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Optical coherence tomography (OCT) is a new type of tomography that has experienced

rapid development and potential in recent years. It is playing an increasingly important

role in retinopathy diagnoses. At present, due to the uneven distributions of medical

resources in various regions, the uneven proficiency levels of doctors in grassroots

and remote areas, and the development needs of rare disease diagnosis and precision

medicine, artificial intelligence technology based on deep learning can provide fast,

accurate, and effective solutions for the recognition and diagnosis of retinal OCT images.

To prevent vision damage and blindness caused by the delayed discovery of retinopathy,

a fusion network (FN)-based retinal OCT classification algorithm (FN-OCT) is proposed

in this paper to improve upon the adaptability and accuracy of traditional classification

algorithms. The InceptionV3, Inception-ResNet, and Xception deep learning algorithms

are used as base classifiers, a convolutional block attention mechanism (CBAM) is added

after each base classifier, and three different fusion strategies are used to merge the

prediction results of the base classifiers to output the final prediction results (choroidal

neovascularization (CNV), diabetic macular oedema (DME), drusen, normal). The results

show that in a classification problem involving the UCSD common retinal OCT dataset

(108,312 OCT images from 4,686 patients), compared with that of the InceptionV3

network model, the prediction accuracy of FN-OCT is improved by 5.3% (accuracy

= 98.7%, area under the curve (AUC) = 99.1%). The predictive accuracy and AUC

achieved on an external dataset for the classification of retinal OCT diseases are 92

and 94.5%, respectively, and gradient-weighted class activation mapping (Grad-CAM) is

used as a visualization tool to verify the effectiveness of the proposed FNs. This finding

indicates that the developed fusion algorithm can significantly improve the performance

of classifiers while providing a powerful tool and theoretical support for assisting with the

diagnosis of retinal OCT.
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1. INTRODUCTION

Both age-related macular degeneration (AMD) and diabetic
macular oedema (DME) are highly common retinal diseases
that cause blindness. AMD is the result of the inactivation
and degeneration of macular photoreceptor cells and is one of
the major causes of irreversible vision loss. Drusen is an early
manifestation of AMD, and without timely diagnosis and early
intervention, it can lead to the progression of the disease to its
middle and late stages. Therefore, early drusen detection and
treatment can delay or stop the transition to advanced AMD.
In advanced wet AMD, the most common form of blindness is
choroidal neovascularization (CNV).

Optical coherence tomography (OCT) has been applied
in clinical ophthalmology since the 1990s (Hee et al., 1995)
and has enabled the attainment of images similar to those
of in vivo eye histopathology. OCT is also a high-resolution,
noninvasive biological tissue imaging technology. With
the rapid development of this technology, our ability to
identify ophthalmic diseases has also gradually improved
(Schmitt, 1999). During the actual clinical diagnosis process,
it is necessary for professional doctors to conduct imaging
analyses on retinal OCT images to make accurate judgments.
However, differences in the levels of expertise among
doctors in different countries and regions can lead to faulty
diagnoses. For most eye diseases that lead to blindness, early
diagnosis and treatment can prevent them from progressing
to the degree of visual impairment. Therefore, we need to
use medical image recognition machines to help identify
such diseases.

Compared with single-algorithm models, the advantage of
an ensemble learning model is that it can organically integrate
multiple single-algorithm models to obtain a unified and
integrated algorithm model to obtain more accurate, stable, and
strong results. Early in the field of machine learning, most major
competitions used ensemble learning to obtain higher evaluation
indicators (Illy et al., 2019; Lian et al., 2020; Rajadurai and
Gandhi, 2020). Generally, the combination strategies of ensemble
learning algorithms based on machine learning include voting
mechanisms (Gao et al., 2021) and arithmetic weighted averages
(Sun et al., 2015). These fusion methods fuse and output results
through simple linear combinations. For complex medical image
samples encountered in real life, a simple linear combination is
difficult to adapt.

Therefore, the following difficulties exist when constructing
an algorithm model for retinal OCT disease detection based on
a fusion network (FN).

(1) How to address complex medical scene image data in a linear
combination strategy.

(2) How to put forward a nonlinear combination strategy for
medical scene image data.

To solve the above difficulties, this paper proposes two linear
fusion strategies and a nonlinear fusion strategy.

(1) The F1 value obtained by each base classifier on the
validation set is used as a parameter to set its weight.

(2) It is proposed to use multiple trainable weight parameters to
automatically obtain solutions according to the utilized loss
function, which can adapt to different complex scenarios.

(3) The weights of different base classifiers are calculated by
using a nonlinear function involving deep learning.

2. RELATED WORK

In recent years, numerous algorithms have been used to detect
retinal OCT lesions (Apostolopoulos et al., 2017; Karri et al.,
2017; Yoo et al., 2019; Das et al., 2020), and these diagnostic
methods can be roughly divided into two categories.

The first category contains algorithmic retinal OCT lesion
detection methods based on machine learning. This type of
approach employs commonly used image processing algorithms
(multiscale histograms of oriented gradients, scale-invariant
feature transformations, local binary patterns (LBPs), etc.) to
extract image features (Liu et al., 2011; Albarrak et al., 2013;
Srinivasan et al., 2014; Lemaître et al., 2015; Sankar et al., 2016).
Then, the extracted image features are input into commonly
used machine learning algorithms (support vector machines
(SVMs), random forests, etc.), and these algorithms determine
the category of the image. Alsaih (Alsaih et al., 2016) extracted
the directional gradient histogram and local binary mode of
OCT and combined them into a set of different feature vectors,
which were input into a linear SVM classifier to predict image
categories. Sun et al. (2017) proposed a universal method for
automatically aligning and clipping retinal regions; then, the
global representation of the given image was obtained by using
sparse coding and a spatial pyramid. Finally, a multiclass linear
SVM classifier was used to classify dry AMD and DME.

However, the commonly used image feature extraction
algorithms tend to lose large amounts of image information and
thus cannot fully represent image features. In addition, images
based on retinal OCT lesions exhibit certain similarities, resulting
in poor performance for the commonly used image processing
algorithms. Thus, the second category includes retinal OCT
lesion detection methods based on deep learning (Karri et al.,
2017; Lee et al., 2017; Rasti et al., 2018; Treder et al., 2018; Fang
et al., 2019; Huang et al., 2019; Hassan et al., 2021; He et al.,
2021). Rong et al. (2019) first removed noise from an original
image, then generated image masks by using thresholding and
morphological dilation and then used the noise-free image
and image masks to generate an alternative image. Finally,
the alternative image was input into a convolutional neural
network (CNN) to predict the category of the original input
image. Fang et al. (2019) first input an original image into a
lesion detection network to generate a lesion attentional map
and then incorporated this map into a classification network to
enhance the contribution capacity of local convolution.Weighted
by the lesion attention map, the classification network could
further accelerate the network training process and improve
its OCT classification ability by utilizing information from
local lesion-related regions. Kermany et al. (2018) used an
InceptionV3 network pretrained on ImageNet to classify OCT
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TABLE 1 | Advantages and disadvantages of retinal OCT methods utilizing deep

learning and machine learning.

Method Advantages Disadvantages

Machine learning Works better on small data,

less financially and

computationally expensive,

easier to explain.

Low accuracy, require

complex feature engineering.

Deep learning High precision, no need for

feature engineering, strong

adaptability, easy to migrate.

Require a large number of

training datasets, high-end

GPUs; “black box” models.

images. Das et al. (2020) developed a classifier based on a semi-
supervised generative assumption network; this approach can
be used for automatic diagnosis with limited marker data. The
framework consists of a generator and a discriminator. Learning
between these components helps build a generalized classifier to
predict retinal disease categories.

The advantages and disadvantages of the above two methods
are summarized in Table 1.

Therefore, the construction of a retinal OCT disease
detection algorithm based on an FN offers several contributions,
as follows.

(1) Three fusion solutions that can be used in the processes of
multimodal fusion and multinetwork fusion are proposed.

(2) Fully automatic retinal OCT disease image detection is
achieved without manual intervention.

(3) The accuracy is increased by 5.3%, and the accuracy and area
under the curve (AUC) reached 98.7 and 99.1%, respectively.

(4) Common network models are used in conjunction with
attention mechanisms in retinal OCT scenarios.

(5) The gradient-weighted class activation mapping (Grad-
CAM) algorithm is used to verify the validity of the
fusion network.

3. DISEASE DETECTION ALGORITHM FOR
RETINAL OCT BASED ON AN FN

3.1. System Architecture
The proposed retinal OCT disease detection algorithm based on
an FN adopts three methods during model fusion, as shown
in Figures 1A–C. In the first method, FN-F1-OCT outputs the
prediction results of the base classifiers (Xception, Inception-
ResNet, and InceptionV3) and sets the weight values through the
F1 values of these three base classifiers. In the second method,
the FN-Weight-OCT model sets three trainable variables for the
three base classifiers during training. As the network model is
trained, the weight parameters change accordingly. In the third
method, during the training process of the FN-Auto-OCTmodel,
the three base classifiers connect two fully connected layers. One
fully connected layer is used to directly predict the results, the
output results of the other fully connected layer are spliced, and
the final prediction of the algorithm is automatically determined
based on the spliced summary result. FN-Weight-OCT and FN-
Auto-OCT exhibit some differences in the weight parameter
calculation processes. FN-Weight-OCT has a corresponding

weight parameter “w” for each base classifier, and the weight
parameter “w” is iteratively updated by the loss function. FN-
Auto-OCT first splices the output results of each base classifier
and then connects the spliced results to a final output layer;
the weight values of the base classifiers are embedded in the
calculation of the fully connected layer, which is a fully automated
underlying calculation method.
The first implementation of the FN algorithm (FN-F1-OCT)

uses the F1 value obtained by each base classifier on the validation
set to calculate the weight values. The weight value calculation
method for the Xception, Inception-ResNet, and InceptionV3
base classifiers is shown in Formula 1.

Wi =
F1_list[i]

(
∑q

p=1 F1_list[p])
+(F1_list[i]−

∑q
p=1 F1_list[p]

q
)∗n (1)

where F1_list[i] represents the F1 value obtained by each base

classifier on the verification set and F1_list[i]

(
∑q

p=1 F1_list[p])
represents the

ratio of the F1 values of each base classifier to the sum of the

F1 values of the three base classifiers.

∑q
p=1 F1_list[p]

q represents

the average F1 value of each base classifier. (F1_list[i] −
∑q

p=1 F1_list[p]

q ) ∗ n represents the difference between the F1

value of each base classifier and the average of the F1 values
of the three base classifiers, and n is a hyperparameter that
expands the differences among the base classifiers. It is assumed
that the predicted probabilities of the three base classifiers for
the different categories in each sample are Xception_predict,
Inception_ResNet_predict, and InceptionV3_predict; therefore,
the calculation method for obtaining the final probability value
predicted by the model is shown in Formula 2.

Y_predict =W1 ∗ Xception_predict

+W2 ∗ Inception_ResNet_predict

+W3 ∗ InceptionV3_predict

(2)

Y_predict =
X

(X + Y + Z)
∗ Xception_predict

+
Y

(X + Y + Z)
∗ Inception_ResNet_predict

+
Z

(X + Y + Z)
∗ InceptionV3_predict

(3)

The second implementation of the FN algorithm (FN-Weight-
OCT) first defines three variables X, Y, and Z in the network
model, corresponding to the Xception, Inception-ResNet,
and InceptionV3 base classifiers, respectively, to prevent the
algorithmmodel from predicting that the probability sum of each
category is not 1. In this paper, the three variables are processed
to obtain the weight values of each base classifier. In the FN, the
weight value of the Xception base classifier is X

(X+Y+Z)
, and this

value corresponds to the W1 parameter in Figure 1B. Similarly,
the weight values of the Inception-ResNet and InceptionV3
base classifiers are Y

(X+Y+Z)
and Z

(X+Y+Z)
, respectively, and their

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 876927

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ai et al. Retinal Optical Coherence Tomography Based on a Fusion Network

FIGURE 1 | FN. ‘Class’ is the number of categories required by the algorithm, ‘CBAM’ is the attention mechanism, ‘Fc + Softmax’ is the fully connected output layer,

“Add” is an addition operation, and ‘Concatenate’ is the splicing operation. (A) Is the first fusion (FN-F1-OCT), (B) is the second fusion (FN-Weight-OCT), and (C) is

the third fusion (FN-Auto-OCT). The network architecture is drawn by using ‘PlotNeuralNet’ (https://github.com/HarisIqbal88/PlotNeuralNet).

weight values correspond to the W2 and W3 parameters in
Figure 1B. It is assumed that the predicted probabilities of
the three base classifiers for the different categories in each
sample are Xception_predict, Inception_ResNet_predict, and
InceptionV3_predict, so the method of calculating the sample
prediction probability values is shown in Formula 3.
The method for calculating the cross-entropy loss value in the

network model consists of the following steps.

(1) Assume that the output probability of a sample in
the Xception base classifier is [m1,m2,m3,m4], where
m1+m2+m3+m4= 1.

(2) Assume that the output probability of a sample in the
Inception-ResNet base classifier is [n1,n2,n3,n4], where n1++
n2+ n3+ n4= 1.

(3) Assume that the output probability of a sample in the
InceptionV3 base classifier is [p1, p2, p3,p4], where p1 + p2
+ p3+ p4= 1.

(4) Assume that the real label of the sample is [1,0,0,0] and that
the loss value is a cross-entropy loss function, so the method of
calculating the loss value of the model is shown in Formula 4.

Loss = − ln
(X ∗m1+ Y ∗ n1+ Z ∗ p1)

(X + Y + Z)
(4)

The parameter update method for the three variables (X, Y, and
Z) defined in the network model is as follows.

(1) The method of calculating the derivative of the loss with
respect to X is shown in Formula 5.

∂ loss

∂X
=

Y(n1−m1)+ Z(p1−m1)

(X + Y + Z)(X ∗m1+ Y ∗ N1+ Z ∗ P1)
(5)

The update for X is X_new = X − η ∂ loss
∂X . Thus, η is the

learning rate.

(2) The method of calculating the derivative of the loss with
respect to Y is shown in Formula 6.

∂ loss

∂Y
=

X(m1− n1)+ Z(p1− n1)

(X + Y + Z)(X ∗m1+ Y ∗ N1+ Z ∗ P1)
(6)

The update for Y is Y_new = Y − η ∂ loss
∂Y . Thus, η is the

learning rate.
(3) The method of calculating the derivative of the loss with

respect to Z is shown in Formula 7.

∂ loss

∂Z
=

X(m1− p1)+ Y(n1− p1)

(X + Y + Z)(X ∗m1+ Y ∗ N1+ Z ∗ P1)
(7)

The update for Z is Z_new = Z − η ∂ loss
∂Z . Thus, η is the

learning rate.

The third implementation of the FN algorithm (FN-Auto-OCT)

has four output parts, corresponding to the outputs of Xception,

Inception-ResNet, InceptionV3, and the FN. In this paper, only

the output of the FN is used as the final output result of the

algorithm. The outputs of the other three parts are used to
backpropagate the three base classifiers to prevent the gradient
update process from becoming too slow.

The cross-entropy loss function values of the four output parts
in the network model are calculated as follows.

(1) The calculation of the cross-entropy loss function for the
Xception base classifier is shown in Formula 8.

Loss1 =categorical_crossentropy(

Xception_output_value, reallabel)
(8)
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(2) The calculation of the cross-entropy loss function for the
Inception-ResNet base classifier is shown in Formula 9.

Loss2 =categorical_crossentropy(

Inception_ResNet_output_value, reallabel)
(9)

(3) The calculation of the cross-entropy loss function for the
InceptionV3 base classifier is shown in Formula 10.

Loss3 =categorical_crossentropy(

InceptionV3_output_value, reallabel)
(10)

(4) The calculation of the cross-entropy loss function for the
fusion model is shown in Formula 11.

Loss4 =categorical_crossentropy(

fusion_model_output_value, reallabel)
(11)

To calculate the cross-entropy loss function value of the entire
network, Loss = Loss1+ Loss2+ Loss3+ Loss4. This loss value is
used as the loss value of the full network.

3.2. Model Building and Prediction Module
3.2.1. Data Preprocessing

In this paper, the image preprocessing approach for retinal OCT
images includes scaling each image down to 299*299 (via nearest-
neighbor interpolation), and then each image pixel is normalized
according to Formula 12. In this way, the network can easily
calculate the image.

Xnorm =
X − Xmin

Xmax − Xmin
(12)

3.2.2. Introduction of Various Network Models

We use three highly effective and widely used architectures
trained on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), InceptionV3, Inception-ResNetV2, and
Xception as base classifiers for the FNs (Byeon et al., 2020; Ali
et al., 2021; Wang et al., 2021a,b; Yildirim and Çinar, 2021). In
theory, these three deep networks can be replaced with other
networks based on specific classification tasks.

The InceptionV3 network is a very deep convolutional
network developed by Google. In December 2015, InceptionV3
was proposed in the paper "Rethinking the Inception
Architecture for Computer Vision" (Szegedy et al., 2016).
InceptionV3 reduces the top-5 error rate of ImageNet to 3.5%
on the basis of InceptionV2. Compared with InceptionV2,
V3 uses n*1 and 1*n convolution cascades to replace the n*n
convolution, effectively reducing the number of parameters.
Since the introduction of InceptionV3, a large number of
researchers have applied this network framework in various
fields to help solve problems (Dif et al., 2021; Mahmood and
Mahmood, 2021; Rahmanian and Shayegan, 2021; Tembhurne
et al., 2021). In agriculture, Zaki et al. (2021) used this algorithm
to detect onion disease (purple spots). In medicine, Mijwil (2021)
used three architectures (InceptionV3, ResNet, and VGG19)
to detect skin cancer images and achieved very acceptable

results. After all testing was completed, the best architecture
was determined to be InceptionV3. For satellite images, Li
and Momen (2021) compared the predictive abilities of four
state-of-the-art CNN models, InceptionV3, ResNet50, VGG16,
and VGG19, with regard to five different weather events. Overall,
InceptionV3 was the best model, with an average accuracy of
92% in detecting such weather systems.

The Inception-ResNet network is a convolution network
developed by Google that introduces the idea of ResNet on
the basis of inception. In 2016, the network was proposed in
"inception-v4, inception RESNET and the impact of residual
connections on Learning" (Szegedy et al., 2017); it mainly adds
shallow features to high-level features through another branch
to achieve the purpose of feature reuse and prevent the gradient
disappearance problem encountered by deep networks. Since the
introduction of Inception-ResNet, a large number of researchers
have applied this network framework in various fields to help
solve problems (Al-Antari et al., 2020; Peng et al., 2020; Hung
and Su, 2021). In the data preprocessing stage, Bhardwaj et al.
(2021) used histogram equalization, optical disc localization, and
quadrant cropping for data enhancement. Then, the images of
each quadrant were input into Inception-ResNet. Finally, the data
of the four quadrants were summarized to obtain the prediction
results of the model.

The Xception network is another improvement made by
Google after the introduction of Inception. In 2018, Xception
was proposed in the paper “xception: deep learning with
discrete separable revolutions” (Chollet, 2017). The main
innovation is that this network uses a depthwise separable
convolution to replace the original convolution operation. Since
the introduction of Xception, a large number of researchers have
applied this network framework in various fields to help solve
problems (Chahal et al., 2021; Chen et al., 2021a; Gurita and
Mocanu, 2021). To find the best model that could provide better
diagnostic rates for COVID-19, Farag et al. (2021) used random
search optimization to tune the hyperparameters of Xception
to provide more accurate results than those produced by other
techniques. Xu et al. (2021) first transferred weight parameters
trained on the ImageNet dataset to the Xception model. A
global average pooling layer was then used to replace the fully
connected layer of the Xception model. Finally, the extreme
gradient boosting (XGBoost) classifier was added to the top layer
of the model to output the results.

3.2.3. Model Building

Themodel training stage is shown in Figure 2, where the “model”
part contains three base classifiers corresponding to three FN
algorithms. After this, pretraining weight values are loaded
based on ImageNet to facilitate network training. The "FN" part
contains the different fusion methods of three deep learning
algorithms. Next, the algorithm model is transferred to conduct
learning, and the process of fine-tuning the mechanism is carried
out. Finally, the grade prediction of the algorithm for the given
retinal OCT image is output.

Three implementations of the FN in Figure 2 are utilized,
including two linear fusion strategies (FN-F1-OCT, FN-Weight-
OCT) and one nonlinear fusion strategy (FN-Auto-OCT). These
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FIGURE 2 | Model building process.

A B

FIGURE 3 | Dataset preparation. (A) Retinal OCT staging distribution of the samples; (B) representative fundus photographs of each sampling category according to

their clinical diagnoses.

TABLE 2 | Confusion_matrix.

Confusion_matrix
Predicted condition

Positive Negative

Actual condition
Positive TP FN

Negative FP TN

three fusion methods belong to the category of multimodal
fusion and are very easy to implement. Multimodal fusion can
be divided into early fusion (feature fusion) (Snoek et al., 2005;
Pitsikalis et al., 2006; Mou et al., 2021), late fusion (decision
fusion, similar to ensemble learning) (Guironnet et al., 2005;
Singh et al., 2006), and hybrid fusion. Early fusion fuses the
obtained features immediately after they are extracted, and late
fusion is performed after each mode outputs its results (such as
classification or regression results). Hybrid fusion combines the
early fusion and late fusion methods. The linear fusion approach
proposed in this paper is a late fusion strategy; that is, after each

mode obtains its prediction result, the output results of each
mode are fused. Nonlinear fusion is an early fusion method; that
is, feature fusion is carried out before each mode outputs its
final result.

The most common problem involved in conducting medical

image recognition and analysis based on deep learning is
the lack of a large labeled medical image dataset. However,

transfer learning can solve this problem by applying trained
network model weights to medical image analysis through a

large dataset (ImageNet). Although medical datasets are different

from nonmedical datasets, the low-level features of the images
in most image analysis tasks are universal (Sharma and Mehra,

2020), so the weight parameters obtained from large datasets can

greatly reduce the cost of data training. Two types of learning are
available: transfer learning and fine-tuning.

In transfer learning, all convolution layer parameters of the
CNN model trained on a large dataset (for example, ImageNet)
are frozen, while the fully connected layer is removed. The
convolution layer is used to extract low-level features from the
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FIGURE 4 | Training processes of the three fusion strategies. (A,C,E) represent the loss value and accuracy changes yielded on the training set and test set by the

Inception, Inception-ResNet, and Xception base classifiers in FN-F1-OCT during transfer learning. (B,D,F) represent the fine-tuning of the models according to

(A,C,E) in the training process, which is done to obtain the loss value and accuracy changes induced on the training set and test set. (G,I) represent the loss value

and accuracy changes induced on the training set and test set by the FN-Weight-OCT and FN-Auto-OCT fusion strategies during transfer learning. (H,J) indicate that

the models are fine-tuned according to (G,I) during the training process to obtain the loss value and accuracy changes induced on the training set and test set.
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FIGURE 5 | ROC curves of the three fusion strategies. (A–C) represent the ROC curves of FN-F1-OCT, FN-Weight-OCT, and FN-Auto-OCT, respectively.

input image. The extracted features are then fed to a classifier
to adapt to different application scenarios. During the training
process, only the classifier of the model is trained, and all
convolution layers are not involved in the training procedure.

Compared with transfer learning, fine-tuning takes the weight
parameters of the convolutional layer of a well-trained CNN
model as the initial weight parameters and randomly initializes
the weight parameters of the classifier at the same time.
During this period, the weight parameters of the whole network
participate in the training process. The fine-tuning process in
this paper is a parameter update procedure based on the weight
parameters of the network model obtained by transfer learning.

3.2.4. Attention Mechanism

The convolutional block attention module (CBAM) (Woo et al.,
2018) was proposed as a simple and efficient attention module.
Given an intermediate feature graph of the utilized network
model, attention weight values are successively calculated along
the spatial and channel directions and then multiplied by the
original input feature graph to adaptively adjust the features.
Because the CBAM is a lightweight general-purpose module that
can be seamlessly connected to any network feature graph, its
parameters are almost negligible. When the CBAM is connected
to different network models on t different classification and
detection datasets, the final prediction abilities of the models
are improved to a certain extent, and their adaptability is strong
(Canayaz, 2021; Chen et al., 2021b; Wu et al., 2021). Therefore,
the CBAM module is fused to the back of each of the three base
classifiers in this paper to enhance the prediction ability of the
final fusion model.

4. EXPERIMENT

4.1. Experimental Conditions
The experimental environment contains a Linux X86_64 system,
an Nvidia Tesla V100 graphics card, and 16 GB memory. This
experiment is based on Python version 3.7.9, TensorFlow version
2.3.0, and Keras version 2.4.3.

4.2. Dataset
Internal retinal OCT images (UCSD common retinal OCT
dataset, Spectralis OCT, Heidelberg Engineering, Germany) are
selected from retrospective cohorts of adult patients collected by
the Shiley Eye Institute of the University of California San Diego,
the California Retinal Research Foundation, Medical Center
Ophthalmology Associates, the Shanghai First People’s Hospital,
and the Beijing Tongren Eye Center between 1 July 2013 and 1
March 2017 (Kermany, 2018). The total sample size is 108,309
images, which are divided into normal, drusen, CNV, and DME
images. The sample sizes of the four categories are 51,140, 8,616,
37,205 and 11,348, respectively. The data distribution is shown in
Figure 3A. In addition, the internal test set sample provided by
Kermany (2018) has a total of 1,000 pictures, and 250 pictures are
contained in each of the four categories. The external test dataset
is derived from 277 retinal OCT images provided by Beijing
Chao-Yang Hospital, with CNV, DME, drusen, and normal image
sample sizes of 60, 107, 27, and 83 images, respectively. Examples
of each category are shown in Figure 3B.

External retinal OCT images (Cirrus HD-OCT, Carl Zeiss
Meditec, USA) are selected from retrospective cohorts of
adult patients collected by Beijing Chao-Yang Hospital between
January 2019 and November 2021. All OCT imaging was
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TABLE 3 | Comparison among the three developed fusion strategies in complete models.

Complete model FN-F1-OCT FN-Weight-OCT FN-Auto-OCT Kermany

ACC CNV 1 0.996 0.988 0.968

DME 1 0.996 0.996 0.948

Drusen 0.944 0.9 0.952 0.944

Normal 0.996 0.992 0.996 0.984

Weighted avg 0.985 0.971 0.983 0.961

Recall CNV 1 0.996 0.988 0.968

DME 1 0.996 0.996 0.948

Drusen 0.944 0.9 0.952 0.944

Normal 0.996 0.992 0.996 0.984

Weighted avg 0.985 0.971 0.983 0.961

Specificity CNV 0.981 0.967 0.983 0.979

DME 1 0.998 0.995 0.991

Drusen 0.998 0.999 1 0.989

Normal 1 0.999 1 0.989

Weighted avg 0.995 0.991 0.995 0.987

Precision CNV 0.947 0.909 0.95 0.938

DME 1 0.992 0.984 0.971

Drusen 0.996 0.996 1 0.967

Normal 1 0.996 1 0.969

Weighted avg 0.986 0.973 0.984 0.961

F1 CNV 0.973 0.951 0.969 0.953

DME 1 0.994 0.99 0.959

Drusen 0.969 0.946 0.975 0.955

Normal 0.998 0.994 0.998 0.976

Weighted avg 0.985 0.971 0.983 0.961

AUC CNV 0.991 0.98 0.985 Not Mentioned

DME 1 1 0.995 Not Mentioned

Drusen 0.971 0.95 0.976 Not Mentioned

Normal 0.998 1 0.998 Not Mentioned

Weighted avg 0.99 0.983 0.989 Not Mentioned

performed as part of the patients’ routine clinical care. No
exclusion criteria based on age, sex, or race are included. We
search local electronic medical record databases for the diagnoses
of CNV, DME, drusen, and normal cases to initially assign the
images. A horizontal foveal cut of the OCT scans is downloaded
with a standard image format according to the manufacturer’s
software and instructions. Ethics Committee approvals were
obtained from the Medical Ethics Review Board of Beijing Chao-
Yang Hospital (2021-ke-693).

4.3. Evaluation Criteria
To evaluate the classification performance of the three fusion
strategies employed in the proposed FN, this paper evaluates
the advantages and disadvantages of the fusion strategies based
on their accuracy (ACC), recall, specificity, precision, and
F1 metrics.

The confusion matrix is shown in Table 2, where TP stands
for the true positives, where the model predicts samples that are
actually positive to be positive. FN stands for false negatives,
where the model predicts samples that are actually positive

to be negative. FP stands for false positives, where the model
predicts samples that are truly negative as positive. TN represents
true negatives, where the model predicts samples that are truly
negative as negative. Therefore, the calculation formulas of the
ACC, recall, specificity, precision, and F1 value metrics are
as follows.

ACC =
TP + TN

TP + TN + FP + FN
(13)

Recall =
TP

TP + FN
(14)

Specificity =
TN

FP + TN
(15)

Precision =
TP

TP + FP
(16)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
(17)
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TABLE 4 | Comparison among the three developed fusion strategies in limited

models.

Limited model FN-F1-OCT FN-Weight-OCT FN-Auto-OCT

ACC CNV 0.996 0.988 0.98

DME 0.996 0.984 1

Drusen 0.936 0.98 0.976

Normal 0.992 0.984 0.992

Weighted avg 0.98 0.984 0.987

Recall CNV 0.996 0.988 0.98

DME 0.996 0.984 1

Drusen 0.936 0.98 0.976

Normal 0.992 0.984 0.992

Weighted avg 0.98 0.984 0.987

Specificity CNV 0.977 0.988 0.995

DME 0.997 0.997 0.996

Drusen 0.999 0.993 0.995

Normal 1 1 0.997

Weighted avg 0.994 0.995 0.996

Precision CNV 0.937 0.965 0.984

DME 0.992 0.991 0.988

Drusen 0.995 0.98 0.984

Normal 1 1 0.992

Weighted avg 0.981 0.984 0.987

F1 CNV 0.966 0.976 0.982

DME 0.994 0.987 0.994

Drusen 0.965 0.98 0.98

Normal 0.996 0.992 0.992

Weighted avg 0.98 0.984 0.987

AUC CNV 0.987 0.988 0.987

DME 0.997 0.991 0.998

Drusen 0.967 0.987 0.985

Normal 0.996 0.992 0.995

Weighted avg 0.987 0.99 0.991

Weighted avg =

∑class_num
i=1 P_i ∗ support_i
∑class_num

i=1 support_i
(18)

In the formula, “ACC” represents the proportion of all correctly
judged samples out of the total number of classification model
samples; “Recall” represents the proportion of all outcomes in
which the true value is positive and the model predicts the
correct value; “Specificity” means that the true value is negative
for all results, and the model predicts the correct outcomes;
and “Precision” represents the proportion of model predictions
among all results where the model’s prediction is positive. “F1”
is an indicator used to measure the accuracy of binary models
in statistics. It is a harmonic average of the model accuracy rate
and recall rate, and its value is between 0 and 1. The larger
the value is, the better the model is. “AUC” is a performance
indicator used to measure the merits and shortcomings of a
model. Its value is obtained by summing the areas under the
receiver operating characteristic (ROC) curve. “Weighted avg” is
a weighting method that calculates the proportion of the number

of samples in each category out of the total number of samples in
all categories as a weight. In Formula 18, “support_i” represents
the number of samples in category “i,” “P_i” represents the score
value of the evaluation index of the category “i,” and “class_num”
represents the number of categories.

4.4. Experimental Results
In the FN-F1-OCT FN, the weight of the base classifier needs to
be artificially set to a hyperparameter. Therefore, this paper first
conducts certain tests on FN-F1-OCT. In this dataset, since the
F1 differences among the base classifiers on the validation sets
of “Complete model,” “Limited model,” “CNV_VS_NORMAL,”
“DME_VS_NORMAL,” and “Drusen_VS_NORMAL” are very
small, the setting of the “n” value in the model has no great
effect. Finally, the hyperparameter “n” in FN-F1-OCT is set to
0 in this paper.

The loss value and accuracy rate changes induced during
the training processes of the FN-F1-OCT, FN-Weight-OCT, and
FN-Auto-OCT FNs are shown in Figure 4. The ROC curves of
FN-F1-OCT, FN-Weight-OCT, and FN-Auto-OCT are shown in
Figures 5A–C, respectively. “Complete model” in Figures 4, 5
represent the use of all datasets to conduct the model training
and prediction processes on the four categories (normal, drusen,
CNV, and DME). “Limited model” means that 1,000 retinal OCT
images are randomly selected from each category in the training
set for the training and prediction of four categories: normal,
drusen, CNV, and DME. “CNV_VS_NORMAL”means that 1,000
CNV and normal images are randomly selected from the training
set for model training and prediction. “DME_VS_NORMAL”
represents that 1,000 DME and normal random images are
selected from the training set for model training and prediction.
“Drusen_VS_NORMAL” represents that 1,000 drusen and
normal images are randomly selected from the training set for
model training and prediction. As seen in Figure 4, the loss
values of the training sets of Figures 4A,C,E,G,I models vary
greatly during the process of transfer learning, which is also
the process of parameter adjustment in the FN-F1-OCT, FN-
Weight-OCT, and FN-Auto-OCT FNs. To enhance the abilities
of the fusion models to recognize retinal OCT, the loss values of
Figures 4B,D,F,H,J change little during the fine-tuning process.
In this process, the models undergo a fine-tuning process.

To verify the performance of the three FN-OCT
implementations, a full dataset is used as a training set to
compare the ACC, recall, specificity, precision, F1, and AUC
values of the corresponding models. From the data in Table 3, it
can be seen that the evaluation indices obtained for the drusen
category are lower than those of the other categories. The main
reason for this is that the drusen and CNV categories have
similar reflectivity values in OCT imaging, so drusen located
at the retinal pigment epithelium or below is easily considered
choroid CNV; additionally, the number of drusen category
images in the training dataset is too small, which makes it
difficult for the models to identify the drusen category. Table 3
shows that compared with the approach of Kermany (2018), the
three FN-based fusion methods proposed in this paper achieve
excellent classification effects. Compared with FN-Weight-OCT
and FN-Auto-OCT, FN-F1-OCT achieves better results, which is
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TABLE 5 | Comparison of three fusion strategies in binary classifiers.

Binary classifiers FN-F1-OCT FN-Weight-OCT FN-Auto-OCT Kermany

CNV _VS_ ACC 1 1 1 1

Recall 1 1 1 1

Specificity 1 1 1 1

Precision 1 1 1 Not Mentioned

F1 1 1 1 Not Mentioned

AUC 1 1 1 1

DME _VS_ NORMAL ACC 1 1 1 0.982

Recall 1 1 1 0.968

Specificity 1 1 1 0.996

Precision 1 1 1 Not Mentioned

F1 1 1 1 Not Mentioned

AUC 1 1 1 0.998

Drusen _VS_ NORMAL ACC 0.998 0.996 0.998 0.99

Recall 0.998 0.996 0.998 0.98

Specificity 0.998 0.996 0.998 0.992

Precision 0.998 0.996 0.998 Not Mentioned

F1 0.998 0.996 0.998 Not Mentioned

AUC 0.998 0.996 0.998 0.996

TABLE 6 | Comparison of three fusion strategies.

Efficiency comparison Parameters Train time (min) Test time (s) “Complete” model accuracy “Limited” model accuracy

FN-F1-OCT 2,716,146 130 160 0.985 0.98

FN-Weight-OCT 2,716,149 82 124 0.971 0.984

FN-Auto-OCT 2,772,620 94 135 0.983 0.987

mainly due to the serious imbalance between the classes in the
complete dataset, while the three base classifiers of FN-F1-OCT
are trained independently. Therefore, each base classifier can
generate certain compensation functions to compensate for
the imbalance between categories. Compared with that of FN-
Weight-OCT, FN-Auto-OCT’s performance index is improved,
mainly because FN-Auto-OCT’s fusion mode is based on the
fusion of three base classifiers after the pooling layer. Compared
with FN-Weight-OCT’s fusion results, FN-Auto-OCT’s fusion
of the pooling layer provides more weight tests in the network
fusion process. Moreover, FN-Auto-OCT is based on multiple
outputs, and network backpropagation mitigates the gradient
disappearance problem. Therefore, FN-Auto-OCT achieves
improved classification indices over those of FN-Weight-OCT.

For the model trained under the “Limited” setting, the overall
accuracies of the three FN-OCT fusion strategies are 98, 98.4,
and 98.7%. Compared with that of the model proposed by
Kermany (2018), the accuracy rate is 93.4%, which is an average
increase of 5 percentage points. It can be seen from the data in
Table 4 that the prediction accuracy of FN-F1-OCT for drusen
is still lower than that of the other categories, mainly because
the FN-F1-OCT fusion strategy needs more training data than
the other two fusion strategies to complete its training process,
so the improvement effect on the drusen category is not good.
The other fusion strategies have little differences among their

TABLE 7 | The influences of different algorithms on the evaluation indices.

Method Acc Recall Specificity

Kermany (Inception V3) (Kermany,

2018)

0.966 0.978 0.974

VGG16 (Simonyan and Zisserman,

2015)

0.939 1 0.908

ResNet50 (He et al., 2016) 0.967 0.996 0.948

Hassan (Hassan et al., 2021) 0.986 0.983 0.993

Kaymak (Kaymak and Serener, 2018) 0.971 0.996 0.984

Hwang (Hwang et al., 2019) 0.969 Not Mentioned Not Mentioned

Hard vote 0.979 0.979 0.993

Soft vote 0.98 0.98 0.994

FN-F1-OCT 0.98 0.98 0.994

FN-Weight-OCT 0.984 0.984 0.995

FN-Auto-OCT 0.987 0.987 0.996

evaluation indices for each category, largely solving the problems
caused by data imbalance. A comparison among the various

evaluation indicators is shown in Table 4. Compared with that

obtained under the "Complete” setting, the evaluation indices
obtained by FN-F1-OCT under the “limited” setting decline;

this is mainly because the size of the training dataset decreases
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FIGURE 6 | Comparison of different fusion strategies on external test datasets.

significantly, resulting in insufficient training. Thus, the FN-
F1-OCT fusion strategy needs sufficient training data because
the three base classifiers are trained separately. Compared
with those of FN-F1-OCT, the evaluation indices obtained by
FN-Weight-OCT and FN-Auto-OCT under the “Complete” and
“Limited” settings increase to a certain extent; this is mainly
because the training data in the “Limited” case are balanced data.
Thus, the FN-Weight-OCT and FN-Auto-OCT fusion strategies
combine the three base classifiers for training, so they do not
require much training data but do require a balance between the
dataset categories.

To better evaluate the classification abilities of the models
for the CNV, DME, drusen, and normal categories, we conduct
model training and prediction for these four categories. In this
paper, the ACC, recall, specificity, precision, F1, and ROCmetrics
in Table 5 are used for comparative analysis. According to the
data in the table, FN-F1-OCT, FN-Weight-OCT, FN-Auto-OCT,
and the Kermany model (2018) can achieve better classification
effects for the CNV and normal categories. Compared with
the Kermany model (2018), the FNs can still maintain good
classification effects for the DME and normal categories, and
the accuracy rate increases by 2%. Regarding the discrimination
between the drusen and normal categories, the results of the

three fusion strategies are consistent with Kermany’s (2018)
classification results.

To explain the application scenarios of the three fusion
strategies utilized in the FNs, comparative tests are performed
in this paper. Based on the number of parameters other than
the weight parameters of the fixed base classifiers, the training
times, the test times for 1,000 test set samples under the “Limited”
setting, and the accuracies of the “Complete” and “Limit” models
are compared. As shown in Table 6, the numbers of FN-F1-
OCT, FN-Weight-OCT, and FN-Auto-OCT parameters do not
differ much, but the training and test times of FN-F1-OCT are
the longest; this is mainly because FN-F1-OCT needs to train
and test the three base classifiers one by one during the training
and testing processes, which in turn increases certain training
costs. The training and testing times of FN-Weight-OCT and FN-
Auto-OCT are not different, mainly because model training and
testing are conducted by fusing three base classifiers together.
Compared with FN-Weight-OCT and FN-Auto-OCT, FN-F1-
OCT has certain limitations because the weight parameters of the
base classifiers need to be set manually, and this process cannot
be fully automated. When the data are extremely unbalanced,
FN-Weight-OCT and FN-Auto-OCT perform poorly. The main
reason for this is that the data imbalance causes the fusionmodels
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TABLE 8 | Comparison of different fusion strategies on external test datasets.

External dataset
FN-F1-OCT FN-Weight-OCT FN-Auto-OCT

Complete model Limited model Complete model Limited model Complete model Limited model

ACC

CNV 0.7833 0.9167 0.8167 0.9167 0.8167 0.95

DME 0.785 0.7663 0.757 0.7477 0.7851 0.9065

Drusen 0.5185 0.5556 0.4445 0.2593 0.4074 0.7407

Normal 0.7349 1 0.6747 0.9639 0.9639 0.9639

Weighted avg 0.74 0.85 0.71 0.8 0.81 0.92

Recall

CNV 0.7833 0.9167 0.8167 0.9167 0.8167 0.95

DME 0.785 0.7663 0.757 0.7477 0.7851 0.9065

Drusen 0.5185 0.5556 0.4445 0.2593 0.4074 0.7407

Normal 0.7349 1 0.6747 0.9639 0.9639 0.9639

Weighted avg 0.74 0.85 0.71 0.8 0.81 0.92

F1

CNV 0.7768 0.8397 0.7968 0.7746 0.7778 0.9120

DME 0.7636 0.8677 0.7232 0.8377 0.8442 0.9327

Drusen 0.5714 0.6250 0.5455 0.3415 0.4889 0.7145

Normal 0.7439 0.8925 0.6871 0.8889 0.8695 0.9697

Weighted avg 0.74 0.85 0.71 0.79 0.8 0.92

AUC

CNV 0.859 0.921 0.876 0.896 0.869 0.957

DME 0.807 0.883 0.773 0.862 0.869 0.942

Drusen 0.743 0.766 0.712 0.616 0.69 0.852

Normal 0.816 0.948 0.775 0.938 0.928 0.977

Weighted avg 0.829 0.899 0.81 0.868 0.872 0.945

FIGURE 7 | Localization map visualization.

to become biased toward the side with more data, resulting in low
data prediction accuracy. The accuracies of FN-Weight-OCT and
FN-Auto-OCT increase after the data reach equilibrium. When
the dataset is uneven, FN-F1-OCT can achieve a better prediction
result; this is mainly because the three base classifiers of FN-F1-
OCT are trained separately, and the calculation of the loss value
is more accurate. However, when the number of training data
decreases, the classification accuracy of the model is decreased.

Therefore, the FN-F1-OCT model needs more training data to
achieve excellent results.

Therefore, the FN-F1-OCT fusion algorithm can be selected
as the optimal algorithm if the training dataset contains sufficient
data and time is not considered during training and testing. If
the amount of training data is low and the training and testing
time periods are limited, the FN-Weight-OCT fusion algorithm
can be selected as the optimal algorithm. If the amount of data is
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low and the training and testing times are no longer considered
within a certain scope, the FN-Auto-OCT fusion algorithm can
be selected as the optimal algorithm.

The UCSD common retinal OCT dataset is one of the
largest OCT datasets to date. It has been publicly provided by
Kermany (2018) and is mainly used for retinopathy classification.
To further evaluate the three fusion strategies for retinopathy
extraction, this paper compares the prediction results of the
three fusion strategies with the prediction results of different
algorithms (Table 7). The first three rows use the prediction
results obtained via conducting transfer learning with the
classification algorithm in the ImageNet competition. Lines
4-6 use a custom algorithm or a modified version of the
classification algorithm in the ImageNet contest to predict the
results. From the prediction results, compared with the direct
use of transfer learning without modification, the self-defined
algorithm and the modified classification algorithm produce
more representative retinal OCT prediction results. From lines
7–8, “Hard vote” uses the predicted class labels for majority
rule voting, and “Soft vote” uses the class labels predicted based
on the argmax of the sums of the predicted probabilities. It
can be seen that the reason why the “Soft vote” results are
consistent with the predicted labels obtained by FN-F1-OCT is
that in this application scenario, the F1 value obtained by the
FN-F1-OCT base classifier on the validation set is close, and
the weight parameter is approximately 1/3 that of “Soft vote,”
so the prediction indices are consistent. From the prediction
results of lines 9–12, it can be seen that the three fusion
strategies achieve greatly improved prediction abilities for retinal
OCT samples thus proving the effectiveness of the proposed
fusion strategies.

4.5. Experimental Expansion
To verify the effects of the developed models on external tested
data, retinal OCT images are collected from Beijing Chaoyang
Hospital in this paper. We directly use the trained algorithm
models to predict all image data. First, we use the preprocessing
method employed on the internal test set data to process the
external test set data. The evaluation indices obtained for various
categories in the external test dataset are shown in Figure 6

and Table 8. In Table 8, “Weighted avg” represents the weighted
average of the corresponding evaluation index, and Figure 6

shows the comparison among the weighted average results of
the evaluation indices produced by the three fusion strategies.
Because the network models are trained on an OCT image
generated by a “Spectralis OCT” device and the test image
is an OCT image generated by a “Cirrus HD” device, certain
differences are observed between the definitions of the OCT
images output by the two devices. Spectralis OCT equipment
generally produces clearer images than Cirrus HD-OCT, which
may lead to a certain decline in the evaluation indicators during
model testing. As a whole, the prediction abilities of the three
fusion strategies under the “Limited” setting are significantly
improved compared with those obtained under the “Complete”
setting; this is mainly because the training dataset used by
the “Limited” models are balanced among various categories.

Compared with FN-F1-OCT and FN-Weight-OCT, FN-Auto-
OCT has a better generalization ability and provides better
predictions on the external test sets.

4.6. FN Visualization
To verify the effectiveness of the FNs proposed in this paper,
the three FNs are used for clinical verification in a localization
map task. First, the three images with the highest prediction
probabilities in each category are selected as visualization images,
and then the Grad-CAM (Selvaraju et al., 2017) algorithm is used
visualize a localization map, which is subsequently checked by
professional doctors. The localization map of the FN-Auto-OCT
classification results obtained after the final evaluation index of
Xception goes through a CBAM (Figure 7). After the image is
checked by professional clinicians, the visual part of the image
can show the locations at which the model focus is similar
to human experience. The OCT of CNV is characterized by
interlayer effusion, lipid exudation, and irregularly raised retinal
pigment epithelium (RPE) with a widened fusiform band due to
broken choroidal capillaries. DME manifests in OCT as retinal
cystic changes at the macular fovea, decreased signal reflection
in the lumen, and swollen retinal inner surfaces. Enhanced
reflectance of the choroid and RPE can be found in the OCT of
drusen, which is accompanied by RPE focal protrusions. In the
OCT of the normal group, the retina is clearly stratified and well
structured, thus verifying the effectiveness of the examined FN.

5. CONCLUSION

In this paper, an FN-based retinal OCT algorithm for retinal
detection is proposed. The experimental results show that this
paper explores the fusion modes of FNs in three ways, which
can provide the base classifiers with strong retinal OCT detection
abilities. The results of comparisons with related approaches
confirm the accuracy of the developed algorithm. In the future,
we plan to use other local HD image databases to check the
robustness of the proposed algorithm, and we will apply the
three fusion strategies in other application scenarios to verify the
advantages of this algorithm.
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