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Abstract
Facial width-to-height ratio (fWHR) has been proposed as a sexually dimorphic signal in

humans that develops under the influence of pubertal testosterone (T); however, no studies

have examined the association between fWHR and T during the phase in which facial

growth is canalized—adolescence. In a sample of adolescent Tsimane males, we evaluate

the relationship between T, known T-derived traits (i.e. strength and voice pitch), and cra-

niofacial measurements. If fWHR variation derives from T’s effect on craniofacial growth

during adolescence, several predictions should be supported: 1) fWHR should increase

with age as T increases, 2) fWHR should reflect adolescent T (rather than adult T per se), 3)

fWHR should exhibit velocity changes during adolescence in parallel with the pubertal spurt

in T, 4) fWHR should correlate with T after controlling for age and other potential confounds,

and 5) fWHR should show strong associations with other T-derived traits. Only prediction 4

was observed. Additionally, we examined three alternative facial masculinity ratios: facial

width/lower face height, cheekbone prominence, and facial width/full face height. In contrast

to fWHR, all three alternative measures show a strong age-related trend and are associated

with both T and T-dependent traits. Overall, our results question the status of fWHR as a

sexually-selected signal of pubertal T and T-linked traits.

Introduction
Animals have evolved mechanisms to detect, decode, and act on signals conveying fitness-rele-
vant information about others [1]. Difficult-to-fake signals are especially valuable to receivers
because they generally convey honest information about the signaler’s condition [2,3]. A subset
of these honest signals—sexually-selected, dimorphic signals—are thought to convey genetic-
quality information to potential mates and competitors [4–6]. In humans, faces may serve as
an especially rich site for such signals [7–11].

In recent years, facial width-to-height ratio (fWHR) has been proposed as one such sexu-
ally-selected signal in humans [12,13]. Proponents of this idea suggest that men’s fWHRs are
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developmentally mediated by testosterone (T), independent of body size [14]. Therefore, indi-
viduals sensitive to fWHR are able to make useful predictions about other traits associated with
T, including strength, aggression, and dominance [15,16]. In support of this correlational
premise, a number of studies have found associations between adult men’s fWHR and per-
ceived likelihood of aggression, dominance, and prosocial behavior [17–22]; actual rates of
aggressive and prosocial behaviors [23–27]; success in athletics, politics, and business
[17,12,28–32]; and with T itself [16]. Furthermore, these behavioral traits (i.e., aggressive and
other social behaviors) are linked to T [33–35] and are sexually dimorphic themselves [36,37],
thus supporting the notion that fWHR may be affected by T as well, and hence provide useful
predictive information about other T-associated traits.

In spite of these suggestive correlations, empirical evidence that fWHR is a signal of T and
T-derived traits is mixed. Several studies—including one large-sample, multi-ethnicity study—
found no evidence of sexual dimorphism in adult fWHR [38–40]. Other research has failed to
show evidence for an association between adult fWHR and a number of known T-derived traits
[40–42]. Several reasons have been proposed to account for the inconsistencies in research
findings [39]: 1) Relatively small and university-based samples may have been subject to sam-
pling biases (e.g. [12]). 2) Variation in fWHR across ethnic groups in the same sample may
obscure sexual dimorphism in fWHR [39,43]. 3) The age- or sex-dependent presence of facial
fat may conceal variation in craniofacial dimensions [38,44–45].

We evaluate whether fWHR is a sexually-selected signal by addressing these and other
important gaps in the current literature. First, all human male secondary sexual characteristics,
including, for example, masculinized voices and greater muscle mass [46–48], change dramati-
cally during adolescence. Many of these changes are spurred by increases in endogenous T,
beginning in early puberty [49,50]. Likewise, craniofacial growth is canalized during this time
[14,43,51], changing little in response to subsequent variation in adult T levels. Therefore, T’s
principal effect on fWHR necessarily occurs before adulthood, and fWHR ought to reflect T at
the time of its development. We therefore examine the associations between fWHR, T-derived
traits, and T itself during adolescence. By targeting an adolescent population, we also address a
corollary issue in the study of facial masculinity: Masculinity is usually operationalized by
dimensions that differ between adult males and females; thus, in the literature on facial shape,
“masculinity” is often de facto defined in a way that is not only dependent on male facial
growth trajectories, but also on female facial growth trajectories (e.g. [52,53]; cf. [54]). In the
present study, we specifically target T-dependent male facial growth. We do so because the sup-
posed signal value of “facial masculinity” is typically argued to rest on its positive correlation
with T, not on its inverse correlation with the hormonal drivers of female facial growth. In
other words, sexual dimorphism tautologically is defined by the phenotypes of bothmales and
females and, therefore, cannot serve as a proxy for the hormone profile of only males (see also
[55]).

A second insufficiency in the current literature is that it has focused primarily on wealthy
Westernized populations (e.g. [12,14,17,23,40,42,56]). However, if fWHR is influenced by
pubertal T, the causal relationship between the two ought to be cross-culturally observable.
More importantly, because T compromises immune function [57], its developmental effects
should be sensitive to surplus immune and energetic capacity [58,59]. The ontogenetic pro-
grams shaping facial growth almost certainly evolved in environments where energetic and
immune stresses were significant, and studying their operation under similar circumstances
provides superior ecological validity. Thus, we focus on adolescent Tsimane males, who belong
to an indigenous population living in the Bolivian Amazon under energetically and immuno-
logically stressful conditions.

fWHR and Pubertal Testosterone
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Third, several studies have noted ethnic differences in facial bone structure [43], which may
introduce bias in multi-ethnic samples [39]. The Tsimane represent a homogenous population,
free from any potential confounds generated by inter-ethnic variation.

Fourth, several studies have shown that BMI is positively associated with fWHR [38,39,44],
suggesting that facial fat may obscure variation in craniofacial dimensions and should be con-
trolled in analyses. However, because BMI also confounds fat with muscle mass, we use an ado-
lescent-specific adiposity algorithm in order to better control for differences in body fatness.

Finally, we include three other candidate facial-masculinity ratios in addition to fWHR that have
been used in previous research: the ratio of facial width to lower face height (fWHR-lower; [39]),
cheekbone prominence [39,52,60], and the ratio of the lower face height to full face height (lower/full
face height; [39,52,60]). fWHR-lower and cheekbone prominence are smaller in adult men compared
to women; whereas lower/full face height is larger among adult men as compared to women [39].

If fWHR, fWHR-lower, cheekbone prominence, and lower/full face height are honest indi-
cators of pubertal T, several predictions should be supported:

1. Because male fWHR should develop during adolescence as T increases, fWHR should show
a linear association with both age and T.

2. Like other secondary sexual characteristics (e.g., vocal fundamental and formant frequen-
cies; [47]), fWHR should show evidence of a growth spurt, exhibiting two distinct features:
a non-linear, sigmoidal growth pattern and a peak velocity, both linked with the develop-
mental spurt in T.

3. fWHR should be positively correlated with other T-mediated traits during adolescence, such
as upper-body strength and vocal fundamental frequency (referred to here as voice pitch).

4. The relationships between fWHR, T, and T-mediated traits (strength and voice pitch)
should remain significant after controlling for age as the pace of maturation will vary
among individuals of the same age.

5. These relationships should also survive controls for potential spurious variables, such as adi-
posity and height.

Methods
To address these predictions, T, adiposity, upper-body strength, voice pitch, height, and age
were measured in peri-adolescent subjects.

Participants
Participants consisted of 91 peri-adolescent Tsimane males aged 8–23 (M = 13.8; SD = 3.5; see
[47], Table 1, for N’s by age) as part of the Tsimane’Health and Life History Project (final N
after exclusions was 75, see Data Analysis, below). The Tsimane are an indigenous group living
in the Amazonian lowlands of Bolivia and practice foraging-horticulture with relatively few
calories derived from market sources [61–63]. Because of significant pathogen loads and a lim-
ited food supply, Tsimane ecology more closely resembles the environment to which humans
are adapted than do Westernized environments [63–65]. Data were acquired with the assis-
tance of an interpreter and a local assistant.

Ethics statement
All procedures for this study (including consent) were approved by the University of Califor-
nia, Santa Barbara Institutional Review Board (IRB). Procedures were also approved by the
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Tsimane Government (Gran Consejo Tsimane), village leaders, parents, and study participants.
Because many Tsimane do not read or write, parent and participant consent was verbal. Con-
sent was documented on a separate participant list.

Participants’ ages were estimated using participants’ stated birth date and calendar age,
which were checked against the Tsimane Health and Life History census. When calendar age
and birth date were in conflict (N = 8; conflicting age estimates differed by 2 years for 2 partici-
pants and 1 year or less for all other participants), the census age was used (see [47] and [62]
for detailed age-assignment methods). Because the onset and length of adolescent development
can vary widely across individuals and populations [46], and because T does not peak until
early adulthood [66], a wide age range was used to capture the full developmental range of
somatic and endocrine variation.

Anthropometrics
Anthropometric measures were collected using standardized methods, whereby measurements
were taken from the right side, repeated twice, and averaged for analysis [67,68]. Adiposity was
measured with a Harpenden caliper by combining tricep, subscapular, and suprailiac skinfold
thicknesses using Slaughter’s adolescent-specific algorithms [69]. Strength was calculated as a
standardized average of handgrip strength (via pneumonic hand dynamometer) and as flexed
bicep size (via tape measure): an experimentally validated proxy for overall strength [10,70,71].

Acoustic measurement and analysis
Voice samples were recorded in mono using a Sony PCM-M10 digital audio recorder (44,100
Hz sampling rate and 16-bit quantization). A headset-mounted Audio-Technica lavalier

Table 1. Zero-order (upper right triangle), and partial correlations controlling for age (lower left triangle).

fWHR fWHR-
lower

Cheek-bone Prom-
inence

Lower/ Full Face
Ratio

Age T Adiposity Strength Height Voice
Pitch

fWHR - .44** -.08 -.04 -.03 .13 .18 .04 .04 -.12

fWHR-lower .50** - .59** -.63** -.55** -.52** -.22† -.63** -.61** .54***

Cheekbone
Prominence

-.09 .52** - -.41** -.33** -.31** -.25* -.38** -.38** .31**

Lower/Full Face
Ratio

-.03 -.43** -.27* - .64** .57** .40** .67** .69** -.57***

Age - - - - - .82** .26* .86** .86** -.78***

Testosterone .28* -.13 -.06 .09 - - .26* .86** .86** -.76***

Adiposity .20* -.09 -.19 .32** - .33** - .43** .39** -.30**

Strength .12 -.36** -.18 .32** - .54** .42** - .95** -.84***

Height .14 -.32** -.19 .36** - .53** .34** .82** - -.83***

Voice pitch -.24* .20† .08 -.17 - -.36** -.19 -.52*** -.50*** -

Mean 1.67 1.29 1.25 0.59 13.84 50.16 18.96 - 146.50 219.27

Standard deviation 0.08 0.07 0.09 0.03 3.48 38.16 6.44 - 15.93 50.16

Note. fWHR: facial width-to-height ratio, i.e. facial width/mid-face height; fWHR-lower: facial width/lower face height; lower/full face height: the ratio of the

lower face height to the full face height; T: testosterone.
†�0.10

*p<0.05

**p<0.01

***p<0.001.

doi:10.1371/journal.pone.0153083.t001
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microphone was positioned 5 cm from the mouth for each participant. For the recording, par-
ticipants named each different object in five photographs. Recordings were saved as high-qual-
ity uncompressed linear PCM.wav files. Recordings were measured for mean fundamental
frequency using Praat voice analysis software (version 5.1.37). Praat’s default settings were
retained for all analyses. For additional detail see [25].

Testosterone assays
Testosterone levels were assessed via 1-mL salivary samples passively drooled into polystyrene
cryotubes. The saliva was relatively bubble-free, and to prevent contamination, participants
washed their mouths prior to collection. To preserve the samples in transit, cryotubes were
stored in liquid nitrogen, shipped to the University of California Santa Barbara on dry ice, kept
frozen at -80 degrees C, and finally shipped on dry ice for analysis at Salimetrics LLC (State
College, PA).

Although T typically has a diurnal rhythm in adult males, constraints on participants’
schedules meant that testing was conducted both in the morning and the afternoon. However,
despite the range in testing times, T was not significantly associated with time of day (see [25]
for further detail). Several factors may explain this. First, diurnal patterns do not emerge in
adequately-nourished males until middle-adolescence [72]. Furthermore, males in populations
with greater environmental stresses and delayed development might initiate diurnal cycles
even later in life: research amongst the Ache—a Paraguayan group living in similar ecological
conditions to the Tsimane—shows that peak AM:PM T ratios do not emerge until males are in
their thirties [73]. Second, approximately 85% of the T samples were collected at least four
hours after participants had awakened, by which time T would have stabilized even if it was
diurnally rhythmic [72].

Assays were executed in duplicate by Salimetrics LLC using a sensitive competitive enzyme
immunoassay protocol, and analytes were measured in picograms per milliliter. The average
intra-assay and inter-assay coefficients of variation were 4.6% and 9.8% respectively. Salivary
free T is strongly correlated with serum free and total T [74,75]; however, because salivary T is
lower than serum T, the iron-binding glycoprotein transferrin was also assayed during analysis
(M±SD = .91±0.89, range: 0.08–5.0) to adjust for potential blood contamination in partici-
pants’ saliva [76].

Facial measurement
To obtain measures of fWHR, high-resolution, front-facing color photographs were taken with
neutral expressions. The head was positioned in the medial-sagittal plane. Facial landmarks
(e.g., lowest point of the chin along the facial edge) were marked on the photographs by three
research assistants using the image-editing software GIMP (see Fig 1); the research assistants
neither knew each other, the participants, nor were they aware of the hypotheses. Assistants
recorded the x-y coordinates for each landmark twice, then all coordinates were averaged (in
total, six x-coordinates, six y-coordinates per landmark) to establish the final landmark coordi-
nates (Cronbach's alpha = .88). Facial measurements were calculated by inputting the endpoint
coordinates into the Pythagorean Theorem (e.g., total face height comprises the total distance
from the center of the hairline to the lowest point of the chin). The Pythagorean Theorem
allowed us to accurately capture the full length of a feature by accounting for both its vertical
and horizontal components, which is helpful when measuring features prone to fluctuating
asymmetry (e.g., nose length) or features that do not lay perpendicular to the sagittal plane
(e.g., eyes). In accordance with previous research (e.g., [77,78]), final feature measurements
were standardized using inter-pupillary distance.

fWHR and Pubertal Testosterone
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We calculated fWHR by replicating the method of Carré & McCormick [12]: bi-zygomatic
breadth divided by the height of the face's midsection from the center of the face at the middle
of the eye brows to the center of the upper lip (see Fig 1 for individual points and Fig 2 for facial
ratios). Our three additional facial masculinity ratios are defined as follows: 1) facial width/
lower face height (fWHR-lower) is the bi-zygomatic breadth divided by the height of the lower
face (i.e. from the center of the face at the middle of the eye brows to the bottom of the chin;
[39]); 2) cheekbone prominence is the bi-zygomatic breadth divided by the width of the face at
the corners of the mouth [39,52,60]; and 3) lower/full face height is the height of the lower face
divided by the full face height (the center of the hairline to the bottom of the chin; [39,52,60]).

Data analysis
Participants were excluded from analysis for several reasons: 1) 6 participants’ saliva were dis-
carded due to a damaged liquid nitrogen tank. 2) Outliers (with values greater than 3SDs from
the mean) for transferrin (N = 3) and T (N = 1) were removed, 3) 6 participants’ lacked a pho-
tograph (due to a malfunctioning camera battery). The final N after exclusions was 75 (ages 8
to 23).

Fig 1. Facial landmarks used to derive facial masculinity ratios.

doi:10.1371/journal.pone.0153083.g001
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For regression analyses, T, height, strength, voice pitch, and age were log-transformed to
match Pearson’s correlation assumption of normality. Variance inflation factors (VIFs) were
used to examine multicollinearity in multiple regression, which were less than 6.0 for all
models.

CurveExpert Professional software (version 2.2.0) was used to fit seven candidate non-lin-
ear, sigmoidal models to the pattern of age-related change in facial masculinity ratios in order
to determine the presence of a growth spurt. Two measures were used to determine a best-fit
model: Akaike Information Criterion-corrected (AICc; [79]) and the coefficient of determina-
tion (R2) from the linear model. AICc is used as the basis for model selection by identifying
whether additional parameters (i.e., greater model complexity) are justified by the increase in
model fit. In other words, AICc discourages overfitting. Lower AICc is preferred, and a general
rule of thumb (with a sample size less than 256) for selecting between two models A and B is |
AICcA−AICcB|> 6.0 [80].

Fig 2. Facial masculinity ratios (a/b) by age, testosterone, and strength.

doi:10.1371/journal.pone.0153083.g002
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Results
The following analyses were designed to evaluate whether fWHR (and the three other facial
masculinity ratios) are sexually-selected signals in human males.

(a) Does male fWHR (and other facial masculinity ratios) change with age and T during
adolescence?

Zero-order correlations showed that fWHR is not positively associated with age (r = -0.03,
ns) nor with T (r = 0.13, ns) during male adolescence. In contrast, all three other facial mascu-
linity ratios—fWHR-lower, cheekbone prominence, and lower/full face ratio—revealed signifi-
cant linear associations with age (r = -0.55, p<0.001; r = -0.33, p<0.01; r = 0.64, p<0.001,
respectively), and with T (r = -0.52, p<0.001; r = -0.31, p<0.01; and r = 0.57, p<0.001, respec-
tively). See Table 1 (upper right triangle) and Fig 2.

(b) Does male fWHR (and other facial masculinity ratios) show evidence of a growth spurt,
in temporal contiguity with T’s developmental spurt?

First, T itself showed evidence of a developmental spurt: The best-fit sigmoidal model [Mor-
gan-Mercer-Flodin (MMF); see [47]] demonstrates an AICc of 470.7 (R2 = 0.69), whereas the
linear model is 483.7 (R2 = 0.62), for an AICc difference of 13. Using the MMF, the peak veloc-
ity for T occurs at age 14.2 in this sample (by comparison, peak velocity is 12.4 for height and
13.3 for voice pitch; see [47]). There was no difference in AICc between the linear model and
the MMF (nor any of the other candidate sigmoidal models) for fWHR (-220.67 vs. -216.63),
fWHR-lower (-473.79 vs. -470.35), cheekbone prominence (-413.73 vs. -411.19), and lower/full
face ratio (-644.85 vs. -644.56). See Fig 3.

(c) Do male fWHR (and other facial masculinity ratios) correlate with other T-dependent
traits, namely upper-body strength and voice pitch?

Fig 3. Lines of best fit for testosterone, strength, voice pitch, height and fWHR Note. Testosterone,
strength, voice pitch, and height were best fit using non-linear sigmoidal models (see [47] for data on voice
pitch and height). A linear model best described the data for fWHR.

doi:10.1371/journal.pone.0153083.g003
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fWHR was not correlated with strength (r = 0.04, ns) nor with voice pitch (r = -0.12, ns)
during adolescence, despite both of these dimorphic traits showing strong linear associations
with T (Table 1). In contrast, fWHR-lower, cheekbone prominence, and lower/full face ratio all
showed significant linear associations with strength (r = -0.63, p<0.001; r = -0.38, p<0.01;
r = 0.67, p<0.001; respectively), and with voice pitch (r = 0.54, p<0.001; r = 0.31, p<0.01; r =
-0.57, p<0.001; respectively). See Table 1 (upper right triangle) and Fig 2.

(d) Do the correlations between fWHR (and other facial masculinity ratios) and T, voice
pitch, and strength remain after controlling for age?

Because we utilized a cross-sectional population, we control for age using partial correlations.
The purpose of controlling for age in these analyses is strictly to draw out the developmental rela-
tionship between T and facial masculinity ratios. Results of these analyses showed that fWHR sig-
nificantly correlates with T (r = 0.28, p<0.05) and voice pitch (r = -0.24, p<0.05), but not strength
(r = 0.12, ns). After controlling for age, fWHR-lower was significantly associated with upper-body
strength (r = -0.36, p<0.01) but was not associated with T (r = -0.13, ns) or with voice pitch
(r = 0.20, ns). After controlling for age, cheekbone prominence was not associated with T (r = -0.06,
ns), with upper-body strength (r = -0.18, ns), nor with voice pitch (r = 0.08, ns). Finally, after con-
trolling for age, lower/full face ratio was significantly associated with upper-body strength (r = 0.32,
p<0.01) but not T (r = 0.09, ns) nor voice pitch (r = -0.18, ns; Table 1, lower left triangle).

(e) Do fWHR (and other facial masculinity ratios) more closely correspond to T, adiposity,
height, or age?

Multiple regression was used to discern whether facial masculinity ratios were better
explained by T, adiposity, height, or age (Table 2). Results showed no significant predictors of
fWHR or cheekbone prominence; however, height was a strong unique predictor of both
fWHR-lower (β = -0.58, p<0.05) and lower/full face ratio (β = 0.59, p<0.01). In other words,
adolescent males with long lower faces relative to both facial width and full face height are sig-
nificantly taller (controlling for testosterone, adiposity, and age).

Discussion
Adolescence is a period of dramatic change in the male phenotype (e.g., voice, fat free mass,
body shape), which is largely facilitated by sharp increases in T [47,49,66,72,81,82]. Based on

Table 2. Multiple regressionmodels predicting facial masculinity ratios.

Outcome variables

Predictors fWHRa fWHR-lowerb Cheekbone prominencec Lower/full face ratiod

Testosterone 0.43 (1.76†) 0.07 (0.34) 0.11 (0.46) -0.24 (-1.36)

Adiposity 0.14 (1.05) 0.01 (0.09) -0.15 (-1.19) 0.20 (2.11*)

Height -0.05 (-0.17) -0.58 (-2.59*) -0.33 (-1.24) 0.59 (2.94**)

Age -0.40 (-1.66†) -0.11 (-0.57) -0.09 (-0.39) 0.27 (1.55)

Note. Values represent standardized Betas (and standard errors in parentheses) from four separate multiple regression models. Predictors remain

constant across all models, whereas the outcome variables differ.
a: F(4,73) = 1.77, p = 0.14. R = 0.31, Rsq = 0.09.
b: F(4,75) = 11.09, p < .001. R = 0.62, Rsq = 0.39.
c: F(4,75) = 3.22, p < .05. R = 0.39, Rsq = 0.15.
d: F(4,75) = 19.02, p < .001. R = 0.72, Rsq = 0.52.
†�0.10

*p<0.05
**p<0.01.

doi:10.1371/journal.pone.0153083.t002
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several reports of sexual dimorphism in fWHR [14], a growing number of researchers have
speculated that fWHR may be a sexually-selected signal mediated by pubertal T, which could
honestly signal traits linked with this hormone [12,17,19–22,23–26,28,30–32,83]. In the pres-
ent study, we found little support for this hypothesis in a sample of adolescent males: fWHR
[12] was not correlated with age, T, upper-body strength, or voice pitch during male adolescent
development. Further, fWHR showed no evidence of an adolescent growth spurt. This absence
is striking because many secondary sexual characteristics experience dramatic changes in con-
junction with the spurt in T (e.g., voice pitch; [47]; lean body mass; [81]; height; [82]). In con-
trast, three other facial masculinity ratios used in previous research (facial width/lower face
height, cheekbone prominence, and lower face height/full face height; [39,52,60] were associ-
ated with age, T, upper-body strength, and voice pitch. Our results add to a growing literature
that questions current suggestions about the signal content of fWHR [38–42,56].

This work expands previous research on fWHR in several important ways. First, it evaluates
the association between facial masculinity ratios and T during the period of the lifespan when
it is purported to have its effects: adolescence. If fWHR variation derives from T’s effect on cra-
niofacial growth during puberty (Weston et al., 2007), three predictions should be supported:
1) fWHR should increase as T increases, 2) fWHR should reflect adolescent T (rather than
adult T per se), and 3) fWHR should exhibit velocity changes during adolescence in parallel
with the growth spurt in T. None of these effects were observed in this study. In addition,
fWHR showed no evidence of a growth spurt at any time during adolescence. While the three
other facial masculinity ratios were significantly associated with age and T, they also failed to
show evidence of a growth spurt. Further, after controlling for adiposity and height, these alter-
native ratios were no longer associated with T. These findings stand in contrast to another
plausibly sexually-selected male trait—voice pitch—which shows strong associations with T
[49] and strength, even after controlling for potential confounds [48]. Thus, unlike voice pitch
[48], these facial ratios do not seem to carry unique information above and beyond what may
be observable from other aspects of phenotypic size.

Second, we explore the effect of T on male facial shape by examining adolescent male devel-
opment rather than adult sexual dimorphism. T has important developmental influences on
sexually-selected secondary sexual characteristics, and both T and its phenotypic targets (e.g.,
muscle mass, the vocal folds) exhibit considerable change during adolescence. By examining
the changing phenotype in conjunction with changing hormones during male adolescence,
researchers can directly assess whether or not particular traits are developmentally canalized
by T and hence honestly reflect T levels during adolescence. Further, any sexually dimorphic
measure conflates the nature and degree of male growth with female growth. In other words,
attributing sexual dimorphism to T mistakenly assumes that the female face does not itself
change during adolescent development (cf. [83–85]).

Third, we take an ecologically relevant approach by evaluating fWHR in a relatively homog-
enous, non-Western, under-developed population (cf. [56]). The Tsimane are potentially infor-
mative because they live under the types of high-pathogen, limited-food conditions where
sexual selection would have shaped the form and ontogeny of various signaling systems.

Four, several researchers have noted that sex differences in facial adiposity may have led to
the spurious conclusion that the fWHR is sexually dimorphic. A number of studies have shown
that BMI is positively associated with fWHR in adults [38,39,49]; yet BMI confounds fat with
muscle mass—which is itself subject to sexual selection pressures in males [70]. In the present
study, we found no association between our measure of body adiposity and fWHR in adoles-
cent males. We did, however, find associations between adiposity and the three alternative
measures of facial masculinity. Further, after controlling for T, age, and height, adiposity
remained a significant predictor of lower/full face ratio; that is, adolescents with more body fat
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have a longer lower face. These findings suggest that body fat is an important variable to con-
sider in facial research using gestalt measurements that include soft-tissues.

We also explored a second potential spurious variable in the study of facial masculinity
research: height. Both fWHR-lower and lower/full face ratio are ratios that depend on the size
of the lower face (see Fig 2) relative to facial width or full-face height, respectively, and height
was a significant predictor of these two ratios after controlling for T, age, and adiposity. This
suggests that facial dimensions may grow in conjunction with increases in height (possibly
because they are jointly influenced by somatotropic hormones like growth hormone; [86])
independently from T levels.

Finally, we explored three other facial masculinity ratios that have been examined in past
research yet receive far less attention than fWHR [39,52,60]. Our results indicate that facial
width/lower face height, cheekbone prominence, and lower face height/full face height are all
significantly associated with age, T, strength, and voice pitch in this population. Specifically,
facial width/lower face height gets smaller (i.e., the lower face grows more than the width of the
face), cheekbone prominence gets smaller (i.e., the width of the face at the mouth—a measure
of relative jaw width—grows more than the width of the cheekbones), and lower face height/
full face height gets larger (i.e., facial growth is focused in the lower face) as male adolescents
develop. These results are consistent with the craniofacial literature that documents pro-
nounced growth in the male mandible under the influence of exogenous T [51] and during
puberty [83–85]. Similarly, the association between T and these mandible-inclusive facial ratios
accords with Lefevre et al. [16], who found significant sexual dimorphism in these three ratios,
but no adult sex difference in fWHR. Although they showed no evidence of a pubertal growth
spurt, overall findings suggest these facial ratios may be fruitful targets for future research.

In summary, this study adds to a growing fWHR literature that has been fraught with conflict-
ing results. We have proposed several reasons that may account for these inconsistencies; however,
more research is needed. One important avenue for future inquiry is the relationship between pre-
natal testosterone and masculine adult facial structure [87]. The ratio between the second and
fourth digits (2D:4D)—which is sexually dimorphic [88] and associated with in-utero T [89,90]—
is also associated with several measures of facial masculinity [87,91]. For instance, several studies
have found a significant relationship between both adult and pre-pubertal fWHR and 2D:4D digit
ratios, supporting this hypothesis [92,93]. 2D:4D is also associated with several behavioral traits,
including aggression (e.g. [94]), that have been linked with fWHR [25]. Like 2D:4D, fWHRmay
be shaped by fetal T (cf. [87]), and the state of the current literature on fWHRmay reflect that
association. In the present research, fWHR showed no change during adolescence, no association
with T or other known T-derived traits, nor evidence of a growth spurt; however, fWHR was sig-
nificantly associated with T after controlling for age, adiposity, and height. It is unclear why an
association was found under these narrow set of circumstances; however, it may derive from
shared variance in prenatal and postnatal T. Similarly, 2D:4D changes little during puberty [95],
but has shown inconsistent associations with postnatal T (for a review of the literature see [96]).
Both prenatal and postnatal T are likely influenced by the same individual-specific physiology and
genetic make-up (e.g. CAG repeats on the androgen receptor gene); therefore, this unexplained
effect may derive from an association between prenatal and postnatal T, rather than a true causal
link between pubertal T and fWHR. Future research, however, is needed to clarify this conjecture.

Furthermore, arguments about the signal value of fWHR must consider the ecological con-
text and hence validity of the alleged message. What does it mean to say that the message only
has content when the observer “controls for age”? Many developmental traits loosely co-vary
with age and it is these traits, rather than age, that would have been the basis of inter-individual
judgments. The signaler’s age is unlikely to have been an independent variable that observers
could have used to adjust their perceptions in ancestral populations.
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A recent article by Zebrowitz et al. [97] also challenges the alleged link between pubertal T and
fWHR based on a body of research on “babyfaceness.” Babyfaced men (defined as having a
rounder face, with relatively equal length and breadth, which is correlated with higher fWHR;
[97]) show greater motivation, achievement, and aggressive behavior [98,99]. Zebrowitz et al. [97]
suggest that the behavioral correlates of high fWHR (i.e. aggressiveness and assertiveness) may
reflect compensatory responses by the babyfaced individual to perceptions that they are more
naïve and warm than “maturefaced” peers. Zebrowitz et al. [97] also found that both babyfacedness
and higher fWHR in adulthood were associated with a more uninhibited temperament in infancy,
supporting the idea that early conditions likely impact both behavior and craniofacial growth.

There are several important limitations of the present study. First, we use a cross-sectional
design, which offers limited control over individual differences; an optimal test of the presence
of growth spurts would involve longitudinal data. However, other traits under the influence of
sexual selection—like T, strength, and vocal frequencies [47]—show evidence of a growth spurt
in cross-sectional data from this same population. Second, saliva samples were collected at vari-
able times of the day. Although statistical analyses revealed no influence of collection time,
ideal sampling for testosterone would institute a standard, morning collection time. Third,
measurements were made on two-dimensional (2D) photographs. Although the majority of
studies have measured fWHR in 2D photos (e.g. [12,17,24,41]), several researchers have argued
that 3D images provide a more ecologically valid representation of human facial dimensions
and should be utilized in future research (e.g. [87]). Fourth, although age estimates were based
on two independent sources, actual birth date could not be validated using medical records;
therefore, this work should be replicated in a population where birth certificates are available.
Finally, the sample size is modest at 75; a larger number of participants might have revealed a
relationship between T and fWHR, although this sample was sufficient to show a significant
relationship between T and the three other measured facial ratios.

Overall, our results add to doubts about the status of fWHR as a sexually-selected signal for
pubertal T and T-derived traits. Future studies should bring developmental data to bear in try-
ing to reconstruct the effects of sexual selection. When using phenotypic traits as proxies for T
dosage (for example when testing Red-Queen-based predictions, sensu [100]) it is important to
target traits that are influenced by T and not merely sexually dimorphic.

Supporting Information
S1 File. fWHR data file.
(SAV)

Acknowledgments
The authors extend their thanks to the Tsimane participants and their families, as well as the
Tsimane Health and Life History researchers and staff. We also thank James Griffith for his
work on facial measurement.

Author Contributions
Conceived and designed the experiments: CRH KNHS MG SJCG. Performed the experiments:
CRH KNHS. Analyzed the data: CRH KNHS TS. Wrote the paper: CRH KNHS TS MG SJCG.

References
1. Searcy WA, Nowicki S. The evolution of animal communication: reliability and deception in signaling

systems. Princeton, NJ: Princeton University Press; 2005.

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153083.s001


2. Grafen A. Biological systems as handicaps. J Theor Biol. 1990; 144: 517–546. PMID: 2402153

3. Zahavi A. The handicap principle. New York: Oxford University Press; 1997.

4. Fink B, Penton-Voak I. Evolutionary psychology of facial attractiveness. Curr Dir Psychol Sci. 2002;
11: 154–158. doi: 10.1111/1467-8721.00190

5. Rhodes G, Chan J, Zebrowitz LA, Simmons LW. Does sexual dimorphism in human faces signal
health? Proc Biol Sci. 2003; 270(Suppl_1). doi: 10.1098/rsbl.2003.0023

6. Thornhill R, Gangestad SW. Facial attractiveness. Trends Cogn Sci. 1999; 3(12): 452–460. doi: 10.
1016/s1364-6613(99)01403-5 PMID: 10562724

7. Muller U, Mazur A. Facial dominance in Homo sapiens as honest signaling of male quality. Behav
Ecol. 1997; 8(5): 569–579. doi: 10.1093/beheco/8.5.569

8. Oosterhof NN, Todorov A. The functional basis of face evaluation. Proc Natl Acad Sci U S A. 2008;
105(32): 11087–11092. doi: 10.1073/pnas.0805664105 PMID: 18685089

9. Penton-Voak IS, Pound N, Little AC, Perrett DI. Personality Judgments from natural and composite
racial images: more evidence for a “kernel of truth” in social perception. Soc Cogn. 2006; 24(5): 607–
640. doi: 10.1521/soco.2006.24.5.607

10. Sell A, Cosmides L, Tooby J, Sznycer D, Rueden CV, Gurven M. Human adaptations for the visual
assessment of strength and fighting ability from the body and face. Proc Biol Sci. 2009; 276(1656):
575–584. doi: 10.1098/rspb.2008.1177 PMID: 18945661

11. Shoup ML, Gallup GG. Men's faces convey information about their bodies and their behavior: What
you see is what you get. Evol Psychol. 2008; 6(3). doi: 10.1177/147470490800600311

12. Carre JM, Mccormick CM. In your face: Facial metrics predict aggressive behaviour in the laboratory
and in varsity and professional hockey players. Proc Biol Sci. 2008; 275(1651): 2651–2656. doi: 10.
1098/rspb.2008.0873 PMID: 18713717

13. Weston EM, Friday AE, Johnstone RA, Schrenk F. Wide faces or large canines? The attractive versus
the aggressive primate. Proc Biol Sci. 2004; 271(Suppl_6). doi: 10.1098/rsbl.2004.0203

14. Weston EM, Friday AE, Liò P. Biometric evidence that sexual selection has shaped the Hominin face.
PLoS One. 2007; 2(8). doi: 10.1371/journal.pone.0000710

15. Archer J. The influence of testosterone on human aggression. Br J Psychol. 1991; 82(1) Br J Psychol:
1–28. doi: 10.1111/j.2044-8295.1991.tb02379.x

16. Lefevre CE, Lewis GJ, Perrett DI, Penke L. Telling facial metrics: Facial width is associated with tes-
tosterone levels in men. Evol Hum Behav. 2013; 34(4): 273–279. doi: 10.1016/j.evolhumbehav.2013.
03.005

17. Alrajih S, Ward J. Increased facial width-to-height ratio and perceived dominance in the faces of the
UK's leading business leaders. Br J Psychol. 2013; 105(2): 153–161. doi: 10.1111/bjop.12035 PMID:
24754804

18. Geniole SN, Molnar DS, Carré JM, McCormick CM. The facial width-to-height ratio shares stronger
links with judgments of aggression than with judgments of trustworthiness. J Exp Psychol Hum Per-
cept Perform. 2014; 40(4): 1526–1541. doi: 10.1037/a0036732 PMID: 24820443

19. McCormick CM, Mondloch CJ, Carre JM, Short L. The facial width-to-height ratio as a basis for esti-
mating aggression from emotionally neutral faces. J Vis. 2010; 10(7): 599–599. doi: 10.1167/10.7.
599

20. Short LA, Mondloch CJ, McCormick CM, Carré JM, Ma R, Fu G, et al. Detection of propensity for
aggression based on facial structure irrespective of face race. Evol Hum Behav. 2012; 33(2): 121–
129. doi: 10.1016/j.evolhumbehav.2011.07.002 PMID: 22611331

21. Stirrat M, Perrett D. Valid facial cues to cooperation and trust: Male facial width and trustworthiness.
Psychol Sci. 2010; 21(3): 349–354. doi: 10.1177/0956797610362647 PMID: 20424067

22. Valentine KA, Li NP, Penke L, Perrett DI. Judging a man by the width of his face: The role of facial
ratios and dominance in mate choice at speed-dating events. Psychol Sci. 2014; 25(3): 806–811. doi:
10.1177/0956797613511823 PMID: 24458269

23. Carré JM, McCormick CM, Mondloch CJ. Facial structure is a reliable cue of aggressive behavior.
Psychol Sci. 2009; 20(10): 1194–1198. doi: 10.1111/j.1467-9280.2009.02423.x PMID: 19686297

24. Haselhuhn MP, Wong EM. Bad to the bone: Facial structure predicts unethical behaviour. Proc Biol
Sci. 2011; 279(1728): 571–576. doi: 10.1098/rspb.2011.1193 PMID: 21733897

25. Haselhuhn MP, Ormiston ME, Wong EM. Men’s facial width-to-height ratio predicts aggression: A
meta-analysis. PLoS One. 2015; 10(4). doi: 10.1371/journal.pone.0122637

26. Lefevre CE, Etchells PJ, Howell EC, Clark AP, Penton-Voak IS. Facial width-to-height ratio predicts
self-reported dominance and aggression in males and females, but a measure of masculinity does
not. Biol Lett. 2014; 10(10). doi: 10.1098/rsbl.2014.0729

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 13 / 17

http://www.ncbi.nlm.nih.gov/pubmed/2402153
http://dx.doi.org/10.1111/1467-8721.00190
http://dx.doi.org/10.1098/rsbl.2003.0023
http://dx.doi.org/10.1016/s1364-6613(99)01403-5
http://dx.doi.org/10.1016/s1364-6613(99)01403-5
http://www.ncbi.nlm.nih.gov/pubmed/10562724
http://dx.doi.org/10.1093/beheco/8.5.569
http://dx.doi.org/10.1073/pnas.0805664105
http://www.ncbi.nlm.nih.gov/pubmed/18685089
http://dx.doi.org/10.1521/soco.2006.24.5.607
http://dx.doi.org/10.1098/rspb.2008.1177
http://www.ncbi.nlm.nih.gov/pubmed/18945661
http://dx.doi.org/10.1177/147470490800600311
http://dx.doi.org/10.1098/rspb.2008.0873
http://dx.doi.org/10.1098/rspb.2008.0873
http://www.ncbi.nlm.nih.gov/pubmed/18713717
http://dx.doi.org/10.1098/rsbl.2004.0203
http://dx.doi.org/10.1371/journal.pone.0000710
http://dx.doi.org/10.1111/j.2044-8295.1991.tb02379.x
http://dx.doi.org/10.1016/j.evolhumbehav.2013.03.005
http://dx.doi.org/10.1016/j.evolhumbehav.2013.03.005
http://dx.doi.org/10.1111/bjop.12035
http://www.ncbi.nlm.nih.gov/pubmed/24754804
http://dx.doi.org/10.1037/a0036732
http://www.ncbi.nlm.nih.gov/pubmed/24820443
http://dx.doi.org/10.1167/10.7.599
http://dx.doi.org/10.1167/10.7.599
http://dx.doi.org/10.1016/j.evolhumbehav.2011.07.002
http://www.ncbi.nlm.nih.gov/pubmed/22611331
http://dx.doi.org/10.1177/0956797610362647
http://www.ncbi.nlm.nih.gov/pubmed/20424067
http://dx.doi.org/10.1177/0956797613511823
http://www.ncbi.nlm.nih.gov/pubmed/24458269
http://dx.doi.org/10.1111/j.1467-9280.2009.02423.x
http://www.ncbi.nlm.nih.gov/pubmed/19686297
http://dx.doi.org/10.1098/rspb.2011.1193
http://www.ncbi.nlm.nih.gov/pubmed/21733897
http://dx.doi.org/10.1371/journal.pone.0122637
http://dx.doi.org/10.1098/rsbl.2014.0729


27. Stirrat M, Perrett DI. Face structure predicts cooperation: Men with wider faces are more generous to
their in-group when out-group competition is salient. Psychol Sci. 2012; 23(7): 718–722. doi: 10.
1177/0956797611435133 PMID: 22623509

28. Lewis G, Lefevre C, Bates T. Facial width-to-height ratio predicts achievement drive in US presidents.
Pers Individ Dif. 2012; 52(7): 855–857. doi: 10.1016/j.paid.2011.12.030

29. Tsujimura H, Banissy MJ. Human face structure correlates with professional baseball performance:
Insights from professional Japanese baseball players. Biol Lett. 2013; 9(3). doi: 10.1098/rsbl.2013.
0140

30. Welker KM, Goetz SM, Galicia S, Liphardt J, Carré JM. An examination of the associations between
facial structure, aggressive behavior, and performance in the 2010World Cup Association football
players. Adapt Human Behav Physiol. 2014; 1(1): 17–29. doi: 10.1007/s40750-014-0003-3

31. Wong EM, Ormiston ME, Haselhuhn MP. A face only an investor could love: CEOs' facial structure
predicts their firms' financial performance. Psychol Sci. 2011; 22(12): 1478–1483. doi: 10.1177/
0956797611418838 PMID: 22042727

32. Zilioli S, Sell AN, Stirrat M, Jagore J, VickermanW, Watson NV. Face of a fighter: Bizygomatic width
as a cue of formidability. Aggress Behav. 2014; 41(4): 322–330. doi: 10.1002/ab.21544 PMID:
24910133

33. Josephs RA, NewmanML, Brown RP, Beer JM. Status, testosterone, and human intellectual perfor-
mance: Stereotype threat as status concern. Psychol Sci. 2003; 14(2): 158–163. doi: 10.1111/1467-
9280.t01-1-01435 PMID: 12661678

34. Mazur A, Booth A. Testosterone and dominance in men. Behav Brain Sci. 1998; 21(03). doi: 10.1017/
s0140525x98001228

35. Millet K, Dewitte S. Digit ratio (2D:4D) moderates the impact of an aggressive music video on aggres-
sion. Pers Individ Dif. 2007; 43(2): 289–294. doi: 10.1016/j.paid.2006.11.024

36. Archer J. Testosterone and human aggression: An evaluation of the challenge hypothesis. Neurosci
Biobehav Rev. 2006; 30(3): 319–345. doi: 10.1016/j.neubiorev.2004.12.007 PMID: 16483890

37. Mazur A, Susman EJ, Edelbrock S. Sex difference in testosterone response to a video game contest.
Evol Hum Behav. 1997; 18(5): 317–326. doi: 10.1016/s1090-5138(97)00013-5

38. Kramer RS, Jones AL, Ward R. A lack of sexual dimorphism in width-to-height ratio in white European
faces using 2D photographs, 3D scans, and anthropometry. PLoS One. 2012; 7(8). doi: 10.1371/
journal.pone.0042705

39. Lefevre CE, Lewis GJ, Bates TC, Dzhelyova M, Coetzee V, Deary IJ, et al. No evidence for sexual
dimorphism of facial width-to-height ratio in four large adult samples. Evol Hum Behav. 2012; 33(6):
623–627. doi: 10.1016/j.evolhumbehav.2012.03.002

40. Özener B. Facial width-to-height ratio in a Turkish population is not sexually dimorphic and is unre-
lated to aggressive behavior. Evol Hum Behav. 2012; 33(3): 169–173. doi: 10.1016/j.evolhumbehav.
2011.08.001

41. Deaner RO, Goetz SM, Shattuck K, Schnotala T. Body weight, not facial width-to-height ratio, predicts
aggression in pro hockey players. J Res Pers. 2012; 46(2): 235–238. doi: 10.1016/j.jrp.2012.01.005

42. Kramer RS. Facial width-to-height ratio in a large sample of Commonwealth Games athletes. Evol
Psychol. 2015; 13(1). doi: 10.1177/147470491501300112

43. Enlow DH. Facial growth. Philadelphia: WB Saunders; 1982.

44. Coetzee V, Chen J, Perrett DI, Stephen ID. Deciphering faces: Quantifiable visual cues to weight. Per-
ception. 2010; 39: 51–61. PMID: 20301846

45. Rohrich RJ, Pessa JE, Ristow B. The youthful cheek and the deep medial fat compartment. Plast
Reconstr Surg. 2008; 121: 2107–2112. doi: 10.1097/PRS.0b013e31817123c6 PMID: 18520902

46. Bogin B. Patterns of human growth. Cambridge: Cambridge University Press; 1999.

47. Hodges-Simeon CR, Gurven M, Cárdenas RA, Gaulin SJ. Voice change as a newmeasure of male
pubertal timing: A study among Bolivian adolescents. Ann Hum Biol. 2013; 40(3): 209–219. doi: 10.
3109/03014460.2012.759622 PMID: 23388046

48. Hodges-Simeon CR, Gurven M, Puts DA, Gaulin SJ. Vocal fundamental and formant frequencies are
honest signals of threat potential in peripubertal males. Behav Ecol. 2014; 25(4): 984–988. doi: 10.
1093/beheco/aru081 PMID: 25024638

49. Hodges-Simeon CR, Gurven M, Gaulin SJ. The low male voice is a costly signal of phenotypic quality
among Bolivian adolescents. Evol Hum Behav. 2015; 36(4): 294–302. doi: 10.1016/j.evolhumbehav.
2015.01.002

50. Rogol AD, Roemmich JN, Clark PA. Growth at puberty. J Adolesc Health. 2012; 31: 192–200.

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 14 / 17

http://dx.doi.org/10.1177/0956797611435133
http://dx.doi.org/10.1177/0956797611435133
http://www.ncbi.nlm.nih.gov/pubmed/22623509
http://dx.doi.org/10.1016/j.paid.2011.12.030
http://dx.doi.org/10.1098/rsbl.2013.0140
http://dx.doi.org/10.1098/rsbl.2013.0140
http://dx.doi.org/10.1007/s40750-014-0003-3
http://dx.doi.org/10.1177/0956797611418838
http://dx.doi.org/10.1177/0956797611418838
http://www.ncbi.nlm.nih.gov/pubmed/22042727
http://dx.doi.org/10.1002/ab.21544
http://www.ncbi.nlm.nih.gov/pubmed/24910133
http://dx.doi.org/10.1111/1467-9280.t01-1-01435
http://dx.doi.org/10.1111/1467-9280.t01-1-01435
http://www.ncbi.nlm.nih.gov/pubmed/12661678
http://dx.doi.org/10.1017/s0140525x98001228
http://dx.doi.org/10.1017/s0140525x98001228
http://dx.doi.org/10.1016/j.paid.2006.11.024
http://dx.doi.org/10.1016/j.neubiorev.2004.12.007
http://www.ncbi.nlm.nih.gov/pubmed/16483890
http://dx.doi.org/10.1016/s1090-5138(97)00013-5
http://dx.doi.org/10.1371/journal.pone.0042705
http://dx.doi.org/10.1371/journal.pone.0042705
http://dx.doi.org/10.1016/j.evolhumbehav.2012.03.002
http://dx.doi.org/10.1016/j.evolhumbehav.2011.08.001
http://dx.doi.org/10.1016/j.evolhumbehav.2011.08.001
http://dx.doi.org/10.1016/j.jrp.2012.01.005
http://dx.doi.org/10.1177/147470491501300112
http://www.ncbi.nlm.nih.gov/pubmed/20301846
http://dx.doi.org/10.1097/PRS.0b013e31817123c6
http://www.ncbi.nlm.nih.gov/pubmed/18520902
http://dx.doi.org/10.3109/03014460.2012.759622
http://dx.doi.org/10.3109/03014460.2012.759622
http://www.ncbi.nlm.nih.gov/pubmed/23388046
http://dx.doi.org/10.1093/beheco/aru081
http://dx.doi.org/10.1093/beheco/aru081
http://www.ncbi.nlm.nih.gov/pubmed/25024638
http://dx.doi.org/10.1016/j.evolhumbehav.2015.01.002
http://dx.doi.org/10.1016/j.evolhumbehav.2015.01.002


51. Verdonck A. Effect of low-dose testosterone treatment on craniofacial growth in boys with delayed
puberty. Eur J Orthod. 1999; 21(2): 137–143. doi: 10.1093/ejo/21.2.137 PMID: 10327737

52. Penton-Voak IS, Jones BC, Little AC, Baker S, Tiddeman B, Burt DM, et al. Symmetry, sexual dimor-
phism in facial proportions and male facial attractiveness. Proc Biol Sci 2001; 268(1476): 1617–1623.
doi: 10.1098/rspb.2001.1703 PMID: 11487409

53. Scott IM, Clark AP, Josephson SC, Boyette AH, Cuthill IC, Fried RL, et al. Human preferences for sex-
ually dimorphic faces may be evolutionarily novel. Proc Natl Acad Sci USA. 2014; 111(40): 14388–
14393B doi: 10.1073/pnas.1409643111 PMID: 25246593

54. Swaddle JP, Reierson GW. Testosterone increases perceived dominance but not attractiveness in
human males. Proc Biol Sci 2001; 269: 2285–2289.

55. Mitteroecker P, Windhager S, Müller GB, Schaefer K. The morphometrics of “masculinity” in human
faces. PLoS One. 2015; 10, e0118374. doi: 10.1371/journal.pone.0118374 PMID: 25671667

56. Gómez-Valdés J, Hünemeier T, Quinto-Sánchez M, Paschetta C, Azevedo SD, González MF, et al.
(2013). Lack of support for the association between facial shape and aggression: A reappraisal based
on a worldwide population genetics perspective. PLoS One. 2013; 8(1).

57. Duffy DL, Bently GE, Drazen DL, Ball GF. Effects of testosterone on cell-mediated and humoral immu-
nity in non-breeding adult European starlings. Behav Ecol. 2000; 11: 654–662.

58. Ellison PT. On fertile ground: A natural history of human reproduction. Cambridge: Harvard Univer-
sity Press; 2003.

59. Muehlenbein MP, Bribiescas RG. Testosterone-mediated immune functions and male life history. Am
J Hum Biol. 2005; 17: 527–558. PMID: 16136532

60. Little AC, Jones BC, Waitt C, Tiddeman BP, Feinberg DR, Perrett DI, et al. Symmetry is related to sex-
ual dimorphism in faces: data from across cultures and species. PLoS One. 2008; 3: e2106. doi: 10.
1371/journal.pone.0002106 PMID: 18461131

61. Godoy RA, LeonardWR, Reyes-García V, Goodman E, McDade T, Huanca T, et al. Physical stature
of adult Tsimane’ Amerindians, Bolivian Amazon in the 20th century. Econ Hum Biol. 2006; 4(2):
184–205. doi: 10.1016/j.ehb.2005.11.001 PMID: 16359936

62. Gurven M, Kaplan H, Supa AZ. Mortality experience of Tsimane Amerindians of Bolivia: Regional vari-
ation and temporal trends. Am J Hum Biol. 2007; 19(3): 376–398. doi: 10.1002/ajhb.20600 PMID:
17421012

63. Gurven M, Kaplan H, Winking J, Finch C, Crimmins EM. Aging and inflammation in two epidemiologi-
cal worlds. J Gerontol A Biol Sci Med Sci. 2008; 63(2): 196–199. doi: 10.1093/gerona/63.2.196
PMID: 18314457

64. McDade T, Reyes‐García V, Tanner S, Huanca T, LeonardW. Maintenance versus growth: Investi-
gating the costs of immune activation among children in lowland Bolivia. Am J Phys Anthropol. 2008;
136(4): 478–484. doi: 10.1002/ajpa.20831 PMID: 18383156

65. Tanner S, LeonardW, McDade T, Reyes-Garcia V, Godoy R, Huanca T. Influence of helminth infec-
tions on childhood nutritional status in lowland Boliva. Am J Hum Biol. 2009; 21(5): 651–656. doi: 10.
1002/ajhb.20944 PMID: 19402038

66. Ellison PT, Bribiescas RG, Bentley GR, Campbell BC, Lipson SF, Panter-Brick C, Hill K. Hum Reprod.
2002; 17: 3251–3253. PMID: 12456632

67. Cameron N, Hiernaux J, Jarman S, Marshall WA, Tanner JM, Whitehouse RH. Anthropometry. In JS.
Weiner JA. Lourie (Eds.), Practical human biology (pp. 25–52). London: Academic Press: 1981.

68. Frisancho AR. Anthropometric standards for the assessment of growth and nutritional status. Ann
Arbor: University of Michigan Press; 1990.

69. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skin-
fold equations for estimation of body fatness in children and youth. Hum Biol. 1988; 60(5): 709–723.
PMID: 3224965

70. LassekWD, Gaulin SJC. Costs and benefits of fat-free muscle mass in men: Relationship to mating
success, dietary requirements, and native immunity. Evol Hum Behav. 2009; 30(5): 322–328. doi: 10.
1016/j.evolhumbehav.2009.04.002

71. Puts DA, Apicella CL, Cárdenas RA. Masculine voices signal men's threat potential in forager and
industrial societies. Proc Biol Sci. 2011; doi: 10.1098/rspb.2011.0829

72. Butler GE, Walker RF, Walker RV, Teague P, Riad-Fahmy D, Ratcliffe SG. Salivary testosterone lev-
els and the progress of puberty in the normal boy. Clin Endocrinol. 1989; 30(5): 587–596. doi: 10.
1111/j.1365-2265.1989.tb01431.x

73. Bribiescas RG, Hill KR. Circadian variation in salivary testosterone across age classes in Ache Amer-
indian males of Paraguay. Am J Hum Biol. 2010. doi: 10.1002/ajhb.21012

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 15 / 17

http://dx.doi.org/10.1093/ejo/21.2.137
http://www.ncbi.nlm.nih.gov/pubmed/10327737
http://dx.doi.org/10.1098/rspb.2001.1703
http://www.ncbi.nlm.nih.gov/pubmed/11487409
http://dx.doi.org/10.1073/pnas.1409643111
http://www.ncbi.nlm.nih.gov/pubmed/25246593
http://dx.doi.org/10.1371/journal.pone.0118374
http://www.ncbi.nlm.nih.gov/pubmed/25671667
http://www.ncbi.nlm.nih.gov/pubmed/16136532
http://dx.doi.org/10.1371/journal.pone.0002106
http://dx.doi.org/10.1371/journal.pone.0002106
http://www.ncbi.nlm.nih.gov/pubmed/18461131
http://dx.doi.org/10.1016/j.ehb.2005.11.001
http://www.ncbi.nlm.nih.gov/pubmed/16359936
http://dx.doi.org/10.1002/ajhb.20600
http://www.ncbi.nlm.nih.gov/pubmed/17421012
http://dx.doi.org/10.1093/gerona/63.2.196
http://www.ncbi.nlm.nih.gov/pubmed/18314457
http://dx.doi.org/10.1002/ajpa.20831
http://www.ncbi.nlm.nih.gov/pubmed/18383156
http://dx.doi.org/10.1002/ajhb.20944
http://dx.doi.org/10.1002/ajhb.20944
http://www.ncbi.nlm.nih.gov/pubmed/19402038
http://www.ncbi.nlm.nih.gov/pubmed/12456632
http://www.ncbi.nlm.nih.gov/pubmed/3224965
http://dx.doi.org/10.1016/j.evolhumbehav.2009.04.002
http://dx.doi.org/10.1016/j.evolhumbehav.2009.04.002
http://dx.doi.org/10.1098/rspb.2011.0829
http://dx.doi.org/10.1111/j.1365-2265.1989.tb01431.x
http://dx.doi.org/10.1111/j.1365-2265.1989.tb01431.x
http://dx.doi.org/10.1002/ajhb.21012


74. Granger DA, Shirtcliff EA, Booth A, Kivlinghan KT, Schwartz EA. The “trouble” with salivary testoster-
one. Psychoneuroendocrinology. 2004; 29: 1229–40. PMID: 15288702

75. Shirtcliff EA, Granger DA, Likos A. Gender differences in the validity of testosterone measured in
saliva by immunoassay. Horm Behav. 2002; 42: 62–69. PMID: 12191648

76. Kivlighan KT, Granger DA, Schwartz EB, Nelson V, Curran M, Shirtcliff EA. Quantifying blood leakage
into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and tes-
tosterone in saliva. Horm Behav. 2004; 46(1): 39–46. doi: 10.1016/j.yhbeh.2004.01.006 PMID:
15215040

77. Grammer K, Thornhill R. Human (Homo sapiens) facial attractiveness and sexual selection: the role of
symmetry and averageness. J Comp Psychol. 1994; 118: 233–242. doi: 10.1037/0735-7036.108.3.
233

78. Perrett DI, Lee KJ, Penton-Voak I, Rowland D, Yshikawa S, Burt DM, et al. Effects of sexual dimor-
phism on facial attractiveness. Nature. 1998; 394: 884–887. doi: 10.1038/29772 PMID: 9732869

79. Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavior
ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 2002; 65: 23–35.

80. Hilbe JM. Negative binomial regression. Cambridge: Cambridge University Press; 2011.

81. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. The ‘muscle-bone unit’ during the puber-
tal growth spurt. Bone. 2004; 34(5): 771–775. doi: 10.1016/j.bone.2004.01.022 PMID: 15121007

82. Preece M, Cameron N, Donmall M, Dunger D, Holder A, Baines Preece J, Seth J, Sharp G, Taylor A.
The endocrinology of male puberty. In Human Growth and Development (ed. Borms, Hauspie, Sand,
Susanne Hebbelinck). 1984.

83. Geniole SN, Molnar DS, Carré JM, McCormick CM. The facial width-to-height ratio shares stronger
links with judgments of aggression than with judgments of trustworthiness. J Exp Psychol Hum Per-
cept Perform. 2014; 40(4): 1526–1541. doi: 10.1037/a0036732 PMID: 24820443

84. Enlow DH. Facial growth. Philadelphia: WB Saunders; 1990.

85. Snodell SF, Nanda RS, Currier GF. A longitudinal cephalometric study of transverse and vertical cra-
niofacial growth. Am J Orthod Dentofacial Orthop. 1993; 104: 471–483. PMID: 8237899

86. Takakura M, Kuroda T. Morphologic analysis of dentofacial structure in patients with acromegaly. Int J
Adult Orthodon Orthognath Surg. 1998; 13(4): 277–288. PMID: 10196815

87. Whitehouse AJO, Gilani SZ, Shafait F, Mian A, Tan DW, Maybery MT, et al. (2015). Prenatal testoster-
one exposure is related to sexually dimorphic facial morphology in adulthood. Proc Biol Sci. 2015. doi:
10.1098/rspb.2015.1351

88. Manning JT, Fink B. Digit ratio (2D:4D), dominance, reproductive success, asymmetry, and socio-
sexuality in the BBC Internet study. Am J Hum Bio. 2008; 20: 451–461.

89. Breedlove SM. Minireview: organizational hypothesis: instances of the fingerpost. Endocrinol. 2010;
151(9): 4116–4122. doi: 10.1210/en.2010-0041

90. McIntyre MH. The use of digit ratios as markers for perinatal androgen action. Repro Biol Endocrinol.
2006; 4: 10.

91. Schaefer K, Fink B, Mitteroecker P, Neave N, Bookstein FL. Visualizing facial shape regression upon
2nd to 4th digit ratio and testosterone. Coll Antropol. 2005; 29: 415–419. PMID: 16417137

92. Meindl K, Windhager S, Wallner B, Schaefer K. Second-to-fourth digit ratio and facial shape in boys:
The lower the digit ratio, the more robust the face. Proc Biol Sci. 2012; 279(1737): 2457–2463. doi:
10.1098/rspb.2011.2351 PMID: 22337693

93. Weinberg SM, Parsons TE, Raffensperger ZD, Marazita ML. Prenatal sex hormones, digit ratio, and
face shape in adult males. Orthod Craniofac Res. 2014; 18(1): 21–26. doi: 10.1111/ocr.12055 PMID:
25257381

94. Bailey AA, Hurd PL. Finger length ratio (2D:4D) correlates with physical aggression in men but not in
women. Biol Psychol. 2005; 68(3): 215–222. doi: 10.1016/j.biopsycho.2004.05.001 PMID: 15620791

95. Trivers R, Manning J, Jacobson A. A longitudinal study of digit ratio (2D:4D) and other finger ratios in
Jamaican children. Horm Behav. 2006; 49: 150–156. PMID: 16040033

96. Hönekopp J, Bartholdt L, Beier L, Liebert A. Second to fourth digit length ratio (2D:4D) and adult sex
hormone levels: New data and a meta-analytic review. Psychoneuroendocrinology. 2007; 32: 313–
327. http://dx.doi.org/10.1016/j.psyneuen.2007.01.007 PMID: 17400395

97. Zebrowitz LA, Franklin RG, Boshyan J. Face shape and behavior: Implications of similarities in infants
and adults. Pers Individ Dif. 2015; 86: 312–317. PMID: 26217067

98. Collins M, Zebrowitz LA. The contributions of appearance to occupational outcomes in civilian andmil-
itary settings. J Appl Soc Psychol. 1995; 25: 129–163.

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/15288702
http://www.ncbi.nlm.nih.gov/pubmed/12191648
http://dx.doi.org/10.1016/j.yhbeh.2004.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15215040
http://dx.doi.org/10.1037/0735-7036.108.3.233
http://dx.doi.org/10.1037/0735-7036.108.3.233
http://dx.doi.org/10.1038/29772
http://www.ncbi.nlm.nih.gov/pubmed/9732869
http://dx.doi.org/10.1016/j.bone.2004.01.022
http://www.ncbi.nlm.nih.gov/pubmed/15121007
http://dx.doi.org/10.1037/a0036732
http://www.ncbi.nlm.nih.gov/pubmed/24820443
http://www.ncbi.nlm.nih.gov/pubmed/8237899
http://www.ncbi.nlm.nih.gov/pubmed/10196815
http://dx.doi.org/10.1098/rspb.2015.1351
http://dx.doi.org/10.1210/en.2010-0041
http://www.ncbi.nlm.nih.gov/pubmed/16417137
http://dx.doi.org/10.1098/rspb.2011.2351
http://www.ncbi.nlm.nih.gov/pubmed/22337693
http://dx.doi.org/10.1111/ocr.12055
http://www.ncbi.nlm.nih.gov/pubmed/25257381
http://dx.doi.org/10.1016/j.biopsycho.2004.05.001
http://www.ncbi.nlm.nih.gov/pubmed/15620791
http://www.ncbi.nlm.nih.gov/pubmed/16040033
http://dx.doi.org/10.1016/j.psyneuen.2007.01.007
http://www.ncbi.nlm.nih.gov/pubmed/17400395
http://www.ncbi.nlm.nih.gov/pubmed/26217067


99. Zebrowitz LA, Andreoletti C, Collins MA, Lee SY, Blumenthal J. Bright, bad, babyfaced boys: Appear-
ance stereotypes do not always yield self-fulfilling prophecy effects. J Pers Soc Psychol. 1998; 75:
1300–1320. PMID: 9866189

100. Van Valen L. A new evolutionary law. Evolutionary Theory. 1973; 1: 1–30.

fWHR and Pubertal Testosterone

PLOS ONE | DOI:10.1371/journal.pone.0153083 April 14, 2016 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/9866189

