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Epidemiological studies suggest that vitamin D insufficiency may be prevalent in young
as well as older populations. The pleiotropic effects of vitamin D are now beyond dispute
and a growing number of studies provide accumulating evidence of a role for vitamin
D in brain development and function. A number of studies to date have investigated
the effects of early-life vitamin D deprivation on adult hippocampus in animals and
humans, and there is a growing body of evidence to suggest a role for this hormone
in the development of selected hippocampal functions such as latent inhibition and
hole board habituation in rats. There are few studies to date of vitamin D deprivation or
supplementation on early hippocampal development in vivo. However, a small number
of studies, mostly in vitro, point to a role for vitamin D in differentiation and development
of hippocampal neurons. There is also limited evidence that supplementation with vitamin
D following a period of deprivation is capable of restoring cellular activity and later
function. Further avenues of future research are outlined including animal studies on the
effects of vitamin D deprivation and inadequacy on early hippocampal biochemistry and
function, e.g., measurement of BDNF levels, GABAergic activity, long-term potentiation
(LTP) and spatial navigation. It also remains to be established if there are critical
developmental windows during which vitamin D is required. In light of the importance
of the hippocampus in LTP and spatial learning, further investigations on the early effects
of vitamin D deprivation on hippocampal development are warranted.
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Introduction

Until a little over 30 years ago, the role of hormonal vitamin D was classically associated
with calcium homeostasis, bone formation and maintenance, its up-regulation by parathyroid
hormone being known for many years. However in recent years, myriad other functions and
roles for vitamin D have been gradually postulated and verified, and its pleiotropic effects
are now beyond dispute (Kalueff and Tuohimaa, 2007; McCann and Ames, 2008; Lai and
Fang, 2013; Schlogl and Holick, 2014). Some examples of its diverse range of effects include
immune-modulatory and pro-differentiation activity, cellular regulation and apoptosis, anti-
inflammatory and antimicrobial activity, insulin secretion, interaction with the renin-angiotensin
system, neuroprotection, inter alia. (See for examples, DeLuca and Cantorna, 2001; Garcion
et al., 2002; Holick, 2003; Lin and White, 2004; Nagpal et al., 2005; Norman, 2006). Vitamin D
is now known to be synthesized in many cells such as skin, lymph nodes, colon, adrenal
medulla and pancreas (see for example, Zehnder et al., 2001; Lai and Fang, 2013) and it
regulates approximately 3% of the human genes via its endocrine effects (Bouillon et al., 2008).
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Among the general population, pregnant women are
considered to be at risk of vitamin D deficiency (VD). The
increased demands of the developing fetus combined with a
possible decrease in environmental exposure to sunlight, may
result in diminished circulating vitaminD (Hillman andHaddad,
1976; Markestad et al., 1983). One large US study reported that
12% of women aged 25–29 had low serum 25-hydroxyvitamin D
levels (Looker and Gunter, 1998) while another study of young
Canadian women reported even higher prevalences (Vieth et al.,
2001). A high prevalence of VD has also been reported in infants,
children and adolescents from various countries (Huh and
Gordon, 2008). In addition, women who wear concealed clothes
are also at risk and in one study, hypovitaminosis was observed
in 82.5% of such a cohort (Belaid et al., 2008). The question
of reduced vitamin D concentrations on consequent neonatal,
infant and child development in relation to the hippocampus is
therefore highly pertinent.

Vitamin D and the CNS

The earliest evidence for binding of Vitamin D3 within the
nervous system was first obtained over 35 years ago by
the seminal autoradiographic studies of Stumpf et al. (1979,
1980), who reported its accumulation in the posterior pituitary,
forebrain, hindbrain and spinal cord. However an earlier
study by Clemens et al had reported that antibody to the
Vitamin D receptor (VDR) within the dorsal hippocampus
was strikingly similar to the D3 receptor (Clemens et al.,
1985). Further autoradiographic studies by Stumpf and O’Brien
(1987) demonstrated the positive presence of nuclear Vitamin
D staining in many other brain regions including the ventral
hippocampus. On the basis of the extensive presence of vitamin
D within the brain, they proposed that calcitriol be renamed
solitriol, the sunlight activated steroid hormone, to reflect
its wider physiological remit. Since then the investigation of
a neural role for vitamin D has gained significant traction
and a plethora of animal studies have shed light both
on its presence and its biological activity within the CNS
independent of transport via the blood-brain barrier. For
example, a number of studies have revealed the expression
of VDR in specific brain regions including the thalamus,
cerebellum, amygdala, cingulated gyri, temporal lobe, cerebral
cortex, and hippocampus (Clemens et al., 1988; Prüfer et al.,
1999; Langub et al., 2001; Zehnder et al., 2001; Garcion et al.,
2002; Eyles et al., 2003; McGrath et al., 2004). Biosynthetic
and degradative enzymes for the vitamin were also reported
in glial and neuronal cells in vitro (Clemens et al., 1988;
Neveu et al., 1994a,b; Baas et al., 2000). An important study
by Eyles et al established for the first time that the VDR
and α-1 hydoxlyase enzyme co-localized in specific areas of
the brain (Eyles et al., 2005). This was followed by several
functional studies on physiological and cellular effects of
vitamin D on various aspects of brain cellular function (for
examples see Ko et al., 2004; Lin et al., 2005; Taniura et al.,
2006).

A growing body of evidence also points to a role for vitamin
D in the development of the CNS. Vitamin D3 receptors have

been located in the CNS of the rat embryo (Veenstra et al.,
1998). In addition, transient deprivation of vitamin D early
in life leads to changes in the new-born rat brain which may
persist into adulthood. The offspring of vitamin D deficient
rats have larger lateral ventricles (Eyles et al., 2003; Féron
et al., 2005), a thinner cortex (Eyles et al., 2003) diminished
levels of nerve growth factor (NGF; Eyles et al., 2003; Féron
et al., 2005), and reduced expression of a number of genes
involved in neuronal structure and neurotransmission (Féron
et al., 2005). These changes do not persist if young animals
are fed a vitamin D replete diet at birth but persist if they
remain on a vitamin D deficient diet for the first 3 weeks
of life (Féron et al., 2005). VD has also been shown to
interfere with cortical development in developing rat brains
by inducing fewer apoptotic cells at birth and more mitotic
cells overall (Ko et al., 2004). Targeted gene arrays specific for
apoptosis and cell cycle genes confirm a pattern of transcription
deregulation in the deplete group consistent with the known
properties of vitamin D (Ko et al., 2004). The latter study
suggests that the known pro-apoptotic and pro-differentiating
properties of Vitamin D may also play a role in brain
development. In addition, vitamin D has been demonstrated
to increase levels of NGF and neurotrophins NT-3 and NT-4
in cultured glial cells, astrocytes and oligodendrocytes (Neveu
et al., 1994a,b; Baas et al., 2000). Neurotrophins (NT) play
an important role in the survival of developing neurons and
in the proliferation and differentiation of neural progenitor
cells (Davies, 2004). Its overall contribution to healthy brain
development renders also likely a role for vitamin D in the
developing hippocampus. A recent paper investigated the effects
of calcitriol on neural stem cell differentiation from cultured
mouse neurospheres, and reported concentration-dependent
increases in the numbers of cells containing the intracellular
neural marker NeuN, and the oligodendrocyte marker GalC,
and the astrocyte marker GFAP. They also reported increased
VDR expression within the neural stem cells (Shirazi et al.,
2015).

Studies on the Hippocampus

Functional VDRs were first reported in the dentate gyrus
(DG), pyramidal and granule layers, glial cells and in subfields
CA1–3 of the rat hippocampus, which were capable of
specifically binding DNA response elements to osteopontin
(Langub et al., 2001). Following the discovery of VDR within
the hippocampus, a number of studies have investigated the
effects of pre or perinatal VD or supplementation on aspects
of hippocampal structure or function in rodents. Several studies
have also been carried out on cultured hippocampal cells
in vitro. Although many of the in vivo studies have been
conducted on brains of adult rodents, changes in structure
or function in adult brains provide circumstantial evidence
for impaired development, as reported deficits represent the
outcomes of earlier anatomical or physiological abnormalities
extending into adulthood. Therefore they are germane to an
overall understanding of the role of vitamin D in hippocampal
development.
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Behavioral Studies

Several studies have investigated the effects of prenatal VD
deficiency in rodents on cognitive and behavioral functions
which directly or indirectly involve the hippocampus. In one
animal model, offspring of female rats who had been subjected
to a VD deficient diet from 6 weeks prior to mating until
the birth of the litter were evaluated for behavioral changes
at various time points following repletion of Vitamin D at
birth. Significant impairment of both latent inhibition and
hole-board habituation in vitamin-deprived rats was reported
(Becker et al., 2005). The former is considered to be a measure
of the ability to learn to ignore irrelevant stimuli. The latter
is a form of non-associative learning in which there is a
progressive diminution with repetition of a specific stimulus
and also represents the ability to ignore irrelevant stimuli.
Both functions are thought to constitute a central feature of
schizophrenia (Becker et al., 2005) and involve the hippocampus
(Oades and Isaacson, 1978; Weiner, 1990). However there was
no impairment of spatial learning within a radial maze, nor on
two-way active avoidance learning. Vitamin depleted rats also
demonstrated superior ability to maintain previously learned
rules in a brightness discrimination task. The authors concluded
that exposure to low prenatal vitamin D has a selective impact
on certain aspects of memory only, with disruption of latent
inhibition, but no effect on memory acquisition and memory
retrieval. The apparently superior ability of VD rats to maintain
previously learned rules in a brightness discrimination task is
an intriguing finding which needs to be replicated. However
this link at present remains speculative, albeit tenable. Apropos
its functional significance, it is tempting to speculate that it
may constitute a compensatory physiological mechanism in
the absence of sufficient sunlight. A later study by the same
group investigated synaptic plasticity and long-term potentiation
(LTP) in the DG of the hippocampus (Grecksch et al., 2009).
Surprisingly, VD induced an enhancement of LTP using weak
or strong titanic stimulation which persisted for more than
24 h. The authors concluded that memory acquisition and
retrieval was unaffected and only latent inhibition disrupted.
They also noted that the finding of enhanced LTP was in
good agreement with the improved memory associated with the
brightness discrimination task of their earlier study. Harms et al
investigated the effect of prenatal VD on different neurological
behaviors in two strains of 10 week old mice, and noted increased
frequency of head-dipping in the hole board test in both
strains, indicative of increased exploration and hippocampal
involvement (Harms et al., 2012). The clinical significance of
the latter has not been evaluated to date. In a separate study
by the same group, one strain of mouse displayed spontaneous
hyperlocomotion, pointing to intraspecies as well as inter-species
differences in responses to developmental VD (Harms et al.,
2008).

In light of the major role of the hippocampus in long-
term memory formation, the apparent lack of effect of VD
on spatial learning and memory formation and retrieval is an
important finding which needs to be verified across species.
An investigation of BDNF levels in such studies would also be

useful, given its importance in spatial learning and hippocampal
plasticity (Kang and Schuman, 1995a,b; Leal et al., 2015). It
must be borne in mind also, that rats in the cited studies
received some vitamin D from their mothers from the time
of birth until weaning, and it is possible that this could have
resulted in a partial restoration of hippocampal structure and
function.

The hippocampus constitutes part of the neural circuitry
responsible for the acoustic startle reflex (Swerdlow et al., 2001).
One study to date has investigated the effects of vitamin D
deprivation over time on this reflex in rats (Burne et al.,
2004). Several groups of rats were treated and compared e.g.,
no depletion, replete at birth, replete at weaning, depleted
until 10 weeks of age, or depleted between 5 and 10 weeks
of age, and they found that only the combined prenatal and
chronic postnatal vitamin D deprivation, but not early life
hypovitaminosis on its own, resulted in an impaired response.
This suggests that early VD for a limited period does not
automatically produce any long-term adverse effects on brain
function.

Neuroanatomical and Neurochemical
Studies

Harms et al investigated the effect of prenatal VD on brain
anatomy in two strains of male and female new-born mice and
found a significantly reduced hippocampal volume in females
but not males. However the phenotype did not extend into
adulthood, suggesting that either normal postnatal development
or the reintroduction of vitamin D at birth may have corrected
the deficit (Harms et al., 2012). The finding of reduced
hippocampal volume in females is noteworthy and in need of
further replication. Its clinical significance if any, is presently
unknown and can only be elucidated in the context of further
specific behavioral studies comparing hippocampal function and
activity in females and males. One other study on the offspring
of VD mice has demonstrated smaller lateral ventricles at 30
weeks but normal hippocampal volume (Fernandes de Abreu
et al., 2010). There are no studies to date on the effects of VD
on hippocampal volume in rats or other species.

Two animal studies to date have investigated the effect of
VD on hippocampal neurogenesis. The first study, utilising
a 1-α hydroxylase knock-out mouse model investigated the
hippocampus of 8 week old mice born of vitamin D-depleted
dams following injection with labeled bromodeoxyuridine (bdU;
Zhu et al., 2012). They found a 50% reduction in the number
of what were referred to as newborn neurons within the
subgranular zone of the DG, alongside an increase in the number
of apoptotic cells, 7 and 28 days post-injection. Subsequent
dietary supplementation with vitamin D3 was able to prevent
the reduction in bdU-labeled DG cells. This was paralleled
by a decrease in NGF levels within the brain, leading the
authors to postulate on a direct link between both phenomena.
The decrease in NGF levels is consistent with previous studies
in relation to brain development (Eyles et al., 2003; Féron
et al., 2005). However the finding of increased numbers of
apoptotic cells in the hippocampus is in contrast to the
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findings of decreased numbers of apoptotic cells at birth in
the developing cortex (Ko et al., 2004) and with the known
overall effects of vitamin D on apoptosis. A second study
used rats to investigate the effect of gestational VD on their
10 week old offspring and also reported reduced neuronal
proliferation within the subgranular layer of the DG (Keilhoff
et al., 2010).

It appears that the negative effects of early transient VD on
the hippocampus can be counteracted, under certain conditions
at least, by subsequent repletion in vivo (Eyles et al., 2003; Burne
et al., 2004; Féron et al., 2005; Harms et al., 2012; Zhu et al.,
2012). This suggests that VD under certain conditions, exerts
only temporary rather than long-term deficits in structure and
function. It remains to be established if this compensatory ability
is limited to specific ontogenetic windows of development. More
carefully differentiated investigations like this one on various
aspects of hippocampal development and function are necessary.

Two studies have investigated the effect of a single treatment
of 50 µg of vitamin D on neurotransmitter concentrations
in offspring of rats, and found that within the hippocampus,
levels of serotonin and 5H1AA, but not dopamine or HVA,
were negatively affected by the single treatment, which the
authors referred to as hormonal imprinting (Tekes et al.,
2009a,b). This is an interesting finding which warrants
further exploration over longer periods with repeated hormone
treatments. Apart from elucidating valuable data on the direct
effect of vitamin D on neurotransmitter levels within the
hippocampus, such studies carried out on young animals could
also shed valuable light on hippocampal development when
combined with behavioral testing. A recent study investigated
calcitriol supplementation for 6 weeks in rats and reported
higher GABA levels in the hippocampus and cortex (Jiang et al.,
2014).

In Vitro Studies

Several groups have investigated vitamin D supplementation of
up to 100 nM on developing cultured hippocampal neurons
(Brann et al., 1999; Brown et al., 2003; Marini et al., 2010).
Two of these reported arrested or reduced mitosis and cell
division along with accelerated neurite outgrowth and increased
NGF production (Brann et al., 1999; Brown et al., 2003). These
findings are consistent with an earlier study demonstrating
the upregulation of the anti-mitotic cyclin-dependent kinase
regulators p. 21 and p. 27 in a related cell line (Rots et al.,
1999). Marini’s group reported translocation of vitamin D
from the cytoplasm to the nucleus and back to the cytoplasm,
which caused a delay in cell proliferation and induction of
cell differentiation (Marini et al., 2010). They expanded their
study to include a simultaneous investigation of cell cycle
activity during Vitamin D supplementation. They found reduced
expression of two proteins involved with proliferation (PCNA
and cyclin D1) between 12–15 h post incubation compared
to controls. This coincided with a 70% decrease in thymidine
incorporation into DNA and with the G1/S phase of the cell
cycle. There was a concurrent 16-fold increase in levels of
Bcl2, a protein marker of cell differentiation, and NF-L, one

of the neurofilaments involved in maintenance and remodeling
of the neuronal cytoskeleton. They also reported an increase
in the development of dendrites and axons over 5 days of
culture compared to controls. In a later study, the same
group found that when serum is withdrawn from cultured
hippocampal cells, treatment with 100 nM vitamin D fails to
trigger differentiation. However, increasing the dose to 400
nM allowed the interaction of the vitamin with its receptor,
resulting in differentiation (Bartoccini et al., 2011). This finding
points to differential effects of varying concentrations of vitamin
D on cellular hippocampal development and warrant further
exploration. Although the concentration of hormone used to
supplement in vitro is higher than that detected in standard rat
chow, vitamin D levels in humans have been found in more
than one study to be elevated in pregnancy (Seki et al., 1991;
Ardawi et al., 1997). It is therefore possible that local gradients
of the hormone occur in the developing embryonic tissues and
organs in vivo which may mirror if not exceed those used
experimentally.

Cui et al examined the effect of VD on neuroprogenitor
formation in cultured neonatal rat brain cells (Cui et al.,
2007). They found an increase in the number of neurospheres
formed in culture from the subventricular zone (SVZ), which
was unaffected by subsequent supplementation with vitamin
D. The authors concluded that vitamin D can regulate cellular
proliferation in the developing brain. It is noteworthy that
exogenous vitamin D supplementation of an initially deprived
medium failed to elicit any cellular response. This contrasts
with the restoration of normal development following vitamin
D repletion in whole animals (Féron et al., 2005), and highlights
the potential disparity between in vitro and in vivo findings.
It may reflect the lack of any pool of pre-existing progenitor
cells in the in vitro studies compared with the in vivo
situation. Interestingly, VDR positive staining was localized
within the progenitor cells of control and deplete neonate brains,
particularly within the SVZ, and was unaffected by vitamin
depletion.

One in vitro study has investigated the interaction of
glucocorticoids with vitamin D in isolated hippocampal
cells (Obradovic et al., 2006). Pre-treatment with 1 µmol
vitamin D for 24 h substantially reduced the degree of
dexamethasone—induced apoptosis and induced the activation
of the p42/p44 MAPK complex which is involved in cellular
differentiation. Vitamin D also abrogated the inhibitory effects
of dexamethasone on the MAPK complex. The antagonistic
effects of vitamin D on glucocoticoid action was postulated to
have potential significance in treatment of cognitive impairments
and major depression, both of which are accompanied by high
amounts of circulating corticosteroids (Holsboer, 2000).

Future Directions and Conclusions

In light of the accumulating animal and in vitro evidence to
date, it is likely that vitamin D plays a role in hippocampal
development in vivo. However, the majority of animal studies
to date have been carried on animals from several weeks old
and upwards, and there are insufficient data on the effects
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of VD on newborn and adolescent animals. This constitutes
a major lacuna in our overall understanding of the role of
vitamin D in the early development of the hippocampus and
is an avenue ripe for exploration. There is a need for similar
studies as those carried out to date on vitamin deficient new-born
animals and continuing at regular timepoints to adulthood, to
elucidate clearly how VD impacts on development in vivo both
anatomically and structurally. Further anatomical studies are
particularly necessary on early hippocampal neurogenesis and
neuronal differentiation in vivo to confirm the in vitro findings.

It is possible that there are temporal variations in the
effects of vitamin D such that particular time points along the
spectrum of hippocampal development are more sensitive to
its absence or its supply, than are others. There is a need for
detailed studies investigating the effects of varying degrees of
VD over time on hippocampal structure and function, given
that VD in human subjects is invariably partial rather than
total.

The overall behavioral findings to date with rodents on the
effects of early VD on hippocampal function are complex and
subtle, pointing to specific deficits such as latent inhibition and
hole board habituation, rather than global disruption of function.
These findings are also in need of replication to eliminate the
possibility that some of these observations are species-specific
rather than global. The finding, for example, of increased hyper-
locomotion in one specific mouse species but not another
(Harms et al., 2008) highlights the potentially differing effects of
VD even within a single species.

Hippocampal structure and function is altered in
schizophrenia, and the neuro-developmental hypothesis of
schizophrenia suggests that an interaction between genetic and
environmental factors during critical windows of development
negatively impacts on brain development. Low prenatal
vitamin D has been postulated as an epigenetic risk factor
for same (McGrath, 1999), and transient VD is considered
a developmental model in schizophrenia research. This has

led to an important volume of work on this topic, some of
which has been cited in this review in the context of the
hippocampus. Hippocampal hyperactivity in schizophrenia
has been demonstrated via neuroimaging and GABAergic
mechanisms have been implicated in this effect (Heckers
and Konradi, 2014). The recent finding of elevated GABA
levels within the hippocampus and cortex following calcitriol
supplementation in adult rats is noteworthy in this regard (Jiang
et al., 2014). The effect of VD on neuronal activity and on GABA
levels within the developing hippocampus in vivo is also worth
investigating.

Given the known adverse effects of glucocorticoid excess
on early brain development and the ensuing propensity to
psychiatric illness later in life, another worthwhile avenue of
research is the exploration of combined glucocorticoid excess
with VD over varying time periods pre and post natally on
hippocampal development and function in vivo. In particular,
their combined effect on neural plasticity and LTP within the
hippocampus needs to be elucidated.

It also remains to be established whether or not prenatal or
perinatal VD may result in subtle changes in the developing
hippocampus which render it more susceptible to eventual
development of neurodegenerative diseases such as Alzheimer’s
and Parkinson’s. While a number of studies have looked at
the effects of VD on cognitive function in ageing or elderly
populations, none to date have attempted to ascertain whether
VD in early life could predispose to cognitive dysfunction in
adulthood. Such studies of VD in the developing hippocampus
should also measure BDNF levels, which are known to decrease
in hippocampal neurons of Alzheimers patients (Siegel and
Chauhan, 2000).

Finally, there are no cross-sectional studies to date in young
children on hippocampal function such as memory formation
and retrieval, and spatial navigation as a function of their vitamin
D intake. This would shed the most valuable light possible on the
role of vitamin D in early hippocampal development.
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