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Abstract

Inflammation is a key phase in the cutaneous wound repair process. The activation of 

inflammatory cells is critical for preventing infection in contaminated wounds and results in the 

release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial 

cells, and fibroblasts to aid in the repair process. However, there is an abundance of data 

suggesting that the strength of the inflammatory response early in the healing process correlates 

directly with the amount of scar tissue that will eventually form. This review will summarize the 

literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and 

discuss potential treatment modalities that target inflammation to minimize scarring.
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INTRODUCTION

The repair of wounds in mature skin has been studied extensively. This process is highly 

complex and interactive, and it is made up of a series of well-defined stages that include 

inflammation, proliferation, and remodeling/scar formation[1–3]. Scar tissue is generated 

from activated fibroblasts, which produce excess levels of irregularly organized collagen. 

Clinically significant scars can develop from surgical, traumatic, or thermal (e.g., burn) 

injury[4]. Scars essentially function as a quick patch for damaged dermal tissue, but they can 
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be problematic in many ways. Compared to normal skin, scar tissue is weaker in terms of 

tensile strength and it is also more rigid[5,6], which adversely affects the biomechanical 

properties of the skin. The replacement of normal tissue with scar tissue reduces the 

functional capacity of the skin in that area as well, and this can cause problems such as 

limiting joint motion and impairing normal tissue growth. Scars can also have significant 

psychosocial implications and can negatively impact a patient’s quality of life[7].

Although inflammation occurs relatively early after injury, it can impact later stages of 

repair such as scar formation. In the early stages of repair, the primary functions of 

inflammation are to clean the wound site, clear debris, and prevent infection[8]. However, 

many of the mediators produced by activated inflammatory cells can stimulate fibroblasts, 

which drives the production of scar tissue and consequently shapes the final outcome of 

repair. Several innate immune cells have been linked to scar formation, including 

neutrophils, mast cells, and macrophages. In addition, a variety of inflammatory mediators 

have been shown to influence scar formation. This review will summarize what is known 

about the role of inflammation in scar formation and discuss some potentially useful 

approaches to reduce scar formation by modulating inflammation.

CORRELATIVE DATA LINKING INFLAMMATION AND SCARRING

A large number of studies suggest that the level of inflammation in injured skin correlates 

directly with scar formation. A direct association between the extent of injury (and hence the 

levels of inflammation) and the amount of scarring that will ultimately result from the 

wound healing process has been established. For example, larger/deeper wounds or injuries 

that cause more severe damage are associated with higher levels of inflammation and heal 

with more scar tissue[9–13]. Furthermore, a wide range of studies have shown that high levels 

of inflammation are associated with excessive scarring or abnormal scars such as keloids and 

hypertrophic scars (HTS), whereas inflammation is significantly blunted in wounds that heal 

without scars [Figure 1]. Evidence supporting this concept will be discussed throughout the 

remainder of this section.

Abnormal scars

Keloids—Keloids are abnormal, raised scars that develop after injury. These scars display 

some similarities with tumors, as they tend to invade the adjacent skin and extend beyond 

the initial site of injury. There are no widely accepted experimental animal models of keloid 

disease, so studies on keloid pathogenesis are generally limited to experiments on tissue 

from human patients. A number of studies have examined inflammation in keloid tissue and 

the vast majority have indicated that keloids are associated with an increase in pro-

inflammatory mediators and inflammatory cells.

Several studies have suggested an increase in pro-inflammatory mediator expression in 

keloids. A study by Zhang et al.[14] suggested that a pro-inflammatory niche exists in 

keloids, based on observations that interleukin (IL)-6 and IL-17 were increased in keloid 

tissue compared to normal skin. Another group reported an increase in chemokine-like 

factor 1 and other pro-inflammatory cytokines, such as IL-6, IL-8, and IL-18, in keloid 

tissue compared to normal skin and normal scars[15]. Jumper et al.[16] performed a site-
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specific gene expression profiling study and found that keloid tissue was enriched for pro-

inflammatory genes and pro-inflammatory signaling pathway members, including IL-1β, 

IL-8, and IL-17, among others. Interestingly, the data pointed to a possible role for the 

overlying epidermal cells in keloid lesions in the regulation of inflammation.

In addition to pro-inflammatory mediators, several inflammatory cell types are prominent in 

keloids, particularly mast cells and macrophages. A study by Dong et al.[17] suggested that 

the total number of mast cells and the number of mast cells expressing chymase, a serine 

protease found primarily in mast cells, are higher in keloid tissue compared to normal skin. 

An increase in chymase activity in keloids was also observed, and chymase was shown to 

stimulate collagen production in cultured fibroblasts[17]. Another study found a low number 

of mast cells expressing tryptase, another mast cell-related serine protease, in keloids 

compared to tissue from several other organs; however, the sample size was small (n = 3 

keloids) and there was no direct analysis of or comparison to normal skin[18]. Several studies 

have also shown an increase in macrophages in keloids compared to normal skin[19,20]. A 

study by Shaker et al.[21] showed that both macrophages and mast cells are frequently found 

in close proximity to fibroblasts in keloid tissue, and another study by Arbi et al.[22] showed 

a close association between mast cells and fibroblasts in keloid samples by transmission 

electron microscopy. Although these studies were limited in scope, they do suggest the 

possibility that direct cell-cell interactions between inflammatory cells and fibroblasts could 

be important for fibrosis.

A more comprehensive analysis of inflammatory and immune cells was performed by 

Bagabir et al.[23] In this study, the number of mast cells and degranulated (activated) mast 

cells were found to be increased in keloids compared to normal skin and normal scar tissue, 

as were the number of M1 and M2 macrophages. M1 (classically activated; pro-

inflammatory) and M2 (alternatively activated; anti-inflammatory/pro-fibrotic) macrophages 

express different biomarkers, and this general classification system is commonly used to 

delineate different macrophage phenotypes[24]. Interestingly, inflammatory cell enrichment 

was more closely associated with intralesional and perilesional keloid sites as opposed to 

extralesional sites.

While most published studies indicate an increase in mast cells and macrophages in keloid 

scars, one study comparing human keloids and equine exuberant granulation tissue (a 

fibrotic condition suggested to have some similarities to human keloids) reported minimal 

mast cells and macrophages in both fibrotic conditions[25]. Two other studies suggested 

either minimal differences or fewer mast cells in keloids[26,27]. While the reasons for the 

discrepancies between the studies are not entirely clear, the observations by Bagabir et al.[23] 

described earlier showed that the number of inflammatory cells varied across different sites 

within a keloid lesion. Also, in some of the studies, granule markers were the sole staining 

method used, which could underestimate the number of mast cells if they have degranulated. 

Therefore, the specific locations at which the cells were quantified, in addition to differences 

in staining methods, sample sizes, and patient populations, could contribute to the 

inconsistent results.
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HTS—HTS, which are raised red scars, also fall into the category of abnormal scars. Unlike 

keloids, HTS are confined to the borders of the original wound. A wide range of studies in 

both small and large animal models as well as human clinical samples have examined 

inflammation in hypertrophic scarring.

Several rodent models of HTS have been described. One such model uses the application of 

a mechanical loading device to apply tension to wounds, inducing a HTS-like phenotype 

reminiscent of human HTS[28]. In this model, the scars were shown to have a high number 

of mast cells, similar to human HTS[28]. The HTS-like lesions were also shown to have 

higher numbers of macrophages compared to control wounds with no mechanical 

loading[29]. Several other studies have been published using models of HTS formation in 

which human skin is grafted onto nude mice. In these studies, higher numbers of mast 

cells[30] and macrophages[30,31] were observed in the HTS-like lesions compared to control 

tissue. Upon further examination of macrophage subtypes, M2 macrophages were found to 

be elevated, and higher levels of pro-inflammatory cytokines were noted in HTS-like 

samples[31]. An increase in both mast cells and macrophages has also been reported in a 

mouse model of hypertrophic scar contracture[32].

Large animal models, such as pigs, are considered by many to be an ideal wound healing 

model based on similarities in skin anatomy between pig and human. A study by Harunari et 
al.[33] examined mast cells in human HTS samples and samples from a large animal model 

of HTS, the red Duroc pig. The authors found an increase in mast cells in HTS from both 

humans and red Duroc pigs compared to the corresponding normal skin controls.

In human HTS, there are conflicting results regarding whether inflammation is enhanced or 

reduced in HTS. Early studies by Kischer et al.[34] reported higher numbers of mast cells in 

HTS compared to granulation tissue or mature scar tissue samples using toluidine blue, a 

metachromatic stain that binds mast cell granules. A study by Beer et al.[35] did not see 

differences in tryptase-positive mast cells when comparing among keloids, HTS, and 

surgical scars; however, normal skin samples were not included for comparison. Another 

study by Niessen et al.[36] found no significant differences in tryptase-positive mast cells in 

HTS compared to normal scars, although they did note a trend toward increased 

subepidermal mast cells in HTS. There are several possible explanations for the 

contradictory results between the studies. The use of different techniques to identify mast 

cells could have played a role, as toluidine blue should indiscriminately stain all mast cell 

subtypes (including chymase- and tryptase-positive mast cells), whereas tryptase staining 

may not easily identify mast cells if they predominately express chymase. In addition, the 

age of the scars examined may play a role. The study by Beer et al.[35] showed a direct 

correlation between mast cell density and scar age in surgical scar samples and the study by 

Niessen et al.[36] noted an overall increase in mast cells between 3 and 12 month scar 

samples, so standardization of scar age may be needed to properly compare studies from 

different investigators.

There are only a few reports examining macrophages in human HTS. In one study 

comparing normal scars and HTS from breast surgeries, no differences were found in 

macrophages between scar types[36]. In another study looking at scars from cardiothoracic 
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surgery patients, an increase in macrophages was observed in normal scars compared to 

HTS at earlier time points, but total macrophage and M2 macrophage numbers were 

increased in HTS at later time points and remained elevated for a longer period of time[37].

The data on pro-inflammatory cytokine expression in human HTS also appears to be 

somewhat mixed. One study compared inflammatory gene expression in a small prospective 

study comparing patients that developed normal scars or HTS[37]. The authors reported 

reduced expression of inflammatory genes (including TNFα, IL-1α, IL-1RN, several 

chemokines, and IL-10) in HTS, but the downregulated genes contained both pro- and anti-

inflammatory genes. Similarly, another prospective study compared various parameters of 

inflammation at a very early time point (3 h post-injury) in patients that healed with normal 

scarring or HTS[38]. The authors reported reduced protein levels of IL-6, IL-8, and CCL2 in 

wounds from HTS patients compared to normal scar patients and suggested that reduced 

inflammation is associated with HTS formation. However, increases in P-selectin mRNA 

were found in HTS compared to normal scar samples. In addition, TNF-α, CXCL4, VCAM, 

and TLR4 mRNA were significantly increased after surgery only in HTS and there were 

more M2 macrophages in pre-operative HTS samples.

Taken together, the data suggest that more detailed analysis of inflammatory cells and 

inflammatory mediators is needed to definitively show whether inflammation is associated 

with hypertrophic scarring in humans.

Scarless healing

Fetal skin wounds—It is well established that developing fetal skin is capable of healing 

wounds in a scarless, regenerative manner at certain gestational stages. Fetal skin heals 

scarlessly at early stages of development (until about the third trimester), but as the skin 

matures at later stages of development it heals through a fibrotic repair process that produces 

a permanent scar[39–41]. One of the key differences between scarless and fibrotic fetal wound 

healing is the level of inflammation. Many studies have shown that there are few, if any, of 

the traditional features of inflammation in scarless fetal wounds, but fibrotic fetal wounds 

that occur later in gestation heal with a strong inflammatory response[42]. In addition, 

artificially inducing inflammation in fetal wounds that would normally heal scarlessly 

causes them to heal with a scar[43].

Several studies have been performed to identify specific differences in the inflammatory 

response between scarless and fibrotic wounds. Levels of pro-inflammatory mediators, such 

as lipids (PGE2)[44], cytokines (IL-6, IL-8, IL-33)[45–47], and alarmins (HMGB-1)[48] have 

been shown to be lower while anti-inflammatory mediators (IL-10)[49] has been shown to be 

higher in fetal skin or scarless wounds. Fetal fibroblasts produce less IL-6 and IL-8 

compared to adult fibroblasts[45,46] and microarray studies showed that expression of 

inflammatory genes is reduced in fibroblasts from less developed fetal skin (scarless) 

compared to more developed fetal skin (fibrotic)[50].

In addition to reduced pro-inflammatory mediators, fewer inflammatory cells or reduced 

inflammatory cell activation have been described in scarless fetal wounds. Fetal platelets do 

not aggregate to the same extent and release lower levels of cytokines compared to adult 
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platelets[51,52]. Mast cells are present in lower numbers and are less mature in fetal skin at 

earlier gestational ages, and mast cells do not become activated or degranulate in response to 

injury in scarless wounds[53,54]. Macrophages are fewer in number and persist for a shorter 

period of time in early embryonic wounds, and the macrophages that are present do not 

appear to be activated[55,56]. In addition, very few, if any, neutrophils are recruited to fetal 

wounds when the skin is injured at ages corresponding to scarless healing[42,57]. It is 

possible that differences in fetal endothelial cells could play a role in minimizing the number 

of circulatory inflammatory cells recruited to fetal wounds. Studies have shown that 

neutrophils adhere less to fetal endothelial cells, which is likely due to lower expression of 

P-selectin[58,59]. This adhesion molecule mediates leukocyte-endothelial cell interactions 

that are required for effective recruitment of leukocytes from the circulation and into 

damaged tissues.

Studies examining human fetal skin also support the idea that less developed skin has a 

suppressed inflammatory response. An early study by Rowlatt described a lack of an acute 

inflammatory reaction and granulation tissue formation at the site of limb amputations 

caused by amniotic constriction bands in a 20 week human fetus[60]. In another study, 

Walraven et al.[61] reported that mid-gestation fetal skin (18–22 weeks) has fewer 

macrophages, mast cells, dendritic cells, and other immune cell types compared to adult 

skin. Because there was an adequate number of immune cells in the lymph nodes, the 

authors speculated that the reduced immune cell numbers present in the skin was due to a 

deficiency in homing signals. Indeed, they found reduced levels of chemokines such as 

CCL17, CCL21, and CCL27 in fetal skin.

Other types of scarless wounds—Besides fetal skin, scarless healing has also been 

described in mucosal tissues, such as the oral mucosa[62]. There is also evidence that oral 

mucosal wounds have a blunted inflammatory response compared to other tissues that heal 

with scarring. In a mouse model, Szpaderska et al.[63] showed fewer macrophages, less 

myeloperoxidase (a marker of neutrophil presence), and lower pro-inflammatory cytokine 

production in oral mucosal wounds (scarless) compared to cutaneous wounds (scar-

forming). Similarly, in a porcine model, Mak et al.[64] compared oral and skin wounds in red 

Duroc pigs and found reduced macrophage and mast cell numbers in oral wounds, which 

also displayed accelerated resolution of inflammation. In healthy human oral and skin tissue 

(uninjured), fewer neutrophils and macrophages have been reported[65]. Global 

transcriptome analysis by multiple groups suggests that several pro-inflammatory genes and 

regulatory pathways are suppressed or are less persistent in oral mucosal wounds compared 

to skin wounds[66,67].

Scarless healing has also been documented in a unique mouse species, the African spiny 

mouse (Acomys). Acomys was shown to completely regenerate and heal without scarring in 

response to large dorsal skin wounds[68]. Follow up studies compared transcription profiles 

of scar-forming wounds from standard laboratory mice (Mus) and regenerative wounds from 

Acomys, and showed Acomys wounds had a diminished cytokine/chemokine response[69]. 

Acomys has also been reported to be neutropenic (reduced blood neutrophils) and have less 

pronounced macrophage recruitment to wounds compared to Mus strains[70]. These results 
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fit the general theme observed with scarless oral mucosal and fetal wounds, which have a 

dampened inflammatory response compared to wounds that heal with scars.

FUNCTIONAL DATA LINKING INFLAMMATION AND SCARRING

In addition to correlative data, which generally link higher inflammatory mediator levels 

and/or elevated inflammatory cell numbers in a wound to more abundant scar formation, 

there are also functional data supporting a role for inflammation in promoting scar 

formation. These include studies showing that inflammatory cells or inflammatory mediators 

stimulate scar tissue/collagen production as well as studies showing that depletion or 

knockdown of inflammatory components reduces scar formation.

Inflammatory cells

Mast cells—Two general approaches have been used to study the function of mast cells in 

wound healing and scar formation: treatment with mast cell stabilizing drugs and 

examination of mast cell-deficient mouse strains.

Drugs that act as mast cell stabilizers, which prevent mast cell degranulation, have been used 

in animal models of wound healing to study the importance of mast cells in scar formation. 

By preventing mast cell degranulation, these drugs inhibit the release of pre-stored mediators 

present within the granules. Disodium cromoglycate (also known as cromolyn) has been 

shown to reduce collagen content in a rat model when injected directly into wounds[71]. 

Systemic treatment with disodium cromoglycate has also been shown in a mouse excisional 

wound model to reduce pro-inflammatory cytokine levels and myeloperoxidase levels 

(commonly used to estimate the presence of neutrophils) at early time points post-injury, 

while reducing scar size and normalizing collagen architecture/collagen fibril density at later 

time points[72]. Another study showed that oral administration of the mast cell stabilizer 

ketotifen reduced wound contraction and collagen deposition, causing thinner, less dense 

collagen fibrils to be produced in a red Duroc pig model[73].

The role of mast cells in scar formation has also been examined in mast cell-deficient mouse 

strains (either naturally occurring mutants or genetically modified mice), and the results 

seem to differ depending on the mouse strain and wound model used. KitW/W-v mice are 

mutant mice that lack mast cells due to functional mutations in the tyrosine kinase receptor 

c-kit, which binds an important growth factor for mast cells (stem cell factor). Younan et al.
[74] used these mice in a study looking at the effects of microdeformation in wounds using a 

negative pressure wound therapy device. They showed that microdeformation induced 

higher levels of mast cell degranulation, which correlated with an increase in granulation 

tissue thickness and collagen deposition. These changes were normalized in KitW/W-v mice, 

suggesting that the increases in granulation tissue and collagen production from the 

microdeformation device were mast cell-dependent. KitW/W-v mice were also shown to heal 

with smaller scars in late-gestation fetal skin wounds compared to control mice[53] and less 

fibrosis at the wound edge in adult scald wounds[75], supporting the idea that mast cells 

promote scar formation and fibrosis. In contrast to these studies, several other mast cell-

deficient mouse strains have been shown to heal with similar levels of scar tissue and 

collagen deposition compared to control mice that have normal mast cell numbers[76–78]. 
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Many of the published studies discussed above used different wound models and different 

mast cell-deficient strains, which could partially explain the variable results. In addition, 

most mast cell-deficient strains also have defects in one or more other immune cell types and 

non-specifically deplete the entire mast cell population, so it will be important to revisit 

these ideas once we understand more about mast cell heterogeneity and have more precise 

mouse models to specifically target mast cells and possibly different functional mast cell 

subtypes[79].

Neutrophils and macrophages—Several mutant mouse strains have been used to 

examine the importance of neutrophils and macrophages in wound-induced scar formation. 

One of the first studies of this kind explored wound healing in mice lacking the transcription 

factor PU.1[80]. PU.1 null mice, which lack macrophages and functional neutrophils, were 

shown to heal quickly and with minimal scarring. However, the relative importance of 

macrophages versus neutrophils is unclear since both cell types are absent in wounds from 

PU.1 null mice. While some studies suggest that the early neutrophil response may be 

important for scar formation and the presence of neutrophil extracellular traps have been 

reported in skin scars and other fibrotic conditions[81], there do not appear to be published 

studies examining scar formation using animal models in which neutrophils have been 

specifically depleted.

More specific studies examining the role of macrophages in collagen deposition and scar 

formation have been performed using several approaches. Studies from two groups have 

used slightly different genetically modified mouse strains in combination with diphtheria 

toxin to deplete macrophages. Mirza et al.[82] showed reduced collagen density in wounds 

from macrophage-depleted mice and Lucas et al.[83] showed that depletion of macrophages 

at early stages of wound healing reduced the amount of granulation tissue and the size of 

scars that formed. Several studies have also used clodronate liposomes to deplete 

macrophages. One study showed that macrophage depletion reduced collagen expression 

and deposition in wounds[84] and another showed that macrophage depletion reduced scar 

formation in a xenograft model of HTS[85]. While it is generally accepted that macrophages 

release mediators that can stimulate collagen production by fibroblasts, several recent 

studies have suggested the possibility of novel mechanisms. For example, macrophages were 

shown to support adipocyte-derived myofibroblasts through insulin-like growth factor and 

platelet-derived growth factor C[86]. A recent report also highlighted the plasticity of 

myeloid cells, which may be converted directly to collagen-producing fibroblasts in healing 

wounds[87]. More work will have to be done to understand exactly how macrophages 

contribute to scar formation.

Inflammatory mediators

Aside from specific inflammatory cell types, a wide range of inflammatory mediators, 

including both pro- and anti-inflammatory mediators, have been shown to play a functional 

role in cutaneous scar formation.

Pro-inflammatory mediators—Both fetal and adult wound healing studies in animal 

models have implicated specific pro-inflammatory mediators in the stimulation of scar 
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formation. Fetal wound healing models have been useful for identifying inflammatory 

mediators with fibrogenic potential since a specific mediator can be injected into fetal 

wounds to determine whether it can convert the scarless healing process into a fibrotic repair 

process. With this approach, the formation of a scar in a wound that would otherwise heal 

scarlessly can be used as a readout of pro-fibrotic activity. A number of pro-inflammatory 

mediators have been shown to promote scar formation in fetal wounds using this system, 

including cytokines such as IL-6 and IL-33[45,47], pro-inflammatory lipids like PGE2 [44], 

and alarmins such as HMGB-1[48]. Some of these same mediators have also been studied in 

adult wound healing models. For example, HMGB-1 has been linked to scar formation[88] 

and blocking PGE2 production with drugs that inhibit cyclooxygenase-2 activity has been 

shown to reduce scar formation in adult incisional wound models[89,90]. Other pro-

inflammatory cytokines that have been linked to cutaneous scar formation and/or collagen 

production in adult scar/fibrosis models include IL-17[91] and monocyte chemoattractant 

protein-1[92,93]. Additionally, osteopontin (OPN), which has pro-inflammatory cytokine-like 

properties and is associated with wound-induced inflammation[94], has been linked to scar 

formation. Studies in a mouse model showed that osteopontin knockdown in the skin 

resulted in less inflammation (reduced neutrophil, macrophage, and mast cell numbers) as 

well as reduced scar formation compared to control wounds[95].

Anti-inflammatory mediators—In contrast to pro-inflammatory mediators, anti-

inflammatory mediators have been shown to limit scar formation in fetal and adult wound 

healing models. The most well-documented example of this is the anti-inflammatory 

cytokine IL-10. Studies have shown that IL-10 levels are higher in scarless fetal wounds 

compared to scar-forming wounds[49]. Furthermore, scar formation is amplified in IL-10 

knockout mice[96] and scar formation is reduced when IL-10 levels are artificially 

enhanced[11,49,97–99]. In addition to IL-10 having anti-inflammatory effects, studies have 

suggested that IL-10 signaling enhances the production of hyaluronic acid[100–103], an 

extracellular matrix molecule associated with scarless healing and regeneration[104–110]. 

Other anti-inflammatory and pro-resolution mediators have also been linked to scar 

formation. Mice lacking the chemokine receptor CXCR3, which has been implicated in 

wound resolution, heal with abnormal scarring[111], and the pro-resolution mediator 

chemerin15 has been shown to reduce inflammation and scar formation[112].

THERAPEUTIC STRATEGIES TO PREVENT SCAR FORMATION

Given the evidence supporting the idea that inflammation promotes scar formation, it seems 

logical that targeting inflammation might be a viable therapeutic strategy for restricting scar 

tissue production and enhancing the cosmetic and functional clinical outcomes resulting 

from skin injury. There are data supporting various anti-inflammatory approaches that could 

be effective for minimizing the appearance of scars and several other proposed scar therapies 

may reduce scarring in part by altering inflammation. These will be discussed below.

Traditional anti-inflammatory strategies

Steroids and nonsteroidal anti-inflammatory drugs (NSAIDs) are traditional anti-

inflammatory drugs that may be beneficial for preventing or treating scars. Corticosteroids 
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are anti-inflammatory drugs commonly used in clinical settings to treat raised scars such as 

HTS and keloids. Steroid therapy can be used in an attempt to induce scar regression, but 

may be more effective when used to prevent recurrence after scar revision surgery[113]. The 

use of steroids for scar therapy has been reviewed previously[114–116].

NSAIDs are another class of anti-inflammatory drugs that block the production of 

inflammatory lipid mediators, such as PGE2, by inhibiting the function of one or more 

cyclooxygenase enzymes. These drugs are commonly used to treat pain, fever, and 

inflammation. Some of these drugs have been suggested to reduce collagen deposition and 

scar formation in animal models of wound healing. In an incisional murine wound model, 

topical application of celecoxib resulted in decreased PGE2 production, inhibition of 

neutrophil recruitment, and significantly reduced scar size[89]. In a rabbit ear model of HTS 

formation, celecoxib treatment was shown to reduce scarring (measured by scar elevation 

index score)[90], and a combination of celecoxib and the angiotensin-converting enzyme 

inhibitor captopril reduced inflammation and scar height[117]. Studies have also suggested 

that dressings incorporated with anti-inflammatory drugs, such as electrospun fibrous 

scaffolds loaded with ibuprofen[118] and emulgel dressings containing the anti-inflammatory 

drug acetylsalicylic acid along with stratifin[119] (a protein produced by keratinocytes that 

has been shown to suppress scar formation[120,121]), may lead to reduced scarring.

Other anti-inflammatory strategies

TLR4 inhibitors—Drugs that target innate immune receptors have the potential to be used 

to limit scar formation based on their anti-inflammatory mechanism of action. TLR4 

inhibitors are one example. TLR4 is a pattern recognition receptor that binds to many 

different pathogen-associated molecular patterns as well as damage-associated molecular 

patterns (also known as alarmins) that stimulate inflammation in response to microbes or 

tissue damage, respectively[122]. High TLR4 expression has been documented in human 

HTS tissue and HTS fibroblasts[123]. TLR4 has also been suggested to play a role in HTS 

development in a mouse model, where treatment with the TLR4 inhibitor TAK-242 

(restorvid) was found to reduce scar formation[124]. The data were very limited in this study, 

with only 3 mice per group and no quantitative scar data; however, TLR4 has been linked to 

fibrosis previously and TAK-242 has been shown to reduce fibrosis in several organs, 

including the skin, in other animal studies[125–127]. Together, these studies suggest TLR4 

inhibitors may be a promising strategy to minimize scarring. In addition, the fact that this 

drug has been used topically to reduce ultraviolet light-induced inflammation and skin 

carcinogenesis[128,129] and has been used in clinical trials for other diseases[130], suggests 

that TLR4 inhibitors may be a worthwhile pursuit.

CXCR4 antagonists—Another potential target is the chemokine receptor CXCR4, which 

binds to stromal-derived factor-1 (SDF-1), also known as CXCL12. Upregulation of SDF-1/

CXCR4 signaling has been reported in human burn patients and in HTS tissue[131,132]. An 

increase in SDF-1 is believed to stimulate recruitment of CXCR4-positive leukocytes, and 

possibly collagen-producing fibrocytes, from the circulation, thereby promoting HTS 

formation[131,132]. Similar results have been reported in keloid tissue, with an increase in 

SDF-1 expression and CXCR4-positive cells in keloids compared to normal tissue[133]. In a 
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small animal HTS model, a CXCR4 antagonist was found to reduce the number of 

macrophages and myofibroblasts, inhibit contraction, and reduce scar formation[131]. 

Although more work is needed, the results thus far suggest potential for CXCR4 antagonists 

in preventing scar tissue deposition.

Additional scar reducing treatments affecting inflammation

Pirfenidone—Pirfenidone is an anti-fibrotic drug with anti-inflammatory properties used 

to treat idiopathic pulmonary fibrosis. Although the ability of pirfenidone to treat or prevent 

skin scarring has not been thoroughly investigated, several studies suggest that it may be a 

promising option. Multiple studies have shown that pirfenidone can inhibit the pro-fibrotic 

behavior of cultured dermal fibroblasts. For example, pirfenidone can reduce TGF-β-

induced fibroblast proliferation, migration, collagen expression, and myofibroblast 

formation[134], as well as fibroblast contraction[135,136]. Pirfenidone has also been shown to 

reduce proliferation and inhibit epithelial-mesenchymal transition in keloid 

keratinocytes[137]. In wound healing studies, pirfenidone has been shown to reduce pro-

inflammatory cytokine production, neutrophil infiltration, and collagen synthesis[138,139], 

and in a clinical trial topical application of an 8% pirfenidone gel induced scar regression to 

a greater degree than control pressure therapy in burn-induced HTS in pediatric patients[140].

Epigallocatechin-3-gallate—Epigallocatechin-3-gallate (EGCG) is a green tea 

polyphenol known to have antioxidant, anti-inflammatory, and anti-tumor effects. The 

ability of EGCG to be photoprotective and inhibit cutaneous inflammation in response to 

ultraviolet light-induced skin damage is well documented[141–144]. More recently, the 

potential for EGCG to inhibit inflammation and scar formation in skin wounds has been 

described. EGCG has been shown to inhibit mast cell-stimulated collagen protein expression 

by keloid fibroblasts, likely through alterations in PI3K/Akt signaling[145]. EGCG also 

inhibited proliferation, migration, and collagen expression in keloid fibroblasts via STAT3 

inhibition[146]. In a study using a model in which human keloid fibroblasts were injected 

into nude mice, EGCG treatment reduced keloid nodule formation and inhibited collagen 

production[146]. Another study tested the effects of EGCG in long-term keloid organ cultures 

and showed that EGCG reduced mast cell numbers in the keloid tissue and reduced keloid 

volume[147]. Recently, a clinical trial examining the effects of a topical formulation of 

EGCG in human skin wounds showed that EGCG treatment reduced mast cell numbers and 

improved scar outcomes, as indicated by a reduction in scar thickness and increases in 

hydration and elasticity[148]. Together, the data suggest that EGCG could be a promising 

therapeutic to prevent excessive scarring.

Fibromodulin—Fibromodulin is a member of the small leucine-rich proteoglycan family 

that has been shown to have an inverse relationship with scar formation. Fibromodulin levels 

are initially high in fetal skin at stages associated with scarless healing, then levels decrease 

during development as the skin starts to heal with a scar[149]. Additionally, fibromodulin 

levels increase during healing in scarless fetal wounds, which have minimal inflammation, 

but remain low in scar-forming wounds which display a typical inflammatory response[149]. 

Lower fibromodulin levels have been reported in HTS from human subjects and animal 

models compared to normal tissue[150,151], and mice lacking fibromodulin heal with more 
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inflammation[152] and more scar formation[153,154]. Increasing fibromodulin levels via 

adenoviral overexpression or treating with recombinant fibromodulin has been shown to 

reduce scar formation in rabbit, mouse, and red Duroc pig wounds[153–156]. Based on these 

studies, a fibromodulin-based peptide has been developed and is currently being tested in 

clinical trials[157].

Hydration—Studies have shown that maintaining hydration and allowing healing to occur 

in a moist environment can be beneficial for healing and reducing scar formation. The 

underlying mechanisms appear to be related to reduced inflammation. Saline-filled 

polyurethane or vinyl chambers used to maintain a moist healing environment caused 

wounds to heal with less inflammation and less scarring compared to dry, air-exposed 

wounds[158–160]. Additionally, occlusive dressings, which maintain hydration, reduce both 

inflammation and scarring[161]. Occlusion reduces the production pro-inflammatory 

cytokines and lipids by epidermal keratinocytes, the release of pro-inflammatory alarmin 

molecules such as S100A8, S100A9, and S100A12, and the infiltration of inflammatory 

cells[90,162–165]. It is likely, then, that maintaining hydration mitigates scar formation in part 

by diminishing inflammation.

Mechanoregulation—Fibroblast behavior is known to be influenced by mechanical 

signals, and wounds that heal under tension typically heal with more scar tissue. Data from 

animal models have illustrated this concept, as devices which increase mechanical loading 

on a wound increase scar formation[28,166]. Mechanically-loaded wounds have also been 

shown to have a stronger inflammatory response[28,29,93]. In addition, it has been suggested 

that higher levels of mechanical strain in keloid tissue is associated with inflammation and 

may contribute to keloid progression[167]. Focal adhesion kinase (FAK) signaling, which 

controls mechanosignaling in fibroblasts, has been suggested to mediate the enhanced 

inflammatory reaction associated with mechanical strain[93,167]. Mechanosensing has also 

been shown in recent studies to regulate inflammatory cell migration using sophisticated in 
vitro approaches[168]. Here, the authors demonstrated that deformations in collagen matrices 

caused by contractile activity of fibroblasts provides a strong signal for macrophage 

migration.

Several approaches have been tested to target mechanosignaling as a way to prevent or 

reduce scarring. A stress-shielding device, which reduces the tension on a healing wound, 

has been shown to improve scarring in large animal pre-clinical models as well as human 

clinical trials[166,169,170]. Microarray studies have shown that this device reduces the 

transcription of genes related to inflammatory pathways[171]. Another strategy to reduce scar 

formation by affecting mechanotransduction is to inhibit FAK signaling with a small 

molecule inhibitor. Several small animal studies have suggested that FAK inhibitors can 

reduce scarring[93,172], and treatment with FAK inhibitors and genetic ablation of FAK in 

fibroblasts have been reported to reduce inflammatory mediator production and 

inflammatory cell recruitment[93]. Collectively, the data suggest that altering mechanical 

signaling pathways may reduce scar formation at least in part by influencing inflammation.
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CONCLUSION

There is a large body of evidence suggesting that the magnitude of the inflammatory 

response influences the amount of scar tissue that will result from the healing process 

[Figure 2]. This likely results, at least in part, from the array of mediators released by 

inflammatory cells capable of stimulating fibroblast activity. Studies examining human 

tissue and samples from animal models suggest that pro-inflammatory cytokines and the 

number of inflammatory cells (e.g., mast cells and macrophages) are elevated in problematic 

scars such as HTS and keloids whereas the inflammatory response is muted in scarless 

wounds. Functional data support these correlative results as depleting inflammatory cells or 

reducing pro-inflammatory mediators generally reduces scar formation. Collectively, these 

data support the idea that targeting inflammation could be useful for limiting scar formation. 

Indeed, there are several studies, mainly using animal models, that show anti-inflammatory 

compounds reduce scar formation, and several other potential anti-scar treatment modalities 

have documented anti-inflammatory effects.

Despite the large number of studies on inflammation and scar formation, more research is 

needed to fully understand this relationship. Conflicting data from some studies 

demonstrates the complexity of the relationship between inflammation and scar formation 

and highlights the lack of standardized approaches for studying this relationship 

experimentally. In particular, variability in experimental models can make it difficult to draw 

broad conclusions; these models include the use of human tissue, large animal models (e.g., 

pigs, which have similar skin anatomy to human), and small animal models (e.g., mice, 

which have loose skin, but can be used for advanced functional studies). More precise 

characterization of inflammation that includes an expanded view of different inflammatory 

cell types as well as the specific subtypes of each cell and how changes in these cells over 

time affect scar formation are needed, especially in human specimens. In addition, further 

investigation is needed to determine how beneficial various anti-inflammatory approaches 

could be for minimizing scar formation in human skin.
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Figure 1. 
Summary of the relationship between scarring and inflammation. Most studies published to 

date indicate that the robustness of the inflammatory response resulting from skin injury 

correlates with the amount of scar tissue that will be produced, with low levels of 

inflammation in scarless wounds and high levels of inflammation in cases of abnormal or 

excessive scarring
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Figure 2. 
Summary of cellular interactions leading to cutaneous scar formation. When the skin is 

damaged, an inflammatory response is induced. Initially, resident inflammatory cells (e.g., 

mast cells and macrophages) in the dermis are activated. These activated cells secrete 

molecules that stimulate fibroblast activity and promote collagen production and scar tissue 

deposition. The resident cell-derived mediators, particularly cytokines (and chemokines) as 

well as lipids, stimulate the recruitment of circulating inflammatory cells (e.g., neutrophils, 

monocytes, and mast cell precursors) into the tissue. These cells become activated, and in 

some cases mature (monocytes become macrophages and mast cell precursors become 

mature mast cells), leading to even higher local levels of mediators that stimulate fibroblast 

activity and perpetuate scar tissue production. Several types of mediators produced by 

inflammatory cells have been linked to scar formation, including growth factors (TGF-β1), 

cytokines/chemokines [interleukin (IL)-6, IL-17, IL-33, MCP-1, SDF-1, OPN], proteases 

(mast cell chymase/tryptase, neutrophil elastase), lipids (PGE2), and reactive oxygen species 

or ROS (H2O2)

Wilgus Page 24

Plast Aesthet Res. Author manuscript; available in PMC 2020 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	CORRELATIVE DATA LINKING INFLAMMATION AND SCARRING
	Abnormal scars
	Keloids
	HTS

	Scarless healing
	Fetal skin wounds
	Other types of scarless wounds


	FUNCTIONAL DATA LINKING INFLAMMATION AND SCARRING
	Inflammatory cells
	Mast cells
	Neutrophils and macrophages

	Inflammatory mediators
	Pro-inflammatory mediators
	Anti-inflammatory mediators


	THERAPEUTIC STRATEGIES TO PREVENT SCAR FORMATION
	Traditional anti-inflammatory strategies
	Other anti-inflammatory strategies
	TLR4 inhibitors
	CXCR4 antagonists

	Additional scar reducing treatments affecting inflammation
	Pirfenidone
	Epigallocatechin-3-gallate
	Fibromodulin
	Hydration
	Mechanoregulation


	CONCLUSION
	References
	Figure 1.
	Figure 2.

