio of the nanoparticles as their
diameter decreases. The increase in the amount adsorbed at pressures >0.6 for particles
of 50 nm in size and from 0.95 for those of 200 nm, is produced by the condensation of
nitrogen in the space that remains between the aggregates of the nanoparticles. As the
particle size decreases, the distance between them decreases, causing condensation to occur
at lower pressures and the appearance of hysteresis cycles due to the separation being the
size of the mesopores.

Grafting with APTES means that the N2 adsorption capacities decrease due to the
ligands having occupied part of surface of the silica nanoparticles. This decrease is more
pronounced for the 50 nm than for its 200 nm counterpart. Thus, when functionalizing
the nanoparticles, the area decreases from 129 to 41 m2/g for those of 50 nm and from
20 to 13 m2/g for those of 200 nm. These SBET for the functionalized nanoparticles are very
similar to the Sext ones (Table 1) and very close to the theoretical values (11 and 45 m2/g
for nanoparticles of 200 and 50 nm in diameter, respectively), suggesting that the function-
alization smooths the surface of the silica nanoparticles and blocks any possible porosity
that may exist. This effect is more pronounced for the 50 nm nanoparticles because of
the more efficient APTES functionalization (780 µmol (APTES)/g SiO2) compared to the
200 nm (69 µmol (APTES)/g SiO2). The total pore volume (VT) and the micropore volume
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(VDR, N2) displayed a similar trend in both assessments. VDR, N2 was also reduced after
functionalization of the silica nanoparticles, although the decrease is lower due to the
higher affinity of the APTES-amine groups for the CO2 gas molecules.
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Table 1. Porous textural parameters derived from the N2 adsorption isotherms at −196 ◦C and the CO2 adsorption isotherms
at 0 ◦C of the four SiO2NPs of study. A few classical sorbent examples reported in the literature were also included.

Material

N2 Adsorption CO2 Adsorption

SBET Sext VT VDR, N2 VDR, CO2 Total CO2 Adsorption
(m2/g) (m2/g) (cm3/g) (cm3/g) (cm3/g) (mmol/g) a

SiO2 (50 nm) 129 76 0.25 0.06 0.11 0.94 b

APTES@SiO2 (50 nm) 41 36 0.13 0.02 0.09 1.14 b

SiO2 (200 nm) 20 20 0.03 0.006 0.13 1.00 b

APTES@SiO2 (200 nm) 13 13 0.02 0.005 0.10 1.05 b

MOFs [50] 1387 - - - - 4.88 b

MOFs [51] 516 - 0.26 - - 2.75 b

N-doped porous C [52] 860.4 - - - - 4.65 c

N-doped porous C [53] 1017 - - - - 2.63 c

N-doped porous C [54] 1353 - - - - 5.67 c

a Adsorption capacity at temperature of 25 ◦C; b CO2 adsorption capacity at 1 bar; c CO2 adsorption capacity at 5 bar.

3.2. CO2 Adsorption Studies

The four cases of study were tested as sorbents for CO2 capture at three different
temperatures, 0, 25 and 50 ◦C (Figure 10). As expected, when increasing the temperature,
the CO2 uptake capacities dropped in each of the samples; however, this decrease is
much less marked in the particular case of APTES@SiO2 (50 nm). This phenomenon can
be ascribed to the existence of strong interactions between the CO2 gas molecules and
the APTES-amine groups, showing heats of adsorption of the order of those expected in
chemisorption processes, as can be seen in Figure 10. The two functionalized samples
have very high heats of adsorption calculated by the Clausius-Clapeyron equation at low
coverage degrees >75 kJ/mol for APTES@SiO2 (200 nm) and >100 kJ/mol in the case of
APTES@SiO2 (50 nm), which strongly decrease with the amount of CO2 adsorbed, resulting
in similar values (~31 kJ/mol) to those of the non-functionalized samples. Similar results
were obtained by Virial equations (Figure 11). Pristine SiO2 nanoparticles presented similar
heat of adsorption regardless of the method and the isotherms used for the calculation.
In the case of the functionalized samples, the heat of adsorption obtained with the Virial
equation, is directly linked to the couple of isotherms selected for the study. This can be
ascribed to the high dependance that this method requires for the achieved fitting. In any
case, even when taking the lowest values obtained by this method, the heat of adsorption
at low coverage degrees of about 67 kJ/mol for APTES@SiO2 (200 nm) and 74 kJ/mol for
APTES@SiO2 (50 nm). Despite these high values, the desorption is completely reversible



Nanomaterials 2021, 11, 2893 12 of 19

and no hysteresis was observed in any of the samples (Figure S2), except for a very small
one in the particular case of APTES@SiO2 (50 nm), which can be attributed to the higher
amount of APTES-amine groups present in the nanoparticle’s surface, thus leading to
strong interactions between the CO2 gas molecules and the grafted APTES, promoting a
delay in the desorption process. On the other hand, these very high heats of adsorption are
responsible for the high selectivity towards CO2 adsorption, as will be shown later in the
CO2/N2 separation studies and are also responsible for the fact that these samples keep a
high CO2 adsorption at high temperatures.
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However, despite presenting such a very high heat of adsorption values, their regen-
eration could be carried out simply by means of vacuum at room temperature. As can
be seen in Figure 12, the samples maintain their adsorption capacity in five consecutive
adsorption/desorption cycles. Each cycle consisted of an adsorption/desorption isotherm
and between each one of them no degassing step was carried out, simply, the vacuum stage
that is programmed in the procedure for measuring adsorption isotherms of the device
(a few minutes at room temperature) was used. To assess the stability of the 50 nm size
samples SiO2 (50 nm) and APTES@SiO2 (50 nm) after five cycles, FT-IR spectra was con-
ducted right after the experiments. Figure S3 showed no apparent chemical modification
in the surface of the nanosphere; thus, confirming the good stability of the samples.
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Figure 12. Stability of pristine and functionalized 50 nm SiO2 nanoparticles under repeated
adsorption-desorption cycles at 25 ◦C and up to 1 bar.

The adsorption selectivity of CO2 over N2 was determined by applying the IAST
to the pure adsorption isotherms of both gases at two temperatures (25 and 50 ◦C). The
fitting of the experimental adsorption isotherm data to an analytical model gave rise
to significant errors in the case of the modified silica nanoparticles, what might lead to
incorrect predictions. Therefore, the spreading pressures were calculated from Equation (2)
by numerical integration [42]. Figure 13 shows the CO2 and N2 adsorption isotherms at
25 and 50 ◦C on the four samples. Similar to the case of CO2, the amount of adsorbed N2
decreased when increasing the adsorption temperature, as it is expected in a physisorption
process. All samples have a much lower N2 adsorption capacities than CO2 adsorption.
Furthermore, the N2 adsorption isotherms have a lineal shape, where the adsorbed amount
increases linearly with the pressure, following Henry’s law. The low value of Henry’s
constants (see Table S1 in Supporting Information) proves the poor interaction between N2
and the adsorbents given almost negligible adsorption.

The prediction of the equilibrium compositions of the adsorbed phase, xi (i = CO2 in
this case) as a function of the CO2 molar fraction in the gas phase (yi) in CO2/N2 binary
mixtures at atmospheric pressure (750 mmHg) and at 25 and 50 ◦C were calculated using
the procedure explained in the Experimental Section and represented in Figure 14 for
the four samples studied in this work. As can be seen, and as is to be expected from the
different shape and adsorption capacities shown by the samples for these gases (Figure 13),
CO2 is strongly concentrated in the adsorbed phase due to its higher adsorption potential.
For all samples, the molar fraction of the adsorbed phase, xi, will be made up mainly of
CO2, even in dilute mixtures of CO2 (low yCO2 ). This is especially noticeable in the case
of functionalized samples, and especially for sample SiO2 (50 nm)@APTES, where the
adsorbed phase will be formed practically only by CO2 at any composition of the gas phase.
These results suggest that functionalized samples would have an exceptional behavior in
the separation of these gases, especially in diluted streams.
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This conclusion is corroborated by the expected amount of adsorbed moles deter-
mined with Equations (7) and (8) from the mole fractions predicted by IAST (Figure 14).
The predicted adsorbed amount of both gases as function of the CO2 mole fraction in the
phase gas at 750 mmHg and both temperatures are plotted in Figure S4. The amount of N2
adsorbed on non-functionalized SiO2 nanoparticles from diluted mixtures (i.e., CO2 molar
fractions, yCO2 < 0.2), although very small, is not negligible and therefore the separation of
both gases will not be entirely effective. On the other hand, in the case of the functionalized
samples, the amount of N2 adsorbed is negligible compared to the amount of CO2 adsorbed
at any mole fraction in the gas phase. Therefore, a good separation of both gases could be
carried out with these adsorbents.
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Finally, the selectivity factors, S1,2 (where 1 = CO2 and 2 = N2), were calculated using
Equation (9) and represented in Figures S5 and S6. The selectivity factors were calculated
for three different compositions of the mixture of both gases (Figure S5). The theoretical
maximum value of S1,2 is given when the gas consists of pure nitrogen (yCO2 = 0) and the
theoretical minimum one for the case that the gas is pure CO2 (yCO2 = 1). Any binary
mixture of these gases will possess selectivity factors that are within these limits, as shown
in the case of a mixture with a 0.2 molar ratio of CO2 in N2. For all the samples, the
selectivity factors, S1,2, decrease when increasing both the pressure and the temperature.
In the case of pristine SiO2 nanoparticles, the larger ones (200 nm) displayed higher
selectivity factors than the smaller ones. At 750 mmHg, the selectivity factors for SiO2
(200 nm) and SiO2 (50 nm) nanoparticles vary in the range 40–71 and 30–55 at 25 ◦C
and between 35–46 and 26–35 at 50 ◦C, respectively. These values are comparable, or
even higher, to those achieved by other types of sorbents studied in the separation of
binary mixtures of these gases. For example, selectivity factors at room temperature
and yCO2 ~0.15 were reported in the range 26–78 for microporous polymers [55–57]. In
the case of nitrogen-doped carbon materials, selectivity factors at room temperature also
ranged between 15 and 70 [58–63], achieving values up to 110 for the best case reported
recently [64]. Metalorganic framework (MOFs) and zeolitic imidazolate frameworks (ZIFs)
were also studied in this application and values of selectivity lower than 67 have been
reported [65–67]. Finally, selectivity factors ranging between 10 and 100 can be found in
the literature in the case of zeolites and silica materials for both pristine and functionalized
amines [68–71].

In the case of functionalized samples, the selectivity factors are higher for the sample
prepared from the smallest nanoparticles, APTES@SiO2 (50 nm). This is due to the higher
degree of functionalization achieved with this particular material, as it was demonstrated
previously, showing higher heat adsorption and adsorption capacity, favoring a better
performance in the CO2 separation. Both samples displayed outstanding selectivity factors,
with maximum theoretical values (i.e., at yCO2 = 0) at atmospheric pressure and 25 ◦C of
about 6.6 × 103 and 15 × 103 for the samples APTES@SiO2 (200 nm) and APTES@SiO2
(50 nm), respectively. These values also remain exceptionally high at 50 ◦C (see Figure S5).
J. A. Cecilia et al. [72] reported similar selectivity factor for CO2/N2 separation with
mesoporous silica SBA-15, also grafted with APTES. As an example of how these func-
tionalized nanoparticles would behave for the capture (i.e., separation) of CO2 from N2
in a post-combustion gas stream, Figure S6 shows the variation of the selectivity factors
at a pressure of 750 mmHg and at two different temperatures, 25 (dashed line) and 50 ◦C
(solid line), in a range of mole fractions that covers values typical of post-combustion
processes (e.g., yCO2 < 0.15–0.20) [73]. The selectivity factor decreases with increasing the
molar fraction of CO2 in the mixture and the temperature of the gas, as just mentioned.
As can be seen in the figure, for CO2 molar fractions < 0.2, S1,2 remain above 260 for
the 50 nm size functionalized nanoparticles and at values greater than 130 for the larger
functionalized nanoparticles. These values are much higher than those reported by other
adsorbents as was explained above and, to the best of our knowledge, only two materials
with similar selectivity factors have been reported. Thus, K. Hwang et al. reported a
CO2/N2 (molar ratio of 0.15) selectivity of 186 for the molecular sieve zeolite 4A [74] and
J. Park et al. reported a selectivity factor of 196 for separation of a mixture 0.15 molar of
CO2/N2 at 1 atm and 25 ◦C for a MOF functionalized with ethylenediaminetetraacetic
acid (EDTA), further reacted with ethylenediamine (ED), and finally, reduced with lithium
aluminum hydride [75].

4. Concluding Discussion

Amine functionalized silica nanoparticles of 50 nm size were successfully synthesized
by means of APTES ligands. Owing to our previous results in 200 nm size SiO2NPs, due to
APTES being the most efficient ligand for CO2 sequestration, we here compared both
species (50 vs. 200 nm), resulting in a marked enhancement of the CO2 sequestration
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by a factor of 1.4. The organic loading of the SiO2 (50 nm) nanoparticles was calculated
by accurate colorimetric analysis, leading to 0.78 mmol (APTES)/g SiO2 (50 nm), which
represents a 4-fold increase compared to the coating of the 200 nm sized. The organic
loadings were also confirmed by TGA analysis.

Temperature-swing adsorption-desorption cycles demonstrated a stable working ca-
pacity of the materials without any evident loss in the CO2 sequestration capacity and amine
efficiency. Additionally, IAST demonstrated excellent CO2/N2 selectivity for both pristine
samples (SiO2 (50 nm) and SiO2 (200 nm)) and their APTES functionalized counterparts.

In summary, we demonstrated that SiO2 (50 nm) nanoparticles benefit from their
tuneability, selectivity, low cost, fair CO2 uptake (1.14 mmol/g), and accessible chemical
functionalization. All these properties make them interesting candidates as sorbent “active
sites”, which can be incorporated in an ordered-fashion molecular framework such as
multi-walled carbon nanotubes (MWCNTs) [53].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11112893/s1, Figure S1: Some of the different simulations carried out using the
Equation (S1) to achieve the optimum fitting employing the minimum number of ai and bj pa-
rameters. The isotherms were measured at 0 and 25 ◦C using (A) 5ai and 2bj parameters; (B) 7ai
and 3bj parameters; (C) 10ai and 5bj parameters; (D) 8ai and 3bj parameters. Figure S2: CO2 ad-
sorption/desorption isotherms at 0, 25 and 50 ◦C for pristine and functionalized SiO2 nanoparticles
of 50 and 200 nm. Figure S3: IR spectra of 50 nm size (a,b) SiO2 (50 nm), before (navy blue) and
after (green) CO2/N2 cycles, and (c,d) APTES@SiO2 (50 nm), before (red) and after (pink) CO2/N2
cycles. Table S1: Henry’s constant corresponding to the lineal fit of the N2 adsorption isotherms at
25 and 50 ◦C on pristine and functionalized SiO2 nanoparticles of 50 and 200 nm size. Figure S4:
Prediction of the amount of CO2 and N2 adsorbed as a function of the CO2 mole fraction in the gas
phase (yCO2) in CO2/N2 mixtures at 750 mmHg and at 25 and 50 ◦C. Figure S5: Variation of the
selectivity factors, S1,2, of CO2 over N2 in a mixture of both gases as function of the gas composition at
25 and 50 ◦C and different pressures. Smin = minimum value of S1,2 at yCO2 = 1 and Smax = maximum
value of S1,2 at yCO2 = 0. Figure S6: Variation of the selectivity factors, S1,2, of CO2 over N2 as a
function of the mole fraction of CO2 (yCO2 ) at 750 mmHg and at 25 (dashed line) and 50 ◦C (solid
line) on the functionalized nanoparticles.
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