
sensors

Article

A Cost-Effective Inertial Measurement System for Tracking
Movement and Triggering Kinesthetic Feedback in Lower-Limb
Prosthesis Users

McNiel-Inyani Keri 1, Ahmed W. Shehata 2 , Paul D. Marasco 3,4, Jacqueline S. Hebert 2,5,6

and Albert H. Vette 1,6,*

����������
�������

Citation: Keri, M.-I.; Shehata, A.W.;

Marasco, P.D.; Hebert, J.S.; Vette, A.H.

A Cost-Effective Inertial

Measurement System for Tracking

Movement and Triggering Kinesthetic

Feedback in Lower-Limb Prosthesis

Users. Sensors 2021, 21, 1844.

https://doi.org/10.3390/s21051844

Academic Editor: Jochen Klenk

Received: 2 February 2021

Accepted: 2 March 2021

Published: 6 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Donadeo Innovation Centre for Engineering, Department of Mechanical Engineering, University of Alberta,
9211 116 Street NW, Edmonton, AB T6G 1H9, Canada; mcniel@ualberta.ca

2 Division of Physical Medicine and Rehabilitation, Faculty of Medicine and Dentistry, University of Alberta,
5005 Katz Group Centre, Edmonton, AB T6G 2E1, Canada; shehata@ualberta.ca (A.W.S.);
jhebert@ualberta.ca (J.S.H.)

3 Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute,
Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA; marascp2@ccf.org

4 Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, 10701 East Boulevard 151 W/APT, Cleveland, OH 44106, USA

5 Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta,
Edmonton, AB T6G 2V2, Canada

6 Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue NW,
Edmonton, AB T5G 0B7, Canada

* Correspondence: albert.vette@ualberta.ca; Tel.: +1-780-492-1534

Abstract: Advances in lower-limb prosthetic technologies have facilitated the restoration of am-
bulation; however, users of such technologies still experience reduced balance control, also due
to the absence of proprioceptive feedback. Recent efforts have demonstrated the ability to restore
kinesthetic feedback in upper-limb prosthesis applications; however, technical solutions to trigger the
required muscle vibration and provide automated feedback have not been explored for lower-limb
prostheses. The study’s first objective was therefore to develop a feedback system capable of tracking
lower-limb movement and automatically triggering a muscle vibrator to induce the kinesthetic
illusion. The second objective was to investigate the developed system’s ability to provide kinesthetic
feedback in a case participant. A low-cost, wireless feedback system, incorporating two inertial
measurement units to trigger a muscle vibrator, was developed and tested in an individual with
limb loss above the knee. Our system had a maximum communication delay of 50 ms and showed
good tracking of Gaussian and sinusoidal movement profiles for velocities below 180 degrees per
second (error < 8 degrees), mimicking stepping and walking, respectively. We demonstrated in the
case participant that the developed feedback system can successfully elicit the kinesthetic illusion.
Our work contributes to the integration of sensory feedback in lower-limb prostheses, to increase
their use and functionality.

Keywords: device development; kinematic feedback; kinesthetic feedback; kinesthetic illusion;
lower-limb prostheses; sensory feedback; wearable sensor

1. Introduction

Limb loss affects many individuals across the world, with the majority of affected
individuals experiencing it in the lower extremity [1,2], thereby affecting mobility and
gait. Since the degree of mobility has been shown to have a positive correlation with the
overall quality of life of individuals with lower limb loss [3], various prosthetic technologies
have been developed to restore ambulation [4]. Nonetheless, lower-limb prosthesis users
still suffer from decreased balance during walking, which can contribute to a higher
incidence of falling, abnormal gait, and a decreased quality of life [5]. One cause for
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this might be the loss of proprioceptive feedback such as kinesthesia (sense of limb and
joint movement), which, when restored following limb loss, has been shown to result
in greater joint placement control and reflexive behavior during stair walking [6]. As a
consequence, prostheses capable of providing users with a relative sense of the prosthetic
limb’s movement could improve mobility, reduce fall risk, and contribute to an improved
quality of life for affected individuals.

The kinesthetic illusion (KI), a phenomenon whereby mechanical vibration adminis-
tered to the musculotendinous region of a limb may elicit a perception of limb movement,
holds promise as a means of providing sensory feedback on movement to prosthesis
users [7]. This perceptual phenomenon can be triggered when vibrating a limb’s muscle
belly or tendon at a frequency between 70 and 115 Hz to simulate muscle contraction [8–10].
For example, vibration introduced to the lower limbs of non-disabled individuals has been
shown to result in vibration-induced falling and a perception of forward progression dur-
ing stationary marching [11–13]. Thus far, the KI has been demonstrated in non-disabled
individuals [8,11], upper-limb prosthesis users [14], and, more recently, lower-limb prosthe-
sis users [9]. While the KI is commonly administered manually using a hand-held actuator
capable of eliciting movement perceptions [7,10,15], its functional use requires automated
feedback control, based on the sensed movement of a user’s prosthesis. A challenge with
achieving this automated kinematic feedback, however, is the lack of adequate instrumen-
tation that can measure and relay kinematic information of the lower-limb prosthesis to its
user, and this in an accurate, reliable, timely, and cost-effective fashion.

Inertial measurement units (IMUs), technology frequently used for tracking human
and robotic position and orientation [16–18], can be found within a minor cohort of ad-
vanced commercial prostheses. Although such microprocessor-controlled lower-limb
prostheses rely on IMUs to monitor the prostheses’ movement and facilitate their opti-
mal performance (e.g., by adapting to varying terrains [4]), the majority of lower-limb
prostheses do not [19,20]. Additionally, acquiring movement data wirelessly from ad-
vanced prostheses is difficult without compromising their integrity and making physical
modifications to the system [21]. Thus, retrofitting prosthetic devices with easy-to-attach,
low-cost, wireless IMUs may aid researchers in acquiring prosthesis movement data, for
use in closed-loop feedback systems utilizing the KI. However, when retrofitting current
prosthetic technologies with commercially available tracking systems, e.g., the Delsys
Trigno, the high cost of such tracking systems and the high processing power required
present as additional practical challenges.

The lack of instrumentation of most prostheses, the inaccessibility of data from the
subset of more advanced prosthetic devices, and the high cost of commercial tracking
systems prevent researchers from developing a functional method of integrating sensory
feedback systems while monitoring movement of the prosthesis. In this light, the first
objective of this study was to develop a low-cost wireless IMU-based system (WIbS),
capable of driving a vibratory actuator in a feedback control scheme. The second objective
of this study was to investigate the feasibility of using the developed feedback system to
trigger the KI, in real-time, in a case study with an above-knee lower-limb prosthesis user.

2. Materials and Methods
2.1. Device Development

Hardware and enclosure: The developed, low-cost WIbS is comprised of an Arduino
Pro Mini microcontroller (Arduino, Somerville, MA, USA), an RN42 Bluetooth module
(Microchip Technology, Chandler, AZ, USA) capable of delivering up to three megabits per
second of data at distances of up to 20 m, two IMU modules with three rotational degrees of
freedom (BOSCH, Gerlingen, Germany), and a lithium-ion battery with a boost converter
offering up to four hours of battery life (SparkFun, Niwot, CO, USA) (Figure 1A). We
specifically chose IMUs with three rotational degrees of freedom as this choice will allow
application to prosthetic knee or ankle joints in the future that facilitate motion of more than
a single degree of freedom (e.g., ankle flexion/extension and inversion/eversion [22,23]).
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The cost of the described hardware is approximately US $100. Due to the modularity of the
system, other electronic components with similar or superior specifications could be easily
substituted into the system.
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Figure 1. (A) The wireless inertial measurement unit-based system (WIbS) consisted of two of the
following: an Arduino Pro Mini microcontroller (center), an inertial measurement unit (bottom right),
a Bluetooth radio (top right), a lithium-ion battery, and a boost converter (left of the microcontroller).
(B) An enclosure was manufactured for each sensor module to manage wires, improve ergonomics,
and fixate the inertial measurement unit.

To manage wires, improve ergonomics, and most importantly fixate each of the two IMU
modules to the prosthesis for accurate measurements, two enclosures (70 mm × 35 mm × 35 mm
each) were designed using SolidWorks 2016 (SOLIDWORKS, Waltham, MA, USA) (Figure 1B).
They were manufactured via three-dimensional printing using fused deposition rapid
prototyping, polylactic acid filaments (MakerBot, NY, USA), and the MakerBot Replicator
(MakerBot, Brooklyn, NY, USA).

Data transmission: The microcontroller logs four unit quaternions at a sampling rate
of 100 Hz from each IMU and transmits these wirelessly to a mobile monitoring station at a
baud rate of 9600 bits per second. The unit quaternions are contained in a data structure of
14 bytes: two leading bytes (flags), eight bytes storing the four unit quaternions, and the
calibration status of the given IMU’s gyroscope (1 byte), accelerator (1 byte), magnetometer
(1 byte), and overall system (1 byte).

Prosthetic joint angle calculation: To determine the three-dimensional angles of a
prosthetic joint, the two IMU modules of the WIbS must be placed on rigid segments of
the prosthesis, proximally and distally of the joint of interest. The time-varying orienta-
tion of each IMU module is computed from rotation matrices obtained via the device’s
unit quaternions [24]. Following placement, the WIbS is calibrated to virtually align the
coordinate frames of both IMUs with relevant rotation axes of the prosthesis. To do so, a
constant calibration matrix is obtained for each IMU that captures its orientation relative to
the underlying segment when the segment’s orientation in the global coordinate system
is known [25]. The IMUs’ rotation matrices during movement trials, obtained according
to [24], are then calibrated via respective calibration matrices. The result is then used to
compute, via Equation (1), a rotation matrix yielding the angular kinematics between the
two prosthetic limb segments:

Rjoint angle = RT
proximal limb segment × Rdistal limb segment. (1)

Finally, Cardan angles yielding the three-dimensional angles of the prosthetic joint
are calculated using the Z-X-Y moving axes sequence, as recommended by the Interna-
tional Society of Biomechanics [26]. Since most lower-limb prosthetic joints are single-axis
joints [4], the risk of encountering gimbal lock is negligible [27].

Software: We used the C# programming language to design a graphical user interface
(GUI) that logs and visualizes data received from the WIbS. Cardan angles representing
the monitored joint angles (e.g., of the knee) as well as the calibration status of each IMU
are shown in the GUI. Quaternions, calibration status, recording time of the WIbS, and
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the three-dimensional joint angles (e.g., of the knee) acquired via the WIbS are logged at a
sampling rate of 33 Hz.

2.2. Measurement Validation

Experimental approach and procedures: We quantified the accuracy of the WIbS
relative to the outputs of an optoelectronic motion capture system (OptiTrack, Corvallis,
OR, USA) and a commercial IMU (cIMU) system (Delsys, Natick, MA, USA). These two
systems acquired motion data at sampling frequencies of 120 Hz and 33 Hz, respectively.
Considering again that most lower-limb prosthetic joints are single-axis joints [4], we
employed a robotic arm [28] in a bench test due to the fact that it can facilitate repeatable
and isolated single-axis WIbS motion. We attached each WIbS IMU module to a rigid
motion capture plate that also held four motion capture markers and a cIMU system. We
placed one of the two WIbS IMU modules on a stationary segment of the robotic arm, and
the other one on a segment that could move about the three IMU axes.

We used Gaussian and sinusoidal movement velocity profiles (three trials per axis
and per velocity) to assess the accuracy and repeatability of the WIbS. Accordingly, a total
of 54 trials were performed (3 trials × 3 axes × 3 velocities × 2 profiles). We chose the
Gaussian and sinusoidal movement profiles since previous work has shown that they model
single steps and are representative of the cyclic nature of walking, respectively [29]. The
single-axis joint tracking system was tested three times for the maximum velocities of 60, 120
and 180 degrees/s, i.e., velocities and associated accelerations that are in line with the gait
speed and cadence for prosthesis users during walking [30–33]. For the Gaussian movement
profile, the velocity features a double peak, with the first being positive and the second
negative; the acceleration features three peaks, with the first and last being smaller and
positive, and the second being larger and negative. For the sinusoidal movement profile,
the velocity and acceleration will again follow sinusoidal profiles. For each of the tested
velocities per axis, the average root-mean-square error (RMSE) was computed following
previous protocols [34,35], but with slight adjustments for gait as shown in Table 1.

Table 1. To test the performance of the single-axis joint angle tracking system, two movement profiles,
Gaussian and sinusoidal, were chosen. For each profile, three different velocities were tested.

Movement
Profile Sets Type Amplitude Frequency Deviation (σ)

Gaussian 3
Displacement +90 degrees

N/A
0.083 (s)

3(σ) = 0.25 (s)Maximum
Velocity

60/120/180
degrees/s

Sinusoid 3
Displacement ±90 degrees 0.67/1.33/2.00

(Hz) N/AMaximum
Velocity

60/120/180
degrees/s

Data processing and analysis: Experimental data were processed in MATLAB 2016b
(MathWorks, Natick, MA, USA). Using the calibration approach described in Section 2.1
as well as the WIbS data, the motion capture data, and the cIMU data, we obtained a
time-varying rotation matrix that captures the instantaneous orientation of each robotic
segment for each motion tracking system. We then computed joint angles of the robot,
represented by Cardan angles, from the time-varying rotation matrix for each system.

We used the RMSE to determine the accuracy of the WIbS. To ensure a valid com-
parison, data from the WIbS (33 Hz) and the cIMU (33 Hz) were resampled to align their
sampling rates with that of the OptiTrack motion capture system (120 Hz). Subsequently
we used a second order, low-pass Butterworth filter with a cut-off frequency of 4 Hz to
eliminate any high-frequency noise. The resultant signals were cross-correlated to align the
signals temporally. Finally, RMSE values were calculated between the WIbS angles and
the motion capture or cIMU angles. For both movement profiles and each velocity, RMSE
values for single-axis movements were averaged across trials.
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2.3. System Integration

Triggering system using threshold-based controller: A kinesthetic feedback system,
utilizing the WIbS and a simple threshold-based controller, was developed to trigger a
vibratory actuator (states: on or off) that has been shown to be capable of inducing the KI [9].
Using the same hardware and technique as those used to transmit unit quaternions from
the WIbS to the GUI (see Section 2.1), the developed system processes movement data and
wirelessly controls the vibratory actuator. More specifically, the threshold-based controller
infers movement by comparing the angular joint velocity (determined using the WIbS) to a
predetermined threshold of 1.65 degrees per second (0.05 degrees × 33 Hz). The threshold
value was chosen to test the WIbS’s sensitivity in a controlled environment. Practical use of
the movement sensor might permit a larger threshold, e.g., based on the angular velocity of
both intact and prosthetic knee joints [30,33,36], to prevent false movement detection. False
movement detection due to high-frequency noise is eliminated by a fifth order moving
average filter with a cut-off frequency of 4 Hz.

2.4. Case Study: Above-Knee Prosthesis User

Participant and experimental setup: Experiments were conducted to demonstrate
the developed system’s ability to elicit movement percepts in a participant with lower limb
loss that has previously experienced the KI. A 19-year-old, male individual who had a
transfemoral amputation performed 18 months prior (due to osteosarcoma) participated in
this study. He had no current or previous phantom limb pain, used a passive hydraulic
knee, and experienced no current or previous neurological or muscular health conditions,
other than the limb loss. The participant provided written informed consent prior to
participating in the study, which was approved by the Health Research Ethics Board at the
University of Alberta (Pro00063695).

The experimental setup consisted of two WIbS IMU modules attached proximally and
distally of a single joint of the robotic arm from Section 2.2, which communicated wirelessly
with a vibration motor (VB200, Vibrasens, Techno Concept, Manosque, France) featuring a
flat-faced probe tip (2.7 cm diameter) clamped on the participant’s thigh (Figure 2). Since
the case study’s goal was to demonstrate the developed system’s ability to induce the KI
in a controlled environment, we strived to minimize external influences such as motion
artifacts. Therefore, the automated robotic arm was used for consistency and repeatability
in limb movement as well as activation of the vibration motor across trials.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. (A) The participant was shown his unattached prosthesis with the inertial measurement 
unit (IMU) modules attached proximally and distally of the knee joint. For each segment of the 
prosthesis, the orientation of the IMU module was calibrated as described in Section 2.1. The par-
ticipant was informed that movement of the prosthesis, as detected by the wireless modules, was 
responsible for triggering the vibratory actuator. (B) The participant was unaware, however, that 
the robotic arm was used instead to provide motion measurements, triggering the vibration motor. 
The calibrated local coordinate frames and the global coordinate frame are shown within and be-
low the figure, respectively. 

Experimental procedures and data analysis: The experimental protocol was divided 
into two parts: percept mapping and illusion quantification. On the one hand, percept 
mapping was used to identify a site on the participant’s residual limb that elicited strong 
and consistent movement percepts with vibration. On the other hand, illusion quantifica-
tion was used to characterize the nature, velocity, and duration of the movement illusion. 

For the percept mapping, we followed our previously published protocol [7,9] that re-
quired the participant to wear a blindfold and noise-cancelling headphones playing 
Brownian noise to occlude visual and auditory cues, respectively. The vibration device 
was pressed into different locations of the muscle bellies of the vastus lateralis, rectus 
femoris, and vastus medialis muscles on the participant’s residual limb. For each location, 
we asked the participant to indicate any sensation beyond simple vibration. Sites where 
the participant perceived an illusory movement sensation were marked. We also asked 
the participant to rate the realism of each illusory movement on a psychophysical 5-point 
Likert scale [37] from 1 (a weak movement illusion) to 5 (a strong movement illusion). 

Once the location with the strongest and most consistent movement percept during 
vibration was identified (with the prosthesis detached), it was used in the illusion quanti-
fication. Since the KI illusion is a psychophysical phenomenon, guiding participants to vis-
ually link the movement of their prosthesis to the movement percept has the potential to 
enhance the KI [38]. Therefore, an initial demonstration of the triggering system was con-
ducted that had the WIbS fixated to the detached prosthesis and tracking its movement. 
The demonstration aimed to convince the participant that knee joint movement associated 
with his prosthesis, as detected by the WIbS, was responsible for driving the vibratory 
actuator. However, while the participant’s vision was occluded, the IMU modules were 
transferred onto the concealed robotic arm, for the reasons stated above. A set of empty 
enclosures, identical to those used by the WIbS, were then attached to the same locations 
on the detached prosthesis to convince the participant, whenever vision was unconcealed, 
that the movement of his prosthesis was still responsible for activating the vibration mo-
tor. 

20 trials with the developed feedback system were executed during illusion quanti-
fication. Prior to executing those trials, the participant was asked to wear a blindfold and 

Figure 2. (A) The participant was shown his unattached prosthesis with the inertial measurement unit (IMU) modules
attached proximally and distally of the knee joint. For each segment of the prosthesis, the orientation of the IMU module
was calibrated as described in Section 2.1. The participant was informed that movement of the prosthesis, as detected by the
wireless modules, was responsible for triggering the vibratory actuator. (B) The participant was unaware, however, that
the robotic arm was used instead to provide motion measurements, triggering the vibration motor. The calibrated local
coordinate frames and the global coordinate frame are shown within and below the figure, respectively.
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Experimental procedures and data analysis: The experimental protocol was divided
into two parts: percept mapping and illusion quantification. On the one hand, percept map-
ping was used to identify a site on the participant’s residual limb that elicited strong and
consistent movement percepts with vibration. On the other hand, illusion quantification
was used to characterize the nature, velocity, and duration of the movement illusion.

For the percept mapping, we followed our previously published protocol [7,9] that
required the participant to wear a blindfold and noise-cancelling headphones playing
Brownian noise to occlude visual and auditory cues, respectively. The vibration device
was pressed into different locations of the muscle bellies of the vastus lateralis, rectus
femoris, and vastus medialis muscles on the participant’s residual limb. For each location,
we asked the participant to indicate any sensation beyond simple vibration. Sites where
the participant perceived an illusory movement sensation were marked. We also asked
the participant to rate the realism of each illusory movement on a psychophysical 5-point
Likert scale [37] from 1 (a weak movement illusion) to 5 (a strong movement illusion).

Once the location with the strongest and most consistent movement percept during
vibration was identified (with the prosthesis detached), it was used in the illusion quan-
tification. Since the KI illusion is a psychophysical phenomenon, guiding participants to
visually link the movement of their prosthesis to the movement percept has the potential
to enhance the KI [38]. Therefore, an initial demonstration of the triggering system was
conducted that had the WIbS fixated to the detached prosthesis and tracking its movement.
The demonstration aimed to convince the participant that knee joint movement associated
with his prosthesis, as detected by the WIbS, was responsible for driving the vibratory
actuator. However, while the participant’s vision was occluded, the IMU modules were
transferred onto the concealed robotic arm, for the reasons stated above. A set of empty
enclosures, identical to those used by the WIbS, were then attached to the same locations
on the detached prosthesis to convince the participant, whenever vision was unconcealed,
that the movement of his prosthesis was still responsible for activating the vibration motor.

20 trials with the developed feedback system were executed during illusion quantifi-
cation. Prior to executing those trials, the participant was asked to wear a blindfold and
noise-cancelling headphones playing Brownian noise to occlude visual and auditory cues,
respectively. For each trial, the robotic arm followed half a Gaussian profile (0 to 90 de-
grees) for a duration of 15 s, and the clamped vibration motor was triggered by the WIbS
tracking the single-axis movement of the robot. More specifically, the onset and termination
of the robotic arm’s movement were used to activate or deactivate the vibration motor,
respectively (see Section 2.3). Upon activation, the vibration motor provided stimulation at
parameters previously determined to be optimal for elicitation of the KI–a frequency of
90 Hz and an amplitude of 1 mm peak-to-peak [7]. While the movement profile did not
affect the actual vibration, a duration of 15 s was chosen since previous studies have found
that, for the vibration parameters used in this work, the illusory movement sensation may
sometimes last between 10 and 20 s [7,9,15]. For each trial, the participant was instructed
to use his intact limb to match what he felt in terms of the nature, velocity, and duration of
the movement. To quantify the illusion, we used a motion capture system (OptiTrack, OR,
USA), along with motion capture plates placed proximally and distally of the participant’s
intact knee, as well as the 5-point Likert scale mentioned above [37]. Once motion capture
data and the strength of illusion were recorded, Cardan angles representing the knee joint
angles were computed using the tools and techniques outlined in Sections 2.1 and 2.2.
To demonstrate the developed feedback system’s ability to elicit movement percepts, the
knee flexion trajectories from the participant’s intact limb (used to match the kinesthetic
perception) were then averaged across those trials that successfully elicited the KI. We
then plotted the average knee flexion over time, along with its variability across trials
(±1 standard deviation band). No further analysis was performed with the rating obtained
for the psychophysical 5-point Likert scale.
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3. Results
3.1. Movement Sensor Validation

The performance of the WIbS is summarized in Figures 3 and 4 and Tables 2 and 3. In
each plot, the red lines represent angles from the WIbS, blue lines angles from the cIMU
system, and gray lines angles from the motion capture system. Rows represent results of a
specific axis of rotation (X, Y, Z), and columns represent results for different velocities (60,
120, 180 degrees per second). For the Gaussian profile (Figure 3, Table 2), RMSE values were
smaller than 1.0 and 0.5 degrees relative to the cIMU and motion capture measurements,
respectively. The RMSE values for the angles of both stationary axes were smaller than
0.4 and 0.1 degrees relative to the cIMU and motion capture measurements, respectively
(no movement).
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Table 2. Accuracy and repeatability results for the Gaussian movement profile. Shown is the root-
mean-square error (RMSE) for the three different movement axes and three different movement
velocities: 60 degrees/s, 120 degrees/s, and 180 degrees/s.

Maximum
Velocity

Moving
Axis

RMSE (Degrees)
Stationary

Axis

RMSE (Degrees)

Commercial
IMU

Motion
Capture

Commercial
IMU

Motion
Capture

Slow
(60

degrees/s)

X-axis 0.66 ± 0.05 0.26 ± 0.02
Y-axis 0.03 ± 0.00 0.03 ± 0.00
Z-axis 0.23 ± 0.00 0.01 ± 0.00

Y-axis 0.64 ± 0.07 0.26 ± 0.02
X-axis 0.23 ± 0.00 0.01 ± 0.00
Z-axis 0.03 ± 0.00 0.03 ± 0.00

Z-axis 0.67 ± 0.06 0.26 ± 0.02
X-axis 0.24 ± 0.00 0.01 ± 0.00
Y-axis 0.03 ± 0.00 0.03 ± 0.00

Medium
(120

degrees/s)

X-axis 0.63 ± 0.05 0.15 ± 0.02
Y-axis 0.03 ± 0.00 0.03 ± 0.00
Z-axis 0.05 ± 0.00 0.01 ± 0.00

Y-axis 0.61 ± 0.05 0.15 ± 0.02
X-axis 0.05 ± 0.00 0.01 ± 0.00
Z-axis 0.03 ± 0.00 0.03 ± 0.00

Z-axis 0.66 ± 0.05 0.15 ± 0.01
X-axis 0.05 ± 0.00 0.01 ± 0.00
Y-axis 0.03 ± 0.00 0.03 ± 0.00

Fast
(180

degrees/s)

X-axis 0.87 ± 0.07 0.28 ± 0.02
Y-axis 0.02 ± 0.00 0.02 ± 0.00
Z-axis 0.25 ± 0.00 0.03 ± 0.00

Y-axis 0.88 ± 0.08 0.28 ± 0.02
X-axis 0.26 ± 0.00 0.03 ± 0.00
Z-axis 0.02 ± 0.00 0.02 ± 0.00

Z-axis 0.88 ± 0.07 0.28 ± 0.02
X-axis 0.25 ± 0.00 0.03 ± 0.00
Y-axis 0.02 ± 0.00 0.02 ± 0.00

Table 3. Accuracy and repeatability results for the sinusoidal movement profile. Shown is the
root-mean-square error (RMSE) for the three different movement axes and three different movement
velocities: 60 degrees/s, 120 degrees/s, and 180 degrees/s.

Maximum
Velocity

Moving
Axis

RMSE (Degrees)
Stationary

Axis

RMSE (Degrees)

Commercial
IMU

Motion
Capture

Commercial
IMU

Motion
Capture

Slow
(60

degrees/s)

X-axis 1.54 ± 0.07 5.71 ± 0.08
Y-axis 0.03 ± 0.00 0.43 ± 0.00
Z-axis 0.68 ± 0.00 0.28 ± 0.00

Y-axis 1.49 ± 0.05 7.98 ± 0.09
X-axis 0.69 ± 0.00 0.29 ± 0.00
Z-axis 0.03 ± 0.00 0.43 ± 0.00

Z-axis 1.58 ± 0.06 4.24 ± 0.04
X-axis 0.68 ± 0.00 0.28 ± 0.00
Y-axis 0.03 ± 0.00 0.43 ± 0.00

Medium
(120

degrees/s)

X-axis 1.29 ± 0.03 5.24 ± 0.04
Y-axis 0.20 ± 0.00 0.65 ± 0.00
Z-axis 0.46 ± 0.00 0.17 ± 0.00

Y-axis 1.26 ± 0.04 7.62 ± 0.07
X-axis 0.46 ± 0.00 0.17 ± 0.00
Z-axis 0.21 ± 0.00 0.67 ± 0.00

Z-axis 1.29 ± 0.04 3.58 ± 0.06
X-axis 0.49 ± 0.00 0.17 ± 0.00
Y-axis 0.19 ± 0.00 0.64 ± 0.00

Fast
(180

degrees/s)

X-axis 5.32 ± 0.04 11.48 ±
0.06

Y-axis 0.14 ± 0.00 0.54 ± 0.00
Z-axis 0.40 ± 0.00 0.19 ± 0.00

Y-axis 5.36 ± 0.49 13.48 ±
0.05

X-axis 0.38 ± 0.00 0.19 ± 0.00
Z-axis 0.14 ± 0.00 0.54 ± 0.00

Z-axis 5.58 ± 0.07 9.32 ± 0.03
X-axis 0.42 ± 0.00 0.19 ± 0.00
Y-axis 0.14 ± 0.00 0.54 ± 0.00

For the sinusoidal profile (Figure 4, Table 3), our developed system showed good
tracking capabilities at movement velocities less than 180 degrees per second as reflected
in the low RMSE value (RMSE < 2 degrees and RMSE < 8 degrees relative to cIMU and
motion capture, respectively). At a movement velocity of 180 degrees per second, the RMSE
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values increased to 6 degrees and 14 degrees relative to the cIMU and motion capture
measurements, respectively. For the stationary axes, there was no noticeable difference in
the angles measured by the WIbS, cIMU, and motion capture systems, i.e., no movement
(RMSE < 1 degree).

For both movements, our results show that the WIbS may be used to track single step
kinematics with an error of less than one degree, relative to both the cIMU and motion
capture systems. Tracking cyclic movements that are reflective of gait resulted in a greater
error; furthermore, the results also indicate that the WIbS is better at tracking slower speeds,
with optimal performance at around 120 degrees per second.

3.2. Case Study: Above-Knee Prosthesis User

The developed system was used to activate the vibration motor through the detection
of single-axis movement of the robotic arm. Note that the triggering system was affected by
a delay of 50 ms, ensuring reliable wireless communication of the movement information.

The participant experienced the KI in multiple sites on their residual limb. The site
with the most consistent illusion was located on the residual quadriceps muscle. This site
was reported to elicit a KI strength of 4 to 5 on the Likert scale and, therefore, used for testing
the developed feedback system. Since repeated trials of vibratory stimulation intermittently
resulted in the sensation of just a stationary phantom limb, only 16 out of the 20 performed
trials evoked the movement percept. The average knee flexion angle (black line) and its
variability (shaded area: ±1 standard deviation band) across the 16 trials, demonstrated
by the intact limb as the experienced movement percept, are shown in Figure 5. As seen
in this figure, the movement percept can be loosely described as an inverted sigmoidal
curve, with the initial phase indicating a slow ramp up in the movement sensation, the
middle phase exhibiting a faster movement sensation, and the final phase indicating the
limb coming to a stop.
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movement percepts can be generally described as an inverted sigmoidal curve.
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4. Discussion

In the context of prosthetic applications, practical feedback mechanisms must leverage
information regarding the state of the prosthetic device during activities of daily living, e.g.,
ambulation. While existing prosthetic devices can realize a wearer’s movement intentions,
information on the actual movement of the prosthesis is not fed back and utilized in a
functional or intuitive way. Through a mobile movement tracking and KI triggering system,
we have developed a method to close this sensory feedback loop that can be retrofitted to
existing prosthesis systems.

4.1. Technical Validation

The tracking capabilities of the movement sensors can be interpreted as a consequence
of the sensory fusion algorithm used by each IMU within the WIbS. Sensory fusion al-
gorithms generally gather and combine signals from accelerometers, gyroscopes, and
magnetometers to generate data regarding device and/or limb orientation [39–41]. The ma-
jority of sensor fusion techniques estimate unknown variables (e.g., quaternions) through
discrete settings at successive times steps, which are dependent on past estimations and
current measures [40,41]. Complementary [42–44] and Kalman filters [44,45] are the two
main approaches utilized in these fusion algorithms. The BNO05 IMU modules within the
WIbS most likely rely on either the Complementary or Kalman filter approach in estimating
quaternions used for angle computations. Ultimately, we have shown that the two IMUs
within the WIbS can reliably track the single-axis movement of a lower-limb prosthetic
device for Gaussian and sinusoidal movement profiles. While such movement profiles
and associated velocity and acceleration profiles can broadly mimic stepping and walking
activities, respectively, they do not consider prosthesis-specific accelerations and associated
motion artifacts experienced in real life. Nonetheless, our results for these two movement
profiles suggest that the WIbS’ capabilities exceed those for movement onset/termination
detection required to successfully administer the KI with a vibration motor—as was shown
in our case study. Consequently, the developed WIbS holds promise for greater control of
actuation, which might be advantageous as the KI and its delivery are further developed.

4.2. System Performance

The feedback system operated with a delay of roughly 800 ms from triggering to
actuation. The majority of the delay within the triggering system was caused by the
Vibrasens device itself (over 700 ms), while our developed tracking and triggering system
had a delay of less than 100 ms. The delay of over 700 ms in the Vibrasens device, likely
caused by the internal transients of the vibration motor, was estimated using an iPhone SE’s
high-speed camera (Apple Inc., Cupertino, CA, USA) analyzed, frame by frame, through
the Vegas Pro software (MAGIX, Berlin, Germany). The delay of less than 100 ms in the
tracking and triggering system is most likely attributed to the computation of quaternions,
rotation matrices, and Cardan angles, as well as to the wireless communication delay
described earlier.

That said, practical use of this feedback system requires a superior vibration actuator
with minimal internal transients. Various studies have indicated that delays in feedback can
decrease embodiment of the associated prosthetic device, with a maximum delay of 300 ms
resulting in minimal distortion of body ownership [46]. Furthermore, incorrect activation
of the system resulting in movement percepts during stationary activities such as standing
can lead to loss of balance and injury [47]. Alternatively, the inability of the system to
activate promptly during gait movements would forfeit the benefits of the sensory feedback
system. Therefore, vibratory actuators capable of eliciting movement percepts with shorter
transient times must be developed for any practical implementation of this feedback system.
Nonetheless, the developed system was able to reliably detect the movement onset of the
single-axis robotic arm and trigger the vibration motor appropriately with no false triggers.
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4.3. Case Study: Above-Knee Prosthesis User

The KI has been effectively demonstrated to improve functional grasp in upper-limb
prosthesis applications [14]. However, the implementation of the KI and the characteriza-
tion of its impact in the lower limb have not been previously explored. This case study
demonstrated a simple application of the KI to automatically and repeatedly induce a knee
flexion movement illusion. While the WIbS was able to reliably activate the vibration for
multiple trials, the movement illusion was not elicited in some trials, and exhibited great
variability in others. Since larger muscle bellies may act as large dampers of vibration,
it is possible that not the same muscle spindles are recruited every trial [15], potentially
affecting the success rate and increasing the variability across trials. To avoid this issue,
vibrating a muscle tendon may be a more precise way of promoting a better transmission
of the vibration to the muscle spindles, compared to vibrating a muscle belly that is buried
under other tissues. However, since individuals with lower limb loss may experience loss
or inaccessibility of muscle tendons, the variability in KI remains a notable limitation.

It is worth noting that the participant in this study experienced the KI, in the direction
of knee flexion, up to a maximum of only 16 degrees. However, the perception of even
a relatively small angular displacement would allow a prosthesis user to obtain critical
information on knee kinematics: (1) between heel strike and contralateral toe-off; and (2)
just before the initial swing phase. Having access to such phase-based sensory information
has been linked to improvements in gait measures in novice users of a transfemoral
prosthetic leg that correlate with fall risk—particularly stride length variability, step width
variability, and trunk sway variability [48]. At the same time, we were able to modulate, in
a recent study [9], the magnitude of the KI by combining vibration of a muscle belly with a
skin stretch in a person with transtibial limb loss. In that study, stretching the skin while
vibrating a muscle belly on the residual limb resulted in an increase in range and speed
of the illusory movement triggered by muscle vibration. If such results are confirmed in
a larger sample size, adopting the skin stretch in individuals with transfemoral limb loss
may have similar benefits.

Another important consideration is that the KI is a psychophysical phenomenon;
hence, other factors will come into play when vision and reciprocal muscle activation
are introduced [8,13]. Nonetheless, the presented work in one participant is an essential
first step in demonstrating that prosthesis joint movement can be used to actuate the
vibration-induced KI, stimulating further investigation of the KI using this technology.

4.4. Limitations and Future Developments

Limitations: One limitation of this work is that sensor drift of both the proximal
and distal movement sensors may lead to inaccurate detection of movement, resulting in
false triggers. In practical applications, false movement detection due to drift might be
prevented by exploiting contact of the prosthetic foot with the ground. This solution can be
accomplished by recalibrating the gyroscope of the distal WIbS when the prosthetic foot is
in contact with the ground (i.e., velocity nearly zero), which can greatly reduce drift [49,50].
However, the reduction of gyroscopic drift within IMUs remains an active field of research.
Another limitation relates to the Vibrasens vibratory actuator as it is fairly large and was
found to be responsible for the majority of the delay in the feedback system (over 700 ms
of the roughly 800 ms total). While the Vibrasens actuator has been a common choice for
KI experiments in the past (e.g. [9]), future work should evaluate other existing options
(e.g., voice coil system VCS1010, Equip-Solutions, Sunnyvale, CA, USA [7]) and also invest
into novel designs. Furthermore, due to the stage of this work, i.e., bench testing and case
demonstration, we did not consider motion artifacts experienced in real life. The inclusion
of such influences will, however, be critical for the next stage of system evaluation. Finally,
we should note that, in this work, the KI was investigated for the knee joint, which may
not be the best for providing optimal information to the user for balance. Motivated by our
recent case study [9], future work will investigate the possibility of consistently eliciting
the KI for the ankle joint in individuals with transtibial limb loss.
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Future developments: The practical utility of the developed sensory feedback sys-
tem requires implementation and testing with a fully functional prosthesis. Adopting
techniques used to integrate customized vibration devices in individuals with upper limb
loss [14] may allow for the development of a feedback system for individuals with lower
limb loss that also reduces the time delay in the system. However, a variety of practical
challenges remain before socket integration of this feedback system is viable. For example,
the size of the vibratory actuator(s) presents challenges for socket integration. Furthermore,
locations on the residual limb where both the feedback device and prosthetic socket re-
quire strategic contact will present a unique challenge for socket design. Additionally, a
practical implementation of the KI has to mitigate the fact that the nervous system becomes
desensitized with continuous and prolonged exposure to a stimulus, e.g., by only provid-
ing intermittent vibration that is functionally relevant. Finally, a functional protocol for
quantifying the impact of kinesthetic feedback in lower-limb prostheses, a key component
of evaluation, needs yet to be developed and validated.
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