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Abstract The plant kingdom contains a stunning array of complex morphologies easily observed 
above- ground, but more challenging to visualize below- ground. Understanding the magnitude of 
diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental 
in determining how this trait contributes to species adaptation in local environments. Roots are 
the interface between the soil environment and the shoot system and therefore play a key role in 
anchorage, resource uptake, and stress resilience. Previously, we presented the GLO- Roots (Growth 
and Luminescence Observatory for Roots) system to study the RSA of soil- grown Arabidopsis 
thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present 
the automation of GLO- Roots using robotics and the development of image analysis pipelines in 
order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA 
in Arabidopsis, over time. These datasets describe the developmental dynamics of two indepen-
dent panels of accessions and reveal highly complex and polygenic RSA traits that show significant 
correlation with climate variables of the accessions’ respective origins.

Editor's evaluation
The authors present an automated system for phenotyping root system architecture based on biolu-
minescent roots resulting from a constitutively expressed luciferase transgene (GLO- Roots). They 
have developed a robotics- assisted phenotyping platform and an automated image analysis pipeline 
for high throughput analysis. An impressive array of 93 luciferase expressing Arabidopsis thaliana 
accessions provides a major resource for understanding the genetic basis for root system architec-
ture variation under physiologically relevant conditions. The work will be of great interest to plant 
biologists and all those studying genetic variation in plants.

Introduction
The diversity of shoot and root system forms within the plant kingdom mirrors the many functions 
required for plant survival in diverse habitats. However, these forms are not static, but dynamically 
change during the lifespan of a plant as it acclimates to a changing environment, and over evolu-
tionary time scales as a consequence of natural selection and genetic drift. The visible above- ground 
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shoot system is optimized for photosynthesis and reproduction while the below- ground root system 
is responsible for anchoring the plant and allowing it to reach essential nutrients and water, which is 
mediated, in part, through interactions with microbes in the soil (Lundberg et al., 2012; Bulgarelli 
et al., 2012; Castrillo et al., 2017; Harbort et al., 2020). While shoot forms and structures have 
undergone centuries of scrutiny under the human eye, underground root systems have received much 
less attention due to impeded accessibility.

Root system architecture (RSA) refers to the spatial arrangement of roots in soil, which encom-
passes the geometric nature of root connectivity and distribution (Lynch, 1995; Rellán-Álvarez 
et al., 2016). This arrangement of roots depends on relationships among the growth rates, branching 
frequency, and gravity set point of different root types. In allorhizic root systems, common in Eudicot-
yledons like the model plant A. thaliana, the embryonically formed primary root is the first to emerge 
from the seed at germination and ultimately branches to give rise to secondary roots, which, in turn, 
branch and produce tertiary and higher order roots (Osmont et al., 2007; Fitter, 2017). Each step of 
forming a branch, from the priming of a lateral root primordia to emergence from the parent root, is a 
tightly controlled process regulated by endogenous and exogenous signals (Moreno- Risueno et al., 
2010; Péret et al., 2009; Van Norman et al., 2013; Motte et al., 2019). Modulation and crosstalk 
of plant hormones change local growth patterns. The ratios of the phytohormone auxin and its antag-
onist, cytokinin, control growth throughout the plant and, importantly, regulate primary and lateral 
root initiation (Tian et al., 2014; Morris et al., 2017). The hormone abscisic acid (ABA), on the other 
hand, inhibits lateral root primordia from emerging (De Smet et al., 2003). ABA levels can increase 
in response to external stress and cause an extended quiescent phase after lateral root emergence 
(Duan et al., 2013; Xiong et al., 2006). Hence, the precise balance of these hormones influences root 
development and shapes overall RSA.

In addition to their genetically determined growth program, plants also react to spatial and envi-
ronmental cues to tune their form for certain environments. Roots must strategically navigate through 
the soil environment for efficient acquisition of water and nutrients (Rellán-Álvarez et  al., 2016; 
Dinneny, 2019). Understanding the mechanisms by which roots sense and respond to their environ-
ment remains a significant challenge since existing methods either compromise on physiological rele-
vance or on throughput, which can impact the ability to deploy functional genomic tools to identify 
regulatory genes. Many RSA studies are performed on young root systems using easily accessible, 
in vitro gelmedia- based systems and leverage the powerful genetic and molecular resources of A. 
thaliana (Rosas et al., 2013; Ogura et al., 2019; Waidmann et al., 2019; Julkowska et al., 2014). 
Whereas bigger and more mature root systems of crop species have been studied in soil environ-
ments, however, compromising on throughput (Morris et al., 2017; Jiang et al., 2010).

Previously, we developed GLO- Roots (Growth and Luminescence Observatory for Roots), an 
imaging platform enabling visualization of soil- grown Arabidopsis root systems from germination to 
maturation by combining custom growth vessels, luminescence- based reporters, an imaging system, 
and an image analysis suite (Rellán-Álvarez et al., 2015). Here, we present the automation of GLO- 
Roots by creating GLO- Bot, a robotic platform that enables large- scale capture of Arabidopsis root 
growth over time in a soil- like environment. Along with the automated imaging system, we developed 
an improved root analysis pipeline for quantification of various RSA traits. Together, these technolog-
ical advancements enabled time- lapse imaging of RSA development of 93 Arabidopsis accessions 
from 14 to 28 days after sowing, creating a unique dataset that allows for wide- ranging analyses 
of highly complex, adult root systems. Quantitative genetic analyses and genome- wide association 
studies (GWAS) yielded insight into the heritability and genetic architecture of distinct RSA traits, 
and significant associations with climates across the species’ geographic distribution highlighted the 
power of our approach and its relevance for understanding how root architectural traits contribute to 
local adaptation.

https://doi.org/10.7554/eLife.76968
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Results
Automation enables high spatio-temporal resolution measurements of 
root system dynamics
Establishing the robotics infrastructure for automated root imaging
To further develop the potential of GLO- Roots for time- lapse imaging of root development, from early 
stages to mature RSAs, we developed GLO- Bot, a Cartesian gantry robotic system consisting of an 
exterior frame and arm on a linear rail system built from T- Slotted aluminum extrusion, which houses 
the Growth and Luminescence Observatory 1 (GLO1) imaging system (Rellán-Álvarez et al., 2015; 
Figure 1A and B). In addition to GLO1, the frame contains a growth area for seven black polyethylene 
growth boxes (Figure 1B), each of which holds 12 rhizotrons (also known as rhizoboxes) arranged 
in a two by six grid (Figure 1C, Figure 1—figure supplement 1). In total the system can hold 84 
rhizotrons, which typically contain one plant.

The primary goal of developing the robotics platform was to automate plant imaging since the lucif-
erin watering regime of each rhizotron and the long exposure time required to capture luminescence 
signal were the most time- consuming steps of the GLO- Roots system. An important consideration 
was the layout for the robot and range of motion for the arm (Figure 1A). The perpendicular position 
of the two cameras relative to the rhizotron being imaged in GLO1 lent itself well to the final linear 
rail system and arm with x-, y-, and z- motors. To minimize positional errors associated with finding a 
particular rhizotron, the robotic arm checks the coordinates of each growth container prior to imaging 
(Video 1). The arm moves to each plant position and lifts the rhizotron via a metal hook, which gives 
the arm a robust surface to pick up the rhizotron (Figure 1C, Figure 1—figure supplement 1A). 
Both rhizotron and growth box designs were adapted for robotic use in a way that prevents light 
exposure of the root system during growth (Shi et al., 2018) while also facilitating easy removal and 
repositioning of rhizotrons in the growth container during imaging. Each rhizotron is shielded from 
light exposure by creating individual chambers within the growing box (Figure 1C, Figure 1—figure 
supplement 1B). To facilitate removal and replacement of each rhizotron for imaging, we changed the 
design of the growth box from a standing to a hanging position by adding a piece of acrylic at the top 
of each rhizotron, which, with the help of small guide pegs, allows the rhizotron to hang in its proper 
position and shields light from entering the growth container (Figure 1C).

Programed movements of the robotic arm bring the rhizotron to a barcode scanner, which allows 
the system to recall the specific treatment and imaging protocol to use (Video 1). Subsequently, the 
arm brings the rhizotron to a watering station where a luciferin solution is applied prior to imaging, 
which provides the substrate for the constitutively expressed luciferase (Rellán-Álvarez et al., 2015; 
Figure 1A; Figure 2). Slow back and forth movements of the rhizotron under a pipette tip connected 
to a peristaltic pump provide the solution ( Video 1). As the arm moves, it bypasses a specified gap in 
the center of the rhizotron to avoid contact with the shoot. The entire watering process takes approx-
imately 10 min, which allows the water to slowly seep through and spread throughout the rhizotron. 
The automation was set up such that while one plant is being imaged, the next plant is being watered. 
To minimize arm movement time, watered rhizotrons are placed on a ledge while the arm removes the 
imaged rhizotron from the imager and returns it to its growth box (Video 1). If the system is running at 
maximum capacity, GLO- Bot can process 96 rhizotrons in 24 hr, by growing an eighth box on a nearby 
shelf and swapping out one of the seven boxes in the system during the day. However, the following 
experiments were all imaged at approximately half capacity in order to respond to possible technical 
errors.

Development of an image analysis pipeline for dynamic trait 
quantification
Image alignment, signal optimization, and background noise removal
The increased throughput of GLO- Bot enabled time- lapse imaging of root systems and created new 
opportunities for the measurement of dynamic root growth traits, but also revealed new challenges 
for root image analysis. Luciferase signal intensity varies between transgenic LUC- expressing lines and 
decreases in older root tissues, making it even more difficult to distinguish between roots and noise 
during the course of the experiment (Figure 2). While this signal variation is problematic for analysis 
of raw images, we leveraged our time- lapse data to capture a strong signal for the entire root system 

https://doi.org/10.7554/eLife.76968
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Figure 1. Growth and Luminescence Observatory for Roots (GLO- Roots) automation: GLO- Bot. (A) Schematic of the GLO- Bot Cartesian gantry system 
includes: (1) The Growth and Luminescence Observatory 1 (GLO1) imaging system published in Rellán-Álvarez et al., 2015, which houses two cameras 
and a rotating stage for root imaging, (2) a station for general watering or treatment with diluted luciferin solution prior to imaging, (3) a barcode 
scanner to identify the rhizotron and load a specific watering and imaging protocol, (4) a robotic arm, which moves in the x-, y-, and z- directions and has 
a hook at the end to pick up rhizotrons, and (5) an area for plant growth, which can be seen in the photograph of GLO- Bot (B). (C) Automation updates 
required modification of the GLO- Roots growth vessel design to include a black acrylic plate and hooks for rhizotron handling as well as dividers within 
the growth boxes and guides along the bin top, which allow the rhizotron to hang and shield the roots from light. Copper tape along the edge of the 
bin top enables positioning. Gray- scale bars denote 30 cm.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.76968
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by sequentially adding images together. However, in addition to summing the root signal, this step 
also sums background noise (Figures 2 and 3). Therefore, we utilized a combination of pre- and post- 
measurement processing to amplify true signal and reduce noise (Figure 2). To account for some of 
the inherent noise introduced by the imaging system itself, we run the background removal macro  
remove_ background. ijm, to subtract a blank image, taken in GLO1 without a rhizotron present, from 
every root image (Figure 2A- 2). True root signal can be amplified, or inferred from previous days in 
the time- lapse, if all images of a root system have the root in the exact same position relative to the 
exterior image dimensions. Therefore, each series of root images is manually checked to ensure root 
position remains stationary over time. Misalignments were fixed using the ImageJ plugin Template 
Matching and Slice Alignment ( Template_ Matching. jar, Tseng et  al., 2011). This plugin works by 
user selection of a region present in all images followed by automated detection and translation (x-, 
y- movement) of subsequent images to align image features, a method that is also known as image 
registration. This step occasionally required subsetting the images to yield precise alignment. During 
the alignment process, all root images were screened and roots were checked for: (1) appropriate 
number of images; (2) erroneous image dates; (3) excessive background noise; (4) any other anomalies 
from image testing (described in the Materials and methods ‘Image analysis’ section) or occasional 
camera malfunction. An incorrect number of images or erroneous image dates were due to technical 
issues with the automated plant handling and imaging pipeline. Images with excessive background 
noise, or extraneous images, were removed. Next, aligned and cleaned- up images were run through 
the macro  denoise_ overlay. ijm, designed to strengthen signal intensity and decrease noise through 
a series of image- wide addition and multiplication steps (see detailed steps in the Materials and 
methods ‘Image analysis’ section). The output from this macro is a set of images in which each day of 
imaging is added to the previous days, thus accumulating the strongest signal throughout the root 
system (Figures 2A–4).

With luminescent root signal maximized throughout all of the images in a time- lapse series, the 
macro  invert. ijm is used to invert the gray- scale values of the images, thus making the root system 
itself black and the background white for downstream whole root system analyses. In addition to 
determining architectural parameters of complete root systems, we also established methods to 
quantify the actively growing regions of root systems. For this, we use the macro  tip_ tracking. ijm to 
isolate the new growth between images by a series of dilating and subtracting of two consecutive 
images (see detailed steps in the Materials and methods ‘Image analysis’ section; Figures 2A–5).

Downstream analyses of root growth dynamics requires the distinction 
between true root signal and background pixels
All images were run through a modified version of GLO- RIA (Growth and Luminescence Observatory 
Root Image Analysis; Rellán-Álvarez et al., 2015), GLO- RIAv2 (Figures 2A–6). GLO- RIAv2 removes 
features deprecated from the 2017 ImageJ update (Schneider et al., 2012; Schindelin et al., 2012) 
and includes root angle output ranging from 0° to 180°.

Downstream analyses of the GLO- RIAv2 
outputs were performed in R (R Development 
Core Team, 2019). Most root system struc-
tures visible on the GLO- Bot images are discon-
nected in many locations, due to variability in the 
reporter’s intensity and the presence of physical 
obstructions, such as soil particles. We call each 
detected bioluminescent piece of root a ‘root 
segment’. Data for each root segment include (1) 
the x-, y- coordinate of the upper left corner of the 
bounding box for each segment, (2) the segment 
length, and (3) the angle with respect to gravity, 

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Detailed schematic of rhizotron design for automation.

Figure 1 continued

Video 1. GLO- Bot running.

https://elifesciences.org/articles/76968/figures#video1

https://doi.org/10.7554/eLife.76968
https://elifesciences.org/articles/76968/figures#video1
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Figure 2. Workflow of image analysis pipeline that enables robust trait measurement. (A) Sample workflow for processing time- series images from 
multiple days after sowing (das) starts by (1) combining raw images to merge front, back, upper, and lower images, (2) a blank image is then subtracted 
to remove inherent noise, (3) images are registered using the ImageJ plugin Template Matching and Slice Alignment to account for x- and y- movement 
caused by slight position changes during rhizotron insertion into the imager, (4) registered images are then de- noised and overlaid, which helps 
overcome luciferase signal loss in older root tissues; however, this step also compounds any background noise. (5) Image subtraction between each day 
removes this noise and isolates new growth. Processed images are run through GLO- RIAv2 (6) and the output is formatted, such that in silico vectorized 
roots can be reconstructed (7). Additional noise is cleaned up (8) using an iterative distance- clustering method. Traits are then extracted from cleaned 
roots (9) and the outputs can be used for downstream analysis (10). (B) Comparison of 85 images measured with previous root analysis methods (GLO- 
RIAv1, gray) and the new analysis methods (GLO- RIAv2, coral) vs. manually traced ground truth measurements from SmartRoot (x- axis) reveals that the 
new analysis method increases accuracy, as demonstrated by the r2 values, higher slopes, and lower y- intercepts.

https://doi.org/10.7554/eLife.76968
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Figure 3. Root system architecture (RSA) of six Arabidopsis accessions over time. (A) Six accessions from diverse locations were imaged continuously 
from 9 to 31 days after sowing (DAS). *Col- 0 location reflects where accession was originated, not collected. (B) Each accession had a unique RSA 
pattern (five root systems per accession at 21 DAS each shown in a different color overlaid on top of each other). (C) Principal component analysis (PCA) 
using raw trait values for eight time points and nine traits shows time (red is 9 DAS and yellow is 31 DAS), as the largest source of variation (PC1) and 
angle and depth- to- width ratios further distinguishing the root systems (PC2). When colored by accession, this analysis shows separation between the 
accessions. Loading plot illustrates the impact of each trait on the overall variation. (D) Four root system raw traits for six accessions growing over time 
from 9 to 31 DAS. Trends were calculated using LOESS smoothing (n=12–15 plants at each time point). 95% confidence interval shown by gray shading. 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.76968


 Tools and resources      Plant Biology

LaRue, Lindner et al. eLife 2022;11:e76968. DOI: https://doi.org/10.7554/eLife.76968  8 of 26

such that root segments can be referenced with 0° pointing straight down and 90° pointing straight 
out to the side. These data give us the ability to reconstruct the root system in silico as a series of 
vectors (Figure 2).

Next, we remove non- root particles by iteratively clustering the starting points of the measured 
segments. Clusters are tested for distance between points, the number of segments, and the linearity 
of the points within the cluster (detailed steps in the Materials and methods ‘Image analysis’ section, 
Figure 2A- 8). Segments that do not meet empirically defined criteria are removed, leaving behind 
only ‘true root’ segments. Using the ‘true root’, we calculate traits associated with new growth 
including: number, length, and angle of new root segments, as well as traits at the whole root system 
level: width, depth, center of mass, convexhull, depth- to- width ratio, total length, and average angle 
(Figure  2A- 9). When computing average angle measurements, vector segments are weighted by 
length, meaning that small segments contribute less to the overall trait value compared to longer 
root segments. In addition to these seven traits, new root length (length per day) and average angle 
(average angle per day) are also summarized on a per- day basis. Additional traits can be derived from 
these metrics and extracted from the raw images for future analysis. It is important to note that each 
computed trait must be considered in the context of the experimental system. For example: (1) width 
and depth measurements are ultimately constrained by rhizotron size making these traits relevant up 
to a certain time point depending on the accession, (2) correspondingly, the depth- to- width ratio will 
always converge close to 2:1 as the root system fills the rhizotron, and (3) root length is an approx-
imation since it is a sum of the visible root segment lengths and therefore does not account for the 
distance between disconnected segments. Despite these caveats, the nine traits measured (listed 
above and summarized in Supplementary file 1) encompass the basic parameters commonly used to 
describe the root system as well as new traits that are made possible through our time- lapse imaging 
and automated plant handling system.

To test the accuracy of our trait extraction methods, we used SmartRoot (Lobet et  al., 2011) 
to manually trace the root systems for five growing plants and ground truth our parameters. We 
observed a strong correlation between the traits extracted via our new image processing pipeline and 
those that were measured manually (Figure 2B). Manual SmartRoot tracing of a single GLO- Roots 
image can take multiple days, thus making analysis of large- scale time course experiments unfeasible. 
While the initial GLO- Roots pipeline works well for end- point image analysis, the above- mentioned 
updates allow for more accurate root trait measurements of time course images (Figure 2B) and gives 
us ways to explore new temporal traits.

Time-lapse imaging of six Arabidopsis accessions reveals distinct root 
growth trajectories
The robotics and image analysis pipeline we developed allowed us to increase the throughput of the 
GLO- Roots system, which we then applied to address two important questions: How do root system 
traits vary over developmental time, and how do dynamic root system traits vary across a species? To 
address the first question, we wanted to characterize root system traits with high temporal resolution 
and with greater replication than possible with a larger survey of genotypes. We selected a set of six 
Arabidopsis accessions based on their geographic dissimilarity and availability of homozygous LUC2- 
expressing lines with strong reporter expression (Figure 3A; Rellán-Álvarez et al., 2015). Each acces-
sion was grown in 10 replicates, where 5 replicates were imaged daily from 9 days after sowing (DAS) 
until 31 DAS and the other 5 replicates from 21 to 31 DAS. In depth comparisons between replicates 

Non- smoothed raw data and additional traits are plotted in Figure 3—figure supplement 2. Two vertical dashed lines highlight the interval (14–28 
DAS) chosen for future experiments. Depth and width measurements are constrained by the rhizotron size. Colors correspond to accessions in panel B.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Principal component analysis (PCA) plots of nine root system architecture (RSA) traits for the six accessions. 
PCA using raw trait values for nine traits. Left plots show PCA colored by time (red is 9 DAS and yellow is 31 DAS), center shows PCA colored by 
accessions, and the right shows the loading plot to demonstrate the traits influencing each PC.

Figure supplement 2. Root system architecture (RSA) traits over time for the six accessions.

Figure supplement 3. Continuous vs. single time point imaging.

Figure 3 continued

https://doi.org/10.7554/eLife.76968
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Figure 4. Root system architecture (RSA) of the Growth and Luminescence Observatory for Roots (GLO- Roots) 
diversity panel. (A) Locations of all accessions used in this study. Inset highlights the concentration of accessions 
from the Swedish population. (B) RSAs of the GLO- Roots diversity panel used in the genome- wide association 
studies (GWAS) at 20 days after sowing (DAS). Six root systems overlaid on top of each other with root system 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.76968
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can be done using the RShiny App (https://tslarue.shinyapps.io/rsa-6access-app/). The six accessions 
that were imaged displayed diverse RSAs (Figure 3B, Video 2) and principal component analysis 
(PCA) demonstrated that we could distinguish the accessions based on nine of the traits extracted 
using our image analysis pipeline (Figure 3C, Supplementary file 1). Expectedly, time accounted for 
the largest source of variation in PC1 (56.99%, Figure 3C), indicating that the size and developmental 
stage of a plant is the most important variable affecting RSA. We could see that depth- to- width ratios 
and average angle measurements further separated the accessions along PC2 (21.67%, Figure 3C). In 
total, the first four PCs capture 94.02% of the variation with the greatest distinction between acces-
sions apparent in PC2 (Figure 3—figure supplement 1). Looking at the traits over time demonstrated 
that each of the accessions had its own unique growth trajectory with average angle and average 
angle per day exhibiting the most diversity (Figure 3D, Figure 3—figure supplement 2). Early during 
plant growth all accessions have fairly similar average angles, presumably because they have few 
lateral roots, but over time their average angles for the whole root system shift and distinguish the 
accessions. By looking at these data, we established that most traits stabilized by the end of the 28 
DAS growth period (Figure 3D, Figure 3—figure supplement 2). Importantly, having imaged the 
plants both continuously and only at 21 DAS, we were able to confirm that these traits were not influ-
enced by continuous imaging and the associated luciferin watering (Figure 3—figure supplement 3). 
Time- lapse imaging of these six accessions proved the robustness of GLO- Bot running for 15 hr a day 
over several weeks, the ability of our image analysis pipeline to determine various root system traits 
over time, and that even a small subset of accessions showed substantial variation in RSA traits. In 
addition, the application of our newly developed imaging protocols to these data allowed us to opti-
mize experimental parameters, including luciferin watering speed and frequency, imaging frequency, 
and imaging time period. Those parameters were foundational to examine a larger, more variable 
population.

Natural variation in dynamic RSA traits is highly complex and polygenic
The GLO-Roots diversity panel
To explore the diversity of root architectures in the Arabidopsis species and define the genetic basis 
of these traits, we sought to apply the GLO- Roots method to a larger panel of curated accessions. 
We therefore transformed an initial set of 192 A. thaliana accessions with the ProUBQ10:LUC2o 
reporter for use with the GLO- Roots system (Rellán-Álvarez et al., 2015; Figure 4—figure supple-
ment 1A, B). These accessions comprise the extended GLO- Roots diversity panel, which originated 
from a densely sampled Swedish population (Long et al., 2013) and were supplemented with acces-
sions from extreme environments with high and low annual average precipitation (Fick and Hijmans, 
2017), as well as accessions with high and low sodium accumulation levels in the shoot (Baxter et al., 
2010). Ultimately, the GLO- Roots diversity panel, a set of 93 accessions, were selected for the GWA 
population (Figure 4ASupplementary file 2). This set balances genetic similarity and environmental 
variation by combining 72 Swedish accessions with 20 accessions from extreme environments. These 
lines were selected based on location, reporter expression strength, and the number of independent 
transformation events recovered to avoid insertion effects. Four Col- 0 control plants grew in different 
growth boxes to examine position effects (Figure 4—figure supplement 2). This population not only 
represents a foundational resource for describing phenotypic trait diversity in the Arabidopsis species, 
but can later be used to identify genes underlying this trait diversity over time, using the tool of GWA 
mapping.

color indicating each replicate. Root systems are arranged in order of median average angle of the root system 
from deepest in the upper left to shallowest in the bottom right.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Overview of the Growth and Luminescence Observatory for Roots (GLO- Roots) diversity 
panel.

Figure supplement 2. Growth and Luminescence Observatory for Roots (GLO- Roots) diversity panel rhizotron 
positioning.

Figure supplement 3. Raw vs. fitted values.

Figure 4 continued

https://doi.org/10.7554/eLife.76968
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Figure 5. Trait relationships among the Growth and Luminescence Observatory for Roots (GLO- Roots) diversity panel. (A) Principal component analysis 
(PCA) of nine fitted traits (i.e. fitted values) for the 93 accessions of the GLO- Roots diversity panel reveals traits influenced by time as the predominant 
source of variation within the dataset (PC1), while angle measurements and the depth- to- width ratio further distinguish accessions (PC2). (B) A 
correlogram of the fitted trait values at each time point, increasing left to right and top to bottom, further shows the negative correlations between the 

Figure 5 continued on next page
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Although GLO- Bot could image 96 rhizotrons in 24 hr, we decided to run it at half capacity in order 
to have time to respond and adjust to technical errors as they arise. To capture the breadth of RSA 
dynamics within the diversity panel, we imaged 48 rhizotrons on 1 day (Figure 4—figure supplement 
2, part 1) and the other 48 rhizotrons on the next day (Figure 4—figure supplement 2, part 2) from 
14 to 28 DAS (Figure 4B, Video 3, Figure 4—figure supplement 1C). We grew all 93 accessions at 
once and replicated the experiment six times. Next, using our image analysis pipeline, we focused on 
the nine root traits that distinctly separated RSAs in the subset of six accessions, and which encompass 
RSA at a broad scale (Supplementary file 1).

Growth of root systems in soil is likely to incur an experimental cost due to the greater variability 
in experimental conditions, compared to gel- based media, and the resultant increase in variability of 
the root traits measured. Furthermore, the size of the diversity panel we used required that biological 
replication be performed on separate dates, due to limits in the capacity of the automation pipeline. 
To account for these additional sources of variation, we developed an analysis pipeline that allowed 
us to summarize trait data for our replicated time course experiments. For each measured trait, we 
estimated ‘fitted values’ to account for replicate noise (Figure 4—figure supplement 3). Fitted values 
were calculated using a generalized linear mixed model for each trait using the R package MCMC-
glmm (additional information can be found in the Materials and methods ‘Trait processing’ section; 
Wilson et al., 2010; Mrode, 2014; Hadfield, 2010). The model provided an intercept and slope for 
each genotype which were used to calculate the expected values at 0, 48, 96, 144, 192, 240, 288, and 
336 hr after the start of imaging (equivalent to 14, 16, 18, 20, 22, 24, and 28 DAS). These fitted values 
were used for further analyses.

Root trait diversity and phenotypic relationships among the GLO-Roots 
diversity panel
Similar to the analysis of the first set of six accessions (Figure  3C), PCA of the GLO- Roots diver-
sity panel revealed that the first principal component captures trait variation over time (Figure 5A, 
Figure 5—figure supplement 1A), as well as traits that are strongly associated with time and, thus, 
developmental stage and plant size (Figure 5A, Figure 5—figure supplement 1B) such as the root 
system’s area (convexhull area), length (total length), and depth. The second principal component 
demonstrates that both the average angle of the root system and the average angle of new growth 
account for a large amount of root system variation (Figure 5A, Figure 5—figure supplement 1C, 
D). Average root angle and depth- to- width ratio are negatively correlated (Figure 5A, B), as demon-
strated by the accession San- Martin, which has the smallest depth- to- width ratio and the highest 
average root angle (i.e. most shallow) as well as Ale- Stenar- 64- 24, which has one of the highest depth- 
to- width ratios and lowest average root angles (Figure 5D). Additional data exploration and acces-
sion comparisons can be done using the RShiny App (https://tslarue.shinyapps.io/rsa-app/), which 
plots the vectorized root systems for all of the accessions. The raw data is available through Zenodo 
at https://doi.org/10.5281/zenodo.5709009. Accessions and replicate numbers with excessive back-
ground noise or other anomalies are identified in Supplementary file 3.

Further analysis of the traits via pairwise comparison at all time points not only allowed us to 
visualize existing correlations within traits over time, but also among traits (Figure 5B). Looking at 
average angle per day, we see that consecutive days show strong correlation across accessions (e.g. 
day 14 compared to day 16: Spearman’s rank correlation 0.99), whereas later time points are less 
well correlated with early time points (day 14 compared to day 28: Spearman’s rank correlation 0.56, 

depth- to- width ratio and the angle traits and displays the relationships between all nine traits at each time point. Correlations where p>0.01 have been 
crossed out with an ‘X’. While some traits remain stable over time, other traits change over time. The extent to which a trait changes varies between 
accessions. (C) In some accessions, the fitted angle of new growth (average angle per day) remains constant each day, while in others the angle of new 
growth increases or decreases over time. The accessions are ordered based on variability of average angle per day with similar angles to the left and 
strikingly different angles on the right. (D) Ale- Stenar- 64–24 and San Martin demonstrate contrasting root architectures, with opposite depth- to- width 
ratios and opposite average angles. (E) TDr- 18 and Ting- 1, on the other hand, are examples of accessions with constant and variable (respectively) 
average angle per day measurements.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Principal component analysis (PCA) for nine root traits describing root system architecture (RSA).

Figure 5 continued

https://doi.org/10.7554/eLife.76968
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Figure 6. Genome- wide association studies (GWAS) and climate correlations of root traits of the Growth and Luminescence Observatory for Roots 
(GLO- Roots) diversity panel. (A) Manhattan plot for average angle per day at 28 days after sowing (DAS). Black points indicate SNP positions that pass 
the Bonferroni threshold (solid line) at least once throughout the time series, as shown in the inset plots. Gray points are those in linkage disequilibrium 
(LD) with the significant SNPs. (B) Correlation between the average angle per day and the mean diurnal temperature range indicates the potential 

Figure 6 continued on next page
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Figure 5B). This suggests that the average angle of lateral root tips is a trait that changes over time 
with some accessions showing greater change than others (Figure 5C). Indeed, examining this trait 
across our 93 accessions reveals great diversity in how stable lateral root tip angle is across develop-
ment (Figure 5C). While many accessions have a consistent angle of new growth, such as TDr- 18 and 
San2 (Figure 5C, Figure 5E), others change their angle of new growth over time, such as TAA14 and 
Ting- 1 (Figure 5C, Figure 5E).

RSA traits are heritable and highly polygenic
We next wanted to investigate the genetic basis of RSA traits. Some traits, such as the angle measure-
ments, had high broad- sense heritability while others, such as total length, had low broad- sense heri-
tability (Supplementary file 5). While some of the low heritabilities could be due to the limitations 
of the experimental method of growth or trait measurement, these data indicate measurable genetic 
control over some traits, which led us to use GWA to identify potential causal loci. Using the fitted 
values, we conducted GWA analyses for all nine traits at each time point using the AraGWAS database 
SNP matrix and the program GEMMA (Zhou and Stephens, 2012; Togninalli et al., 2018). In total, 
29 SNPs were significant for at least one time point using Bonferroni multiple- test p- value correc-
tion (Supplementary file 4). These alleles also had a minimum allele frequency greater than 0.05. 
These SNPs highlight regions of the genome with 
elevated significance and the temporal nature of 
our data allows us to track the changes in signif-
icance over time (Figure  6A, Figure 6—source 
data 1). For example, when looking at average 
angle over time, we see a greater strength of 
association, as indicated by lower p- values over 
time, which likely corresponds to the stabilization 
of the trait (Figure  6A, Figure 6—source data 
1B). In contrast, we see the strength of the asso-
ciation decrease for depth- to- width ratios over 
time (Figure 6—source data 1B), which likely 
reflects that growth of root systems becomes 
constrained at later time points by the physical 
limits of the rhizotron. We gain confidence in the 
chromosomal regions identified by tracking the 

importance of root angle for surviving highly variable climates. (C) A world map showing mean diurnal range (black represents larger fluctuations) 
with the distribution of accessions (points). Points in (B) and (C) colored by cluster identity based on changes in average angle per day over time and 
computed by between- group average linkage hierarchical clustering with distance = 1.75, as shown in the heatmap (D). Heatmap depicts average 
angle per day for each day with blue indicating steeper angles and yellow indicating shallower angles. Changes in average angle per day divided the 
accessions into three clusters: the yellow cluster with consistently shallow root growth, the blue cluster with consistently deep root growth, and the red 
cluster with intermediate or changing root angles.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Manhattan plots and SNP development of all nine root system architecture (RSA) traits.

Figure supplement 1. Correlations between average climatic variables and root traits.

Figure 6 continued

Video 2. Root system architecture (RSA) growth of six 
Arabidopsis accessions over time.

https://elifesciences.org/articles/76968/figures#video2

Video 3. Root system architecture (RSA) growth of 
Growth and Luminescence Observatory for Roots 
(GLO- Roots) diversity panel over time.

https://elifesciences.org/articles/76968/figures#video3

https://doi.org/10.7554/eLife.76968
https://elifesciences.org/articles/76968/figures#video2
https://elifesciences.org/articles/76968/figures#video3
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significance over time and observing the slight enrichment of experimental p- values in our Q- Q plot 
distributions (Figure 6—source data 1).

Out of the 29 identified significant SNPs, four synonymous SNPs can be found within the coding 
sequence of two genes, eight were in intergenic regions, whereas the majority of SNPs were found in 
upstream- and downstream regions of genes, potentially affecting expression patterns (Supplemen-
tary file 4). It should be noted that the most significant SNP is not always the causal SNP. For this 
reason, Supplementary file 4 lists all of the genes within a 20 kb region surrounding the SNP (10 kb 
upstream and 10 kb downstream). The identification of many significant SNP associations suggests 
that RSA development is a polygenic trait.

Looking at the two traits with the highest heritability (Supplementary file 5), average angle 
(H2=0.45) and average angle per day (H2=0.31), we found 12 and 8 significant SNPs, respectively 
(Supplementary file 4). Interestingly, both traits revealed one common SNP upstream of a hypo-
thetical protein (AT3G42390) with 30% protein identity to a phospholipase D alpha 3 (At5g25370)
(Supplementary file 4). Furthermore, the only intragenic SNP for average angle per day was found in 
an intron of another hypothetical protein with 35% identity to a non- specific phospholipase C2. Phos-
pholipases are lipid- hydrolyzing enzymes that are known to play a role in signaling during plant devel-
opment, stress responses, and responses to environmental cues (Takáč et al., 2019). We identified 
SNPs in two genes encoding proteins that show similarity to phospholipases suggesting a potential 
role of phospholipids in adjusting root angles to local environments.

Root depth was associated with a SNP upstream of a gene encoding Cyclin A2;3 (AT1G15570; 
Supplementary file 4). This gene was previously found to play a role in auxin- dependent mitotic- to- 
endocycle transition that is involved in the transition from cell proliferation to cell differentiation in the 
Arabidopsis root meristem (Ishida et al., 2010). Thus, alterations in gene expression could influence 
root depth in certain Arabidopsis accessions.

The GWAS on the depth- to- width ratio yielded an intronic SNP in a P- loop nucleoside triphosphate 
hydrolases superfamily protein with Calponin Homology domain- containing protein (Supplementary 
file 4). This gene is expressed in the lateral root cap (http://bar.utoronto.ca/eplant/; Waese et al., 
2017) and changes in expression may influence root gravitropism leading to a more shallow root 
system. Future work will establish the molecular basis for the SNP- phenotype relationships identified 
here.

RSA traits of the GLO-Roots diversity panel significantly correlate with 
climatic variables
To gain insight into the relevance of the different root architectures of the GLO- Roots diversity panel 
in the natural environment, we correlated our nine root traits with published bioclimatic variables (Fick 
and Hijmans, 2017). We see the strongest correlations between these traits and climatic variables 
related to temperature (Figure 6—figure supplement 1). Specifically, average angle per day shows a 
notable correlation to mean diurnal temperature range (Pearson r=0.373, p=2.56 × 10–4; Figure 6B). 
This result indicates that accessions with shallow RSAs tend to grow in climates that exhibit larger 
changes in the daily minimum and maximum temperatures. Likewise, convexhull shows a positive 
correlation to mean diurnal range, albeit less significant (Figure  6—figure supplement 1). These 
data suggest that plants with shallow roots may actually grow better than those with deep roots 
in a more variable environment. Clustering of accessions by change in average angle per day over 
time divides the accessions into three groups: consistently shallow, consistently deep, and interme-
diate or changing root angle (Figure 6C, D). Interestingly the consistently shallow and consistently 
deep accessions segregate from each other in a global map, which is consistent with our finding that 
climate is likely to be an important variable determining the distribution of accessions with these traits 
(Figure 6C).

Discussion
Implementation of automation expands the number of individuals that can be phenotyped and the 
phenotypes that can be captured (Gehan et al., 2017). By automating the GLO- Roots system, we 
created GLO- Bot, a robotic platform that enables unprecedented insight into Arabidopsis root growth 
over time in soil and at developmental stages rarely observed. Careful design of the system to facilitate 

https://doi.org/10.7554/eLife.76968
http://bar.utoronto.ca/eplant/
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automated handling allowed us to maintain physiological relevance while increasing throughput and 
allowing for novel trait measurements.

Along with the automated imaging system, we developed an improved image analysis pipeline, 
GLO- RIAv2, for quantification of RSA. The previous image analysis program was semi- automated, and 
often needed intervention to define regions of interest. While this is feasible for end- point imaging 
with a small number of samples, it was not scalable with GLO- Bot. For automated image analysis, 
however, one of the biggest challenges was the combination of maximizing root luminescence signal 
intensity while decreasing background noise so that GLO- RIAv2 would only analyze true root signal. 
We saw a strong correlation between our traits extracted via our new image processing pipeline and 
those that were measured manually, demonstrating that our updates allowed for accurate examina-
tion of growth dynamics in both new growth and at a whole root system level. Recent progress in 
machine learning is demonstrating the opportunities within the field for segmenting out root and 
noise and could further improve accuracy (Wang et al., 2019; Smith et al., 2018). Whereas RGB 
imaging together with software tools like RootPainter has facilitated automated root system analysis 
in species with thicker roots (Smith et al., 2020; Bauer et al., 2022), bioluminescence still has advan-
tages with species with finer roots, like Arabidopsis, since it improves the contrast between the root 
and soil signal. Using transgenic lines homozygous for the luciferase transgene would lead to stronger 
signal and therefore better root detection. New advances in recapitulating a full bioluminescence 
pathway in planta (Khakhar et al., 2020) could provide an exciting alternative for increasing root 
luminescence signal and therefore simplifying image segmentation.

The automation of GLO- Roots allowed for imaging larger sample numbers, which enabled the 
visualization of root growth of different Arabidopsis accessions over time. At maximum capacity, GLO- 
Bot could image 96 rhizotrons within 24 hr. However, all experiments were run at approximately half 
capacity in order to facilitate the management of handling errors by the system. The biggest source 
of errors occurred during the return of a rhizotron back to its growth box, which we addressed by 
adapting the design of the holding bins. Further advances in robotics and in the precision with which 
components of the system are manufactured will likely improve the throughput further.

Our automated plant handling and image analysis pipeline allowed us to explore the importance of 
time and genetic diversity in driving changes in RSA. A set of six accessions that were homozygous for 
the luciferase reporter allowed us to image root systems every day with a high degree of replication. 
Such experiments also tested the robustness of the system and facilitated optimization of imaging 
parameters and watering times to extract root traits that reflect true differences in RSA. Nine root 
traits were automatically extracted through GLO- RIAv2 and showed striking differences even in this 
small subset of accessions. Our analysis of these data revealed that differences between accessions 
often only emerged over time, such as average root angle, which highlights the importance of quan-
tifying root traits over time and at these later developmental stages.

The GLO- Roots diversity panel provided access to a greater amount of genetic variation, but 
required changes in experimental design and data analysis methods. The GWAS ultimately led to the 
identification of significant SNPs associated with variation in six of nine root traits measured. However, 
given the polygenic nature of these traits, our ability to detect individual causal SNPs or peaks may be 
low. Additionally, our relatively small population size (93 accessions) challenges our ability to discover 
SNPs significantly associated with the traits (Gibson, 2012). Although a surprisingly rapid linkage 
decay in A. thaliana (Nordborg et al., 2005) allows within- gene trait mapping (Atwell et al., 2010; 
Exposito- Alonso et al., 2018), it will be ideal to follow up the SNPs identified above and other close 
variants through further analyses, such as accession- specific gene expression and complementation, 
knock- out and reporter gene assays (Ogura and Busch, 2015). Besides the analyses conducted in this 
study, the generated datasets present valuable resources for further studies related to the genetic 
analysis of the principal components to explore the phenotype space, multi- trait analyses, modeling 
of phenotypic variation across time, and structure- function modeling between RSA and water use.

The correlation of our nine extracted root traits to published bioclimatic data from the origin sites 
of the respective accessions reveals a significant correlation between average angle to mean diurnal 
temperature range. Thus, accessions with shallow RSAs tend to grow in climates that exhibit larger 
changes in the daily minimum and maximum temperatures reminiscent of desert- like climates. This 
fits with the known pattern that many plant species growing in the desert show rather shallow root 
systems with advantages including reduced energy input, increased ability to capture moisture from 

https://doi.org/10.7554/eLife.76968
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precipitation, and high nutrient availability in upper soil layers, which may improve survival in a more 
varied climate (Pierret et al., 2016; Schenk, 2008; Ogura et al., 2019).

Surprisingly, we found low or some non- significant correlations between the nine root traits and 
total annual precipitation, a factor we had initially used to select the accessions characterized in this 
study. This finding could be due to a variety of factors underlying the design of our study including the 
limited number of accessions analyzed, the specific selective pressures acting on Swedish Arabidopsis 
populations, where the majority of our characterized accessions originate (Long et al., 2013), and the 
well- watered conditions that we used to grow our plants. It may also be that annual precipitation is 
less important as a selective pressure acting on Arabidopsis root architecture compared to tempera-
ture. Indeed vapor pressure deficit (VPD), which is the driving force determining the rate of water loss 
during transpiration (Fricke, 2017), is exponentially related to temperature and modern crop plants 
appear to be particularly susceptible to elevated VPD (Lobell et al., 2014). To reliably link environ-
mental parameters to RSA responses, it will be necessary to survey our accessions in conditions similar 
to their native environment or in conditions replicating environmental stresses. This will ultimately 
expand our understanding of how root architectural traits relate to different climate parameters and 
how the root system will react to a warming climate, both in agricultural and in natural ecosystems.

Materials and methods
Growth system
Rhizotron design
As described in Rellán- Álvarez et al., 2015, rhizotrons were built with two sheets of 1/8” clear abrasion- 
resistant polycarbonate plastic (Port Plastics, Portland, OR, Product: MarkolonAR) and were water jet 
cut (AquaJet LLC, Salem, OR) into 15 cm × 30 cm rectangles with 14 small gaps running down each 
side ( clear_ sheets. dxf). Two spacers ( spacers. eps) were laser cut (Stanford Product Realization Lab) 
from 1/8” black cast acrylic (TAP Plastics, Mountain View, CA, and Calsak Plastics, Hayward, CA). 
Two rubber U- channels were cut into 29 cm long strips from Neoprene Rubber Trim, 5/16” Wide × 
23/32” High Inside (McMaster- Carr, Elmhurst, IL, #8507K33). Additional adaptations for automation 
included: beveling the top of each polycarbonate sheet to a thin 45°̊ angle using a belt sander. Half 
of the polycarbonate sheets had 2.5 mm holes drilled in 5/8” down from the top edge and 3/16” in 
from each side. The small holes were used to screw a 1/16” aluminum water jet cut hook, outer dimen-
sions 18 mm × 57 mm with a 13 mm diameter circle cutout ( rhizotron-  machine-  hooks-  13mm. pdf), to 
both sides of the sheet using 2×4 M3 stainless steel socket cap screws (McMaster- Carr, Elmhurst, IL, 
#91292A109). Not only did the hooks provide a way to pick up the rhizotron, they also were threaded 
through a rhizotron top ( rhizo-  bin-  top-  enlarged. pdf) cut (Pagoda Arts, San Francisco, CA) from 1/8” 
black acrylic, which served as a light shield and a bearing surface for the hanging rhizotron. The other 
half of the polycarbonate sheets had 8 mm holes drilled in centered at the same location and were 
used as counterparts to the sheets with tops and hooks.

Boxes and holders
Similar to Rellán-Álvarez et al., 2015, rhizotrons were placed in black polyethylene boxes with acrylic 
holders during plant growth and imaging. Modifications were as follows: 12”W × 18”L × 12”H black 
polyethylene boxes (Plastic- Mart, Fort Worth, TX, Part number R121812A) were outfitted with a top 
holder and inner divider system to grow 12 rhizotrons at a time. The inside dividers were composed 
of 1/8” black acrylic cut into five sheets ( bin-  b. pdf,  bin-  c. pdf, and  bin-  d. pdf), which interlock perpen-
dicularly with a large middle sheet ( bin-  d. pdf), as well as two smaller pieces ( bin-  b. pdf,  bin-  c. pdf) at 
each end. This divider system creates chambers, which isolate the rhizotrons from each other, thus 
preventing light affecting neighboring rhizotrons when one rhizotron is removed. Each bin has a bin 
top ( rhiz-  bin-  top-  enlarged. pdf), also cut from 1/8” black acrylic, has 12 cutouts arranged in two rows 
of six, where the rhizotrons sit. The cutouts have two vertical tabs, which were glued in using TAP 
Acrylic Cement (TAP Plastics, Mountain View, CA) and provide placement guides for proper rhizotron 
insertion. The bin tops had two posts in diagonally opposite corners, which were connected with 
sticky copper tape (McMaster- Carr #76555A641) placed on the underside of each bin top to create a 
conductive path that the robotic arm used to find each bin and calculate the location of each rhizotron. 
Every post was made from an M5 stainless steel button head screw (McMaster- Carr #92095A484), 
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35 mm long – 13 mm OD 18- 8 Stainless Steel Unthreaded Spacer for M5 screws (McMaster- Carr, 
#92871A276), 25  mm long – 10  mm OD 18- 8 Stainless Steel Unthreaded Spacer for M5 screws 
(McMaster- Carr, #92871A093), and an M5 stainless steel lock nut (McMaster- Carr #93625A200). The 
screw went through the larger spacer, through the bin top, through the smaller spacer, and everything 
was held together by the nut. Each post extended down and into a 10 mm hole precisely positioned 
at the edge of each black box.

All build files for the rhizotrons and holders can be found at https://doi.org/10.5281/zenodo. 
6694558.

Biological components
Six accessions
Bay, Col- 0, Est, Sha, Tottarp, and Tsu- 0 were transformed using the floral dip method (Zhang et al., 
2006) with the ProUBQ10::LUC2o reporter, which consists of the UBQ10 promoter region and first 
intron amplified from Col- 0 genomic DNA, the plant- codon- optimized LUC2 coding sequence, and a 
plasma membrane- localized mCherry coding sequence driven by the 35S promoter (additional details 
in Rellán- Álvarez et al., 2015). Positive transformants were selected under a fluorescent dissecting 
scope (Leica M165 FC) using the mCherry marker visible in the mature seed. Bay, Col- 0, Est, Sha, and 
Tsu- 0 seeds were carried through to the T3 generation. Tottarp was used in the T2 generation.

Diversity panel
A. thaliana accessions were ordered from the Arabidopsis Biological Resource Center (ABRC: 
CS78885; Supplementary file 2). For vernalization, plants were grown in pots filled with Pro- Mix PGX 
soil (Premier Tech, Canada) and placed in a growth cabinet with long day conditions (16 hr light, 8 hr 
dark) at 10°C and 50% humidity using fluorescent bulbs with a light intensity of about 200 μE m−1 s−1. 
Upon flowering, plants were transformed as described above and then moved to a 22°C greenhouse 
with long day conditions and 150–250 μE m−1 s−1 light intensity. Transformation of the 192 initial acces-
sions yielded 187 positive T1 lines, 171 of which could be confirmed in the T2 generation. Ten positive 
transformants from each of the T2 lines were screened on plates for strong luminescent signal once 
primary root length reached approximately 1.5 cm, usually around 2 weeks, but up to 26 days. Seed-
lings with strong root signal were given a line identification letter, then transferred to pots, and grown 
in the 10°C growth cabinet until inflorescences emerged (27–109 days after transfer to soil depending 
on the accession), at which point all plants were photographed and moved to a 22°C greenhouse until 
seeds could be harvested. Ultimately, 148 lines yielded at least three independent lines with strong 
root luminescence. Before starting an experiment, seeds were again screened for positive transfor-
mants using the mCherry seed coat marker.

Growth method
Rhizotron preparation
Rhizotron preparation was done as described in Rellán- Álvarez et al., 2015, with minor modifications: 
a polycarbonate plastic sheet with 8 mm holes and a sheet with the black rhizotron top and metal 
hooks were each laid on the table. Since the acrylic rhizotron top extends from the top in every direc-
tion, those sheets were laid down on the building surface with the acrylic piece and hooks lying just- off 
the edge of the surface and the screws pointing up, which ensured that the sheet lay flat. To prevent 
excess buildup of soil, the spacers were inserted into the sheets with 8 mm holes, and ‘flags’ (spacers 
modified with small pieces of material at the top to cover the bottom part of the hook and screw,  
Flags-  final. eps) were inserted into the sheets with the attached tops. Using an electric paint sprayer 
(Wagner Spraytech Control Spray Double Duty HVLP Sprayer Model #0518050), a mist of water was 
applied to the sheets. Peat based Pro- Mix PGX soil (Premier Tech, Canada) was gently sifted over the 
sheets using a 2 mm sieve (US Standard Sieve Series N ̊ 10) and excess soil was gently shaken off. The 
mist, sift, shake procedure was done for a second time, which creates a two- layer thick surface of soil 
thin enough to see a small amount of light through when held up to a lightbulb or window. To prevent 
soil from falling out, a folded and trimmed piece of paper towel was moistened then placed at the 
bottom of each rhizotron. The spacers and flags were removed and the flags were replaced with clean 
spacers. The two sheets are carefully placed together and rubber U- channels were slipped on to each 
side. A small handful of sifted soil was placed into the groove in the rhizotron top and gently pushed 
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down. Completed rhizotrons were hung in the boxes and, due to the increased size of the boxes, 3 L 
of water were added to the bottom of each box.

Sowing and growth
Two transfer pipettes (each ~2 mL) of Peters Professional 20- 20- 20 General Purpose fertilizer were 
added to each rhizotron immediately after building. Fertilized rhizotrons in filled boxes were covered 
and left to soak overnight. Seeds were stratified for 2 days at 4°C in distilled water. Three seeds 
were sown in the center of each rhizotron using a p200 pipette (Eppendorf) and a unique barcode 
was placed on the rubber U- channel. Rhizotrons were sprayed down with water and a clear acrylic 
sheet was placed on top of the box then sealed with packing tape to create a humid environment. 
Three days after sowing, clear sheets were unsealed and rhizotrons were watered with two transfer 
pipettes of water. The following day, the clear sheets were removed and rhizotrons were watered 
again. Rhizotrons were watered with two pipettes of water until 9 days after sowing. Plants were 
thinned to one central plant 5 days after sowing. Plants were grown under long day conditions (16 hr 
light, 8 hr dark) at 22/18°C (day/night) using LED lights (Valoya, C- series N12 spectrum) with a light 
intensity of about 130 μE m−1 s−1. For the six accessions, plants were grown until 9 or 21 DAS and then 
were imaged every day until 31 DAS. Five replicates of each accession were grown for each treatment 
and plants were watered with luciferin every 6 days. For the diversity panel, the population was grown 
up, as a whole, six times, thus having temporal population replicates rather than internal replicates in 
order to reduce variation effects of growth condition. Since we imaged the set of 93 accessions in two 
parts (parts 1 and 2), we mostly split the accessions alphabetically and added two Col- 0 controls per 
imaging session. The rhizotrons of each imaging session were then swapped once between boxes to 
avoid rhizotron building effects. For the second imaging session (part 2), we made sure to include a 
Col- 0 control to the bin that grew in the shelf outside of GLO- Bot (part 2, Bin D) to examine position 
effects. After the first randomization, accessions were always planted in the same locations relative 
to each other (Figure 4—figure supplement 2) so the population was treated identically in each 
replicate. Plants were grown on shelves in the growth chamber next to the imager until 14 DAS. 
Subsequently, they were transferred into the imager and imaged every other day from 14 to 28 DAS 
with luciferin additions every 6 days.

Plant imaging
On each imaging day (timing depending on experiment), GLO- Bot loaded each rhizotron into the 
imager then closed the door and triggered μManager to capture 5 min exposures on each side of the 
rhizotron. Inside the imaging system, there are two cameras on top of one another, with one taking an 
image of the top part of the rhizotron and the other, the bottom part of the rhizotron. After one side 
was imaged, the rhizotrons were rotated using a Lambda 10- 3 Optical Filter Changer (Sutter Instru-
ment, Novato, CA) and the other side of the rhizotron was imaged using the top and bottom camera, 
yielding four images per rhizotron. If it was the first imaging day or a designated luciferin day (every 
6 days), GLO- Bot added 50 mL of 300 μM D- luciferin (Biosynth International Inc, Itasca, IL) to the top 
of each rhizotron immediately before loading the rhizotron into the imager. Before every replicate, a 
blank image was taken to account for background noise within the imager.

Image analysis
Initial root image preparation to combine and align the four raw images was done as described in 
Rellán- Álvarez et al., 2015. Initial background noise removal was done using  remove. background. ijm. 
By manually opening the blank image for the respective replicate and then running this macro, the 
open blank image will be subtracted from all of the files in the folder being processed by the macro. 
The ImageJ plugin Template Matching and Slice Alignment was run as instructed in the manual to 
register all root images. Images are then run through the macro  denoise_ overlay. ijm to remove addi-
tional noise and add images together, which maximizes signal intensity throughout the root by: (1) 
subtracting 1.5 from all pixels to remove pixels with low values; (2) multiplying all values by 3, which 
greatly amplifies pixels with high values; (3) subtracting 8 from all values, which again removes pixels 
with low values (i.e. those that did not get amplified); (4) running the ImageJ command Despeckle, 
which replaces every pixel with the median value in its 3×3 neighborhood (Schindelin et al., 2012; 
Schneider et al., 2012); (5) setting and using a threshold to generate a binary image; (6) running the 
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ImageJ commands Despeckle, Erode, and Dilate to further remove small pieces for noise; (7) using the 
ImageJ command Analyze Particles to get rid of small particles; and (8) merging the cleaned image 
with that of the previous day using the ImageJ command Add Create. This macro can be adjusted 
using the subtract- multiply- subtract sequence to change how signal intensity is amplified by manually 
testing the values on a handful of images.

Next, macros  invert. ijm and  tip_ tracking. ijm are run to prepare images for GLO- RIAv2 (https://doi. 
org/10.5281/zenodo.5574925). This macro works by: (1) opening two consecutive images; (2) using 
the ImageJ command Dilate twice on the image from the earlier time point; (3) using the ImageJ 
command Subtract Create to subtract the earlier day from the later day. By dilating the earlier root 
system, we are able to ensure complete subtraction from the later time point and, therefore, only 
analyze the new root growth. Again, the thresholding in the new growth isolation can be refined if 
needed. Images were then run through GLO- RIAv2 and downstream analysis was performed in R (R 
Development Core Team, 2019) for additional cleanup and calculating traits. Initial formatting and 
combination of GLO- RIA output files is done using 1- format.Rmd. This file uses the raw output, the 
‘key’, which contains information about the plants, and the experimental start date to calculate rela-
tive imaging times (very important for comparing multiple experiments), extract identifying informa-
tion for each rhizotron, and, for the local files, calculate the root angles with respect to gravity using 
trigonometric calculations based on whether the raw output is greater than or less than 90°. Although 
we re- calculate the angles from 0 to 90°, having the 0 to 180° angles tells us which way the vector 
is pointing and which trigonometric function should be used to calculate the end point for the root 
segment. It should be emphasized that angles are with respect to gravity and not with respect to the 
parent root. Formatted files are run through 2- clean.R to remove stray particles. This process works 
by (1) computing the distances between all root x- y points in an image; (2) using hclust(method = 
“single”) to cluster those distances; (3) split the cluster tree into two groups using cutree(); (4) calcu-
lating the distance between the groups and determining if it is greater or less than the predetermined 
proximity maximum; (5) if the distance is smaller than that distance the cluster is kept, if it is larger 
than the distance, cluster with the larger minimum distance to the center- x is kept and the other 
cluster is further examined; (6) in the cluster being examined, the cluster is again tested for whether 
the distance between the clusters is far too large (nearly twice that of the initial proximity maximum) 
or whether there are less than four points in the cluster, which would indicate the cluster is likely noise. 
If either of these are true, the cluster is discarded. If not, the cluster is further examined to test if the 
points are linear, which would indicate the cluster could be a root segment. The above sequence is 
done for 1 day, then the next day is added in and the process begins again, and this continues until 
only the ‘true root’ segments remain. Parameter adjustments in this file primarily depend on the 
strength of the root signal and can be optimized through trial and error. The 2- clean.R script outputs 
a text file describing which clusters were kept and removed, a pdf for each rhizotron showing all of 
the removal steps, two csv files,  clean_ removed_ points. csv and  clean_ true_ root. csv, which list all of 
the points that were either kept or removed, as well as two initial trait files:  clean_ ROIs. csv and  clean_ 
traits. csv. Having these ‘true root’ segments allows for calculation of traits at the new growth level as 
well as the whole root level. Some of these calculations are done during the root cleaning process, 
while others are re- calculated later in 3- summarize_traits.Rmd.

Images were manually curated to eliminate those with very high levels of noise or from occasional 
camera malfunction. Additionally, phosphorescent (‘glow- in- the- dark’) stars in the upper right corner 
of some images were manually cropped out. Initially, these stars were placed in the images to aid 
image alignment, but instead generated too much noise. For the GLO- Roots diversity panel, a total 
of 34 images were removed (Supplementary file 6). Those images were replaced by an image of the 
previous day to ensure the correct number of images for GLO- RIAv2 analysis.

Trait processing
Raw trait measurements were converted into single values for each genotype in the software R (R 
Development Core Team, 2019) using the script mcmcglmm_best.R. This script is run for each trait, 
and the user inputs the raw phenotypic data for each trait. Several models were tested, including a 
second- order polynomial for time, different error correction factors, and models with and without 
kinship- informed random factor. Each model was examined for parameter convergences using the 
deviance information criteria (DIC), a Bayesian model version of Akaike information criterion (AIC). 

https://doi.org/10.7554/eLife.76968
https://doi.org/10.5281/zenodo.5574925
https://doi.org/10.5281/zenodo.5574925


 Tools and resources      Plant Biology

LaRue, Lindner et al. eLife 2022;11:e76968. DOI: https://doi.org/10.7554/eLife.76968  21 of 26

The selected model was chosen based on speed, simplicity, and generalizability. It should be noted 
that some traits may benefit from a higher order function. The final model had the form:

 y = β0 +
(
β1 + ugenot

)
t + ugenoi + urep + e  

where the trait (y) and time (t) were fitted as fixed effects, genotype (ugenoi), replicate (urep), and the 
time and genotype interaction (ugenot) were treated as random factors. The effects capture the average 
deviation for each genotype from the mean of the population. The script runs the data through a 
null model, which is a model run with no parameters and provides the baseline comparison for future 
models using the same input data, and then runs the previously described mixed model to estimate 
fixed effects by running 1,000,000 iterations in a Monte Carlo Markov chain (MCMC) and 200,000 
burn- in using the MCMCglmm R package (Hadfield, 2010). Since MCMCglmm utilizes an MCMC 
walk, the model has inherent stochasticity and can produce slightly different values each time it is run. 
For reproducibility, we set a ‘seed number’ for the script then ran the model three times for each trait 
then selected the model with the best DIC.

Once the model is fit, we extract the genotype- specific parameters which capture differential 
starting values of a trait and differential trajectories over time. With these intercept and slope param-
eters, we can calculate the value of the trait for each genotype at any desirable time point, to under-
stand the genotype’s trait behavior. We do this for the time points 0, 48, 96, 144, 192, 240, 288, and 
336 hr to match our imaging frequency. These fitted genetic values are termed our ‘fitted values’: the 
coefficients (intercept and slope) as well as the expected value at each time point for each genotype. 
Broad- sense heritability was calculated using standard approaches in MCMCglmm (Hadfield, 2010), 
which essentially quantify variation on the trait trajectories associated to genotype relative to the total 
(Hadfield, 2017).

In addition, once we extracted genotype- specific values of each trait (either the intercept or slope 
coefficient or the predicted value at a time point), we conducted GWAs using GEMMA and the 
AraGWAS database SNP matrix (Zhou and Stephens, 2012; Togninalli et al., 2018). GEMMA was 
run as a linear mixed model (lmm) and with a kinship matrix to correct for accession relatedness. Only 
SNPs with a minimum allele frequency greater than 0.05 were examined. Bonferroni threshold, which 
was calculated using the number of linkage blocks within our population as computed by PLINK, was 
used as the significant threshold (0.05/113831 LD blocks). Manhattan plots were generated in R.
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Data availability
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org/10.5281/zenodo.5574925. Image analysis pipelines and scripts are available through Zenodo, 
DOI: https://doi.org/10.5281/zenodo.5708430. RShiny App for exploring root system architecture of 
the six accessions is available through Zenodo, DOI: https://doi.org/10.5281/zenodo.6757675. RShiny 
App for exploring root system architecture of the diversity panel is available through Zenodo, DOI: 
https://doi.org/10.5281/zenodo.5708422. Imaging data and images are available through Zenodo, 
DOI: https://doi.org/10.5281/zenodo.5709009. General code for software operating robotics avail-
able: GitHub: https://github.com/rhizolab/rhizo-server. Rhizotron laser cutting files are available 
through Zenodo, DOI: https://doi.org/10.5281/zenodo.6694558. Previously published datasets used: 
WORLCLIM2: Fick SE, Hijmans RJ, 2017, https://worldclim.org/, https://doi.org/10.1002/joc.5086.
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