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Brain state transition analysis
using ultra-fast fMRI
differentiates MCI from
cognitively normal controls
William C. Palmer,
Sung Min Park and Swati Rane Levendovszky*

for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Department of Radiology, University of Washington, Seattle, WA, United States

Purpose: Conventional resting-state fMRI studies indicate that many cortical

and subcortical regions have altered function in Alzheimer’s disease (AD)

but the nature of this alteration has remained unclear. Ultrafast fMRIs with

sub-second acquisition times have the potential to improve signal contrast

and enable advanced analyses to understand temporal interactions between

brain regions as opposed to spatial interactions. In this work, we leverage

such fast fMRI acquisitions from Alzheimer’s disease Neuroimaging Initiative

to understand temporal differences in the interactions between resting-state

networks in 55 older adults with mild cognitive impairment (MCI) and 50

cognitively normal healthy controls.

Methods: We used a sliding window approach followed by k-means

clustering. At each window, we computed connectivity i.e., correlations within

and across the regions of the default mode, salience, dorsal attention, and

frontoparietal network. Visual and somatosensory networks were excluded

due to their lack of association with AD. Using the Davies–Bouldin index, we

identified clusters of windows with distinct connectivity patterns, also referred

to as brain states. The fMRI time courses were converted into time courses

depicting brain state transition. From these state time course, we calculated

the dwell time for each state i.e., how long a participant spent in each state.

We determined how likely a participant transitioned between brain states. Both

metrics were compared between MCI participants and controls using a false

discovery rate correction of multiple comparisons at a threshold of. 0.05.

Results: We identified 8 distinct brain states representing connectivity within

and between the resting state networks. We identified three transitions

that were different between controls and MCI, all involving transitions in

connectivity between frontoparietal, dorsal attention, and default mode

networks (p<0.04).

Conclusion: We show that ultra-fast fMRI paired with dynamic functional

connectivity analysis allows us to capture temporal transitions between

brain states. Most changes were associated with transitions between the

frontoparietal and dorsal attention networks connectivity and their interaction
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with the default mode network. Although future work needs to validate these

findings, the brain networks identified in our work are known to interact with

each other and play an important role in cognitive function and memory

impairment in AD.

KEYWORDS

ultrafast fMRI, Alzheimer’s disease, mild cognitive impairment, dynamic functional
connectivity, BOLD (blood oxygenation level dependent) signal

Introduction

Alzheimer’s disease (AD) is currently the leading cause of
dementia and occurs due to the accumulation of amyloid-β
(Aβ) and hyper-phosphorylated tau, a process that begins years
before clinical manifestation (Price and Morris, 1999; Morris
et al., 2010; Scheltens et al., 2021). Much work has focused on
reducing amyloid accumulation by reducing amyloid deposition
and enhancing its clearance. Considerable effort has gone into
uncovering efficacious interventions and treatment strategies,
but their failure behooves us to discover alternative pathological
processes, which may provide critical opportunities to slow or
prevent disease progression at its early stages. For that reason,
attention has shifted toward identifying biomarkers for earlier
stages of the AD continuum such as prodromal disease stages,
mild cognitive impairment (MCI), and early AD (Sperling et al.,
2011). The key markers of AD pathology have been defined as
the presence of Aβ and phosphorylated tau in the cerebrospinal
fluid (Jack et al., 2018). Less invasive methods in the form of
neuroimaging also play a critical role in the identification of AD
(Márquez and Yassa, 2019). Magnetic resonance imaging (MRI)
is unable to detect amyloid or tau deposition in the brain but
contributes to our understanding of related disease processes in
the AD brain.

In addition to structural MRI, further promise has been
demonstrated by the emerging field of resting-state functional
connectivity (rsFC) computed from low-frequency blood
oxygenation level-dependent (BOLD) signal in the absence of
a task (Lee et al., 2013). Spontaneous BOLD signals at rest (in
the absence of an evoked response) were shown to be associated
with neural origins and correlations between them revealed
connectivity between different regions of the brain (Biswal et al.,
1995). These resting state networks could represent the brain’s
intrinsic organization (Fox et al., 2006; Seeley et al., 2007).

Differences in the functional connectivity (i.e., correlation)
between the nodes of these resting state networks have been
identified in a number of brain diseases including multiple
stages of AD (Fox et al., 2006; Lee et al., 2013; Sheline
and Raichle, 2013; Lin et al., 2018; Márquez and Yassa,
2019). In AD, these disruptions have been identified following
PET identification of amyloid deposition, but preceding

neurodegeneration making these disruptions a prime biomarker
for early stages of the AD continuum (Sheline and Raichle,
2013). The most commonly implicated resting state network
in MCI is the default mode network (DMN) (Sheline and
Raichle, 2013; Lin et al., 2018). This is not surprising as the
cortical areas that comprise the DMN show the first signs of
abnormal amyloid deposition and AD pathology correspond
with alterations in functional connectivity of the DMN (Brier
et al., 2014; Palmqvist et al., 2017). Cognitive networks other
than the DMN have also been implicated (Agosta et al., 2012;
Brier et al., 2012). For example, anticorrelation between DMN
and dorsal attention network (DAN) has been demonstrated to
be significantly decreased in MCI compared to normal aging
controls (Esposito et al., 2018). The salience network (Sal) and
it’s interaction with DMN have also specifically been identified
as disrupted in MCI (He et al., 2013; Zhan et al., 2016). The
frontoparietal network (FPN) is responsible for many cognitive
tasks of varying demands. It is shown to coordinate with the
DMN, DAN, and Sal (Cole et al., 2013). In this work, we study
the temporal dynamics of these four networks.

Most studies to-date utilize static rsFC analyses which
assume that brain regions and their connections to each other
over the span of an entire scan remain unchanged (Biswal et al.,
1995; Lee et al., 2013). However, it has been demonstrated
that connectivity between brain regions varies over time at
the level of minutes to seconds in fMRI proving the dynamic
nature of rsFC (Chang and Glover, 2010; Hutchison et al.,
2013b). A number of novel approaches have emerged to leverage
this dynamicity to better understand differences between older
adults with neurodegenerative diseases such as AD and healthy
controls (Preti et al., 2017; Filippi et al., 2019). Some studies
have investigated dynamic functional connectivity differences
in the AD continuum compared to control participants. These
studies discovered consistent decreases in global metastability
(strength of coordinated whole-brain oscillations) in AD
and MCI individuals compared to controls, which could
indicate that individuals on the AD continuum have a smaller
set of functional configurations (Córdova-Palomera et al.,
2017; Demirtaş et al., 2017). Others have used independent
component analysis to first identify resting state networks
and estimated connectivity between components. Using this
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approach Sendi et al. found that the middle frontal gyrus and
inferior parietal lobule had altered connectivity longitudinally.
Both are regions of the DMN. Dwell times corresponding to
these states were also longer in normal compared to mild AD
in this study (Sendi et al., 2021). Furthermore, these dynamic
connectivity metrics have been demonstrated to provided
increased predictive power when identifying those with early
MCI (Wee et al., 2016).

Our study seeks to build on these studies by leveraging
ultrafast acquisition fMRI images collect by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI 3.0) and dynamic state
analysis technique (Allen et al., 2014; Vergara et al., 2020). This
technique identifies characteristic brain connectivity patterns
or states by clustering sliding-window connectivity matrices.
Differences in dynamics are captured by metrics such as dwell
time, which measures the amount of time the brain remains
in one state, and transition probability, which is the chance
the brain moves from one state to another. We hypothesized
that we would observe differences in these metrics of dynamic
states involving the cognitive resting state networks (DMN, Sal,
DAN, and FPN) that distinguish older adults with cognitive
impairment from healthy controls.

Materials and methods

Participants

The data used for this study was collected from the ADNI
database1. Specifically, a subset of participants was selected
that had undergone ADNI 3.0 advanced protocol scanning
which included sub-second functional scans. Out of the 107
participants available, two were excluded due to a missing
structural image or insufficient data. In these analyses those
with the early amnestic MCI, late MCI, subjective memory
concerns, or mild Alzheimer’s disease dementia clinical labels
were combined into one group which will be referred to as MCI
(n = 50) in this study. Cognitively normal subjects were used
as healthy controls (n = 55). Mini-Mental State Examination
(MMSE) scores were also collected for all participants as a
measurement of cognitive functioning with low scores reflecting
higher cognitive impairment (Tombaugh and McIntyre, 1992).

Imaging

All images were acquired on 3T scanners across 12 sites.
Anatomical T1 weighted scans were 3D MPRAGE sagittal
acquisition. The spatial resolution was 1 × 1 × 1 mm3,
repetition time (TR)/echo time (TE) was 2,300 ms/min full echo,

1 https://adni.loni.usc.edu/

and inversion time (TI) was 900 ms. The BOLD functional axial
scan was a whole-brain echo planar acquisition. The resolution
was 2.5 × 2.5 × 2.5 mm3, TR/TE was 600/30 ms, flip angle was
53◦, and acquisition matrix was 220 × 220 × 160 mm3. During
the scan, 976 volumes were collected.

Analysis

Preprocessing
Preprocessing was completed using a combination of FSL

(5.0), AFNI (16.0.11) and the CompCor algorithm (niak-boss-
0.13.0) (Cox, 1996; Behzadi et al., 2007; Jenkinson et al., 2012).
Anatomical images were skull-stripped and segmented into
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). Functional image processing began with the removal
of the first five volumes. The remaining volumes were then
motion-corrected, and baseline drift was removed using a
0.01 Hz high pass filter in FSL. Despiking was conducted with
AFNI to remove outlier motion. Eroded WM and CSF masks
created from the anatomical images were registered to the
functional images. The first five principal components, which
approximate physiological noise, were generated from signals
extracted with these masks and regressed out according to the
CompCor algorithm (Behzadi et al., 2007). Finally, volumes
were variance normalized, registered to 2 mm MNI space, and
smoothed with a full width half maximum kernel of 6 mm.

Regions of interest
Regions of interest (ROI) consisted of four large scale

cortical resting state networks which included DMN, Sal, DAN,
and FPN as delineated by Yeo’s 7 network atlas (Yeo et al.,
2011). The four networks were divided into 32 non-overlapping
regions according to FSL’s Harvard-Oxford structural atlas. The
mean time course was calculated for each of these ROIs.

Sliding-window dynamic clustering
The dynamic clustering analysis followed a method

previously defined by Allen et al. (2014). In short, sliding-
window series were created from the mean ROI time courses
with a stride length of 1 volume and windows containing
50 volumes (30 s of data). Connectivity matrices were
constructed for each of these windows with correlation as
the connectivity metric. These symmetric connectivity matrices
were transformed into vectors using elements of the off diagonal
lower triangular matrix. The transformation resulted in a 496
by 921 matrix for each participant. These matrices were then
harmonized with ComBat to reduce site-related variability
(Yu et al., 2018). ComBat (Combining Batches), originally
used in genomic studies, is a well-established data-driven
harmonization method applied to features (such as connectivity
values) extracted from imaging data (such as resting-state
fMRI). It uses a Bayesian estimation approach to reduce
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site-related systematic variability while retaining biological
variability. Site information is encoded as a variable where
variability needs to be minimized, while diagnosis, age, and
gender are designated as variables of interest where variability
needs to be preserved. It has been successfully used in many
multi-modal MRI studies.

K-means clustering was performed on a subset of these
windows with the highest variance (i.e., windows most
dissimilar from their immediate neighbors on both sides), which
will be referred to as the exemplar windows. The number
of these exemplars was not equally distributed between the
MCI and control groups, so the optimal number of states was
determined using 100 permutations consisting of randomly
sampled exemplars from MCI and control participants. The
number of exemplars for both MCI and control participants was
equal in each permutation (Leonardi and Ville, 2014). Based on

previous work by Vergara et al. (2020), Davies-Bouldin values
were used to determine the optimal number of distinct states.
We used the correlation distance metric to uncover relative
connectivity patterns between regions. The number of clusters
with lowest Davies Bouldin value was selected as the optimal
number of clusters. Once the optimal number of states was
identified, k-means clustering was performed on all exemplars,
and the resulting states were used to classify all connectivity
vectors. A diagram of this processing is included in Figure 1.

Group differences
Dwell time and transition probabilities were calculated for

each participant’s time series. Dwell time is defined as the
number of windows that a participant remained in a state (where
St = St+1). Transition probabilities represent the probability
that a participant would progress from one state to another.

FIGURE 1

Step-by-step brain state identification. (1) The preprocessed fMRI time series data was registered to MNI space. The resting-state networks
masks for the default mode network (DMN), dorsal attention network (DAN), Salience network (Sal), and the Frontoparietal Network (FPN) were
chosen from the Yeo atlas. Individual regions within each mask were delineated by intersecting these masks with regions of the Harvard Oxford
Cortical and Subcortical Atlas in FSL. Seven regions (frontal pole, superior and inferior lateral occipital, juxtapositional lobule, cingulate,
precuneus, cuneus) were identified for the DMN. The Salience network comprised of 13 regions (superior frontal, middle frontal, temporal pole,
temporal pole, anterior and posterior supramarginal gyrus, subcallosum, cuneus, parietal operculum, planum polare, Heschl’s gyrus,
supracalcarine cortex), the DAN had 6 regions (superior parietal, anterior and posterior supramarginal gyrus, angular gyrus, inferior lateral
occipital, cuneus), and the FPN consisted of 6 regions (insula, middle frontal, inferior frontal, angular gyrus, inferior and superior lateral occipital)
as well. (2) A sliding window of 50 TRs was used in this work with a stride length of 1 TR. (3) For each window, a correlation matrix was
calculated and only the lower triangular matrix was retained due to the symmetric nature of connectivity matrices. (4) Since the window was
only shifted by 1TR, there are likely redundant windows where connectivity patterns do not change significantly between neighboring windows.
To reduce this redundancy, only windows, which were the most different from the preceding and following windows were considered. This was
performed by retaining those windows with local maxima in variance (indicated by red arrows). (5) All such windows (i.e., exemplars) were
collected for all participants. (6) Since the number of exemplars in controls was greater than those in the MCI group, we created permutations
such that the number of exemplars in both groups was identical. (7) K-mean clustering was performed for each permutation and the Davies
Bouldin value was calculated at each permutation to identify the optimal number of clusters (i.e., with the lowest Davies Bouldin values). (8)
Finally, k-means clustering was performed on the entire dataset using the optimal value of 8 clusters.
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A generalized linear model was then used to identify significant
differences in these metrics between MCI and control groups
while correcting for sex and age as confounding variables. For
instance, Dwell time∼Age + Sex + Diagnosis. A false-discovery-
rate correction for multiple comparisons was applied at a
threshold of 0.05 considering 8 comparison, one corresponding
to each state.

Results

Clinical and demographic data

Fifty MCI participants and fifty-five control participants
were included in the analysis. Table 1 lists participant
information. No significant difference was observed in age or
sex distribution. The MCI participants (26.3 ± 5.4) scored
significantly (p = 0.0008) lower than controls (28.9 ± 1.2)
on the MMSE. This was expected since the two groups are
differentiated by cognitive impairment.

Identified states

The optimal state number (k) was determined by the
lowest Davies-Bouldin value. In our case, the lowest value
was 4.5836 ± 0.0211, which was calculated with eight states.
Clustering with seven and nine states had similar values but were
more variable (k = 7: 4.5841 ± 0.0557, k = 9: 4.6058 ± 0.0489;
Supplementary Figure 1). Therefore, the final clustering was
performed with eight states (Figure 2 and Supplementary
Figure 2 for full brain diagrams).

The first state was characterized by high positive correlation
within the DMN and FPN and moderate positive connectivity
in the DAN and some positive connectivity between these
three networks. There also existed strong negative connectivity
between the superior frontal gyrus FPN node and all other
areas. The second state has strong positive connectivity in
the DMN along with modest positive connectivity in Sal and
FPN. The posterior supramarginal gyrus and postcentral gyrus
components of DAN showed consistent negative connectivity
with other nodes, particularly those outside DAN. Similar to

TABLE 1 Participant demographics.

Description Controls Mild cognitive
impairment

(MCI)

Sample Size 55 50

Sex 29 M 20 M

Age (years) 74.4± 7.8 75.0± 7.9

MMSE 28.9± 1.2 26.3± 5.4*

*p = 0.0008.

State 1, the superior frontal gyrus continued to have negative
connectivity to other nodes, however, to a lesser extent. State
3 displayed positive connectivity within all analyzed networks
(DMN, Sal, DAN, and FPN). There was also some positive
connectivity between Sal and DAN. Furthermore, the FPN
had relatively consistent negative connectivity with the other
networks. The fourth state displayed some of the highest
positive connectivity within the DMN and FPN. There was also
moderate positive connectivity between these two networks.
State 5 was defined by moderate connectivity within all four
networks. Sal, DAN, and FPN showed positive connectivity to
each other, but all three were mostly anticorrelated to DMN.
The sixth state has strong positive connectivity within the FPN
and mixed connectivity between and within other networks. The
frontal and cingulate gyrus of the DMN showed high positive
connectivity with each other and strong negative connectivity
with all other nodes. State 7 was characterized by positive
connectivity within and between DAN and FPN. Some nodes
within the DMN also demonstrated a high positive correlation.
The final state, eight, had modest positive connectivity within
and between networks except for high positive connectivity
within the FPN. Additionally, the DAN demonstrated modest
anticorrelation with all other networks. Note that all correlation
matrices with converted to Z-core using Fisher transformation
and then l1-normalized to Gaussianize the data.

Differences between mild cognitive
impairment participants and controls

All sliding window connectivity vectors were assigned to one
of the eight states for all participants. This generated a timeseries
tracing the states the brain traversed during their scan. Example
MCI and control state timeseries are plotted in Figure 3A. The
dwell time and transition probabilities were calculated from
these state-matched timeseries.

When investigating differences between MCI participants
and controls, no significant differences were detected between
groups in dwell time for all eight states (Figure 3B and Table 2).
The difference that was closest to approaching significance was
dwell time in state 5. Controls tended to spend more time in this
state than MCI participants (p = 0.1). The p-value for all other
differences were substantially greater (state 1: p = 0.6, state 2:
p = 0.3, state 3: p = 0.3, state 4: p = 0.4, state 6: p = 0.6, state 7:
p = 0.3, state 8: p = 0.5).

On the other hand, three transition probabilities were
significantly different between the MCI and control groups
(Figure 4). MCI participants were significantly less likely to
transition from state 4 to state 3 than controls (p = 0.002).
Similarly, compared to controls, older adults with MCI had a
lower probability of moving from state 6 to state 3 (p = 0.009).
However, MCI participants were more likely to transition from
state 2 to state 7 than controls (p = 0.04).
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FIGURE 2

Visualization of the eight identified brain states. (A) Connectivity matrices of the identified brain states with Fisher Z and L1-normalized
correlations. (B) Corresponding glass brain diagrams of the brain states. Red connections indicate positive correlations and blue connections
indicate negative correlations. For full, glass brain plots see Supplementary Figure 2.

FIGURE 3

Differences in brain state dwell time. (A) Representative time course of window transitions over the duration of the scan for a healthy control
participant in blue and an MCI participant in orange. There is no one-to-one correspondence between the two time-courses. (B) Comparing
the dwell time i.e., time (in terms of number of windows) spent in each state, there was no significant difference between the two groups.
Table 2 shows the actual dwell times.
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TABLE 2 Comparison of Dwell times between controls and mild
cognitive impairment (MCI)1.

State Controls
(Mean ± Std.

Dev)

MCI,
(Mean ± Std.

Dev)

p

1 15± 10 15± 10 0.6

2 13± 9 18± 42 0.3

3 14± 8 15± 9 0.3

4 16± 8 18± 9 0.4

5 16± 8 19± 9 0.1

6 16± 9 15± 10 0.6

7 15± 8 13± 10 0.3

8 18± 13 16± 15 0.5

1Note that the dwell times are in number of windows that the brain spends each state in.
Each window in this study is 30 s long and separated by the adjacent window by 1
TR I.e., 0. 6 s. Therefore, a dwell time of 15 would corresponds to 39 s.

Discussion

This study shows significant differences in state transition
probabilities between MCI participants and controls but
no significant differences in dwell time when investigating
connectivity within and between the DMN, Sal, DAN, and

FPN. The most important results demonstrated that controls
were more likely to transition from states with high positive
connectivity within the FPN to a state with moderate positive
intra-network connectivity and internetwork connectivity
characterized by anticorrelation between the FPN and all other
networks and some positive coordination between Sal and DAN.
The high positive connectivity within the FPN immediately
preceding segregated activity in DAN/Sal and DMN with
anticorrelation to FPN could reflect the FPN’s role in task
switching and its deficit in AD continuum disorders.

Since its discovery, the FPN has been hypothesized to
mediate the relationship between DMN and DAN because of
its anatomical interposition between the two (Vincent et al.,
2008). The ability to move between these contrasting networks is
critical because the DMN is responsible for internally motivated
states. At the same time, the DAN is responsible for executive
attention to external stimuli (Greicius et al., 2003; Fox et al.,
2006; Seeley et al., 2007; Buckner et al., 2008). Following this,
support for the executive task switching role of the FPN has
continued to grow. Cole et al. (2013) demonstrated that the
FPN has the most variable connectivity to other networks across
different tasks. Its connectivity to other networks can predict the
type of task performed. Decreased FPN white matter integrity
has also been correlated to age-related slowing of task-switching

FIGURE 4

Differences in state transition probability. (A) Matrices with a mean (left) and standard deviation (right) of the log-transformed transition
probability i.e., how likely a participant moved from one state to another, with controls above and MCI participants below. (B) Three transitions
were significantly different between groups: The transition from state 4 to state 3 (p = 0.002), state 6 to state 3 (p = 0.009), and state 2 to state 7
(p = 0.04). MCI participants were less likely to switch from state 4 to state 3 and from state 6 to 3 than control participants. But MCI participants
were more likely switch from state 2 to 7 compared to controls. (C) Glass brain plots of significant transitions with blue arrows indicating
transitions controls were more likely to take and orange arrows indicating transitions MCI participants were more likely to undergo.
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performance (Gold et al., 2010). White matter hyperintensities
in the FPN circuit have been associated with declines in
executive functioning in individuals with MCI (Jacobs et al.,
2012). This evidence points to the FPN’s role in flexibly changing
network configurations to match present needs (Marek and
Dosenbach, 2018). In AD continuum disorders, abnormal
interactions between the DMN and DAN, which the FPN
mediates, have been indicated. Brier and team found that
increases in cognitive status severity corresponded to decreased
anticorrelation between DMN and DAN, similar to that seen
in state 8 in our study (Brier et al., 2012). Additionally, DMN
and DAN negative connectivity was reduced in individuals
with MCI compared to elderly controls (Esposito et al., 2018).
Furthermore, a meta-analysis study has directly implicated the
FPN in MCI individuals finding hypoactivation in the DMN
and FPN compared to controls (Li et al., 2014). A lack of
the FPN’s ability to drive diverse normal network interactions
could also explain a decrease in the dynamic repertoire in MCI
(Córdova-Palomera et al., 2017; Demirtaş et al., 2017).

Our other result indicated that MCI participants were more
likely to move away from state 2 (a state characterized by
strong positive connectivity within the DMN and some positive
connectivity between DMN and Sal) to state 7, with primarily
high positive connectivity within and between the DAN and
FPN. The salience network is involved in identifying salient
stimuli and can flexibly interact with other networks given
the desired cognitive state (Seeley et al., 2007; Chen et al.,
2016). Multiple studies have found that individuals with MCI
have decreased connectivity between Sal and DMN nodes (He
et al., 2013; Zhan et al., 2016). Interestingly in cognitively
normal participants with AD pathology, amyloid-positive
individuals with high Tau-PET levels had hypoconnectivity
between Sal and DMN (Schultz et al., 2017). This decrease in
connectivity could be explained by MCI participants moving
from states with positive connectivity between Sal and DMN
and high connectivity within these networks to states with no
coordination between and drastically decreased connectivity
within Sal and DMN.

We leverage ultrafast fMRI to understand temporal changes
in connectivity within and between resting state networks. Static
fMRI analyses do not allow us to evaluate such temporal changes
within and between network changes. For our purpose, to
understand the temporal evolution of functional connectivity
during the scan duration we used the sliding window approach.
Ideal window size to understand brain dynamics is yet unknown
but typical recommendations are 20–120 s for such approaches
(Hutchison et al., 2013a; Leonardi and Van De Ville, 2015). Jones
et al., showed that brain states in a population of older adults
with and without AD, typically stabilize around 27 s (Jones et al.,
2012). Typical fMRI with TR around 2 s then would have 15
volumes per window as opposed to 50 volumes in our data.
While the study would be feasible at typical fMRI of TR = 2 s,
the ultra-fast fMRI provides the advantage of larger data sample

per window and effect sizes. Additionally, our approach of
bootstrapping and reselecting windows mitigates the issue of
selecting only spurious changes that may occur at shorter time
scales as observed by some studies (Leonardi and Van De Ville,
2015).

Furthermore, it is important to note that different TRs will
be sensitive to different temporal dynamics that are dependent
on neuronal populations, sizes, and regions that make up
local brain network or systems (Buzsáki et al., 2013). Brain
oscillations span a large range 0.01–10 Hz requiring sampling
intervals or TRs of 100 ms to almost 10 s. Typical TRs of 2–
3 s allow us to capture slow hemodynamic fluctuations while
faster TRs (< 1 s) allows us to capture fluctuations that are more
reflective of neuronal dynamics. This is clearly shown by Zhang
et al. in their recent work (Yang and Lewis, 2021). We analyzed
the ultrafast fMRI data by resampling the data at TR = 2.4 s,
with each window now containing only 13 time-points instead
of 50. The connectivity matrices are shown in Supplementary
Figure 3. Of note, with the Davies Bouldin criteria, even with
20 clusters, no optimal number of clusters/states was detected.
Restricting the states to 8, similar to that of the ultrafast
acquisition, we found similar brain states but no significant
transitions or differences in dwell times. Although distinct in
the information obtained, we also evaluated static connectivity
in the two group (Supplementary Figure 4). No significant
differences were observed. As before, for both comparisons, a
FDR correction of 0.05 was used.

While our results demonstrate correspondence with
knowledge from static resting-state network functional
connectivity in MCI, other studies are still necessary to confirm
differences in state transition probability. Subsequent studies
should specifically focus on using newer dynamic techniques
and measurements of connectivity. Sliding-window k-means
clustering techniques are often criticized for the inherent
high correlation between windows (smearing of the BOLD
time series) and arbitrary choice of metrics for optimizing the
number of distinct states. We tried to mediate these issues
by clustering using exemplars. This method simultaneously
reduces data dimensionality while excluding similar consecutive
windows from state clustering. Furthermore, we optimized
clustering using the Davies-Bouldin metric that demonstrated
a higher accuracy in dynamic clustering when compared to
other metrics (Vergara et al., 2020). However, other techniques
exist that avoid these issues, such as Hidden Markov Models
(Taghia et al., 2017, 2018). Furthermore, alternative connectivity
metrics other than correlation should be explored as correlation
captures linear direct and indirect statistical dependencies
and does not provide information about directionality. Other
metrics that have been proposed as substitutes include mutual
information, dynamic time warping, and unnormalized partial
correlation (precision matrix) (Liégeois et al., 2020; Mohanty
et al., 2020). New generative model-based connectivity metrics
also provide directional information or the influence that one
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node has over another, such as Dynamic Causal Modeling and
Mesoscale Individualized Neurodynamic (MINDy) modeling
(Friston et al., 2003; Singh et al., 2020).

Conclusion

We demonstrated that MCI participants significantly
differed from controls in their transition probabilities between
brain states involving DMN, Sal, DAN, and FPN. These results
are consistent with findings in static functional connectivity
while respecting the innate dynamicity of the brain. They
also shed further light on static connectivity results, possibly
demonstrating that the brain signature of MCI includes
reduced FPN-enforced patterns of connectivity and increased
transitions away from connectivity between Sal and DMN.
However, these results must be investigated further using novel
dynamic functional connectivity techniques. Our study supports
the importance of dynamic functional connectivity to our
understanding of brain dysfunction in MCI and its potential use
as a novel biomarker.
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SUPPLEMENTARY FIGURE 1

Davies–Bouldin plot to choose the optimal number of clusters for a
window size of 30 s at Tr = 0.6 s.

SUPPLEMENTARY FIGURE 2

Three-plane glass brain view of the eight brain states identified in this
work. Red connections indicate positive correlations and blue
connections indicate negative correlations.

SUPPLEMENTARY FIGURE 3

Connectivity matrices corresponding to the 8 states identified using
TR = 0.6 s and using the same data but subsampled at TR = 2.4 s.

SUPPLEMENTARY FIGURE 4

Groupwise static connectivity between the same regions as the regions
of the DMN, Sal, DAN, and FPN used for dynamic functional
connectivity. No significant difference was observed between groups.
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