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IRIDA (iron-refractory iron-deficiency anaemia) is a rare auto-
somal-recessive disorder hallmarked by hypochromic microcytic
anaemia, low transferrin saturation and high levels of the
iron-regulated hormone hepcidin. The disease is caused by
mutations in the transmembrane serine protease TMPRSS6
(transmembrane protease serine 6) that prevent inactivation of
HJV (haemojuvelin), an activator of hepcidin transcription. In the
present paper, we describe a patient with IRIDA who carries a
novel mutation (Y141C) in the SEA domain of the TMPRSS6
gene. Functional characterization of the TMPRSS6(Y141C)
mutant protein in cultured cells showed that it localizes to similar

subcellular compartments as wild-type TMPRSS6 and binds HJV,
but fails to auto-catalytically activate itself. As a consequence,
hepcidin mRNA expression is increased, causing the clinical
symptoms observed in this IRIDA patient. The present study
provides important mechanistic insight into how TMPRSS6 is
activated.

Key words: haemojuvelin, hepcidin, iron-refractory iron-
deficiency anaemia (IRIDA), matriptase-2, transmembrane
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INTRODUCTION

Patients with IRIDA (iron-refractory iron-deficiency anaemia)
absorb insufficient amounts of iron from the diet and respond
inadequately to oral ferrous sulfate therapy and intramuscular iron
dextran injection [1]. As a consequence of this iron deficiency,
anaemia develops that is characterized by hypochromic
microcytic erythrocytes and low transferrin saturation. IRIDA is
usually diagnosed by routine haematological screening during
childhood. Frequently, the affected subjects do not show the
typical clinical symptoms of iron deficiency; pallor, dry skin
or lesions at the corners of the mouth have been reported in
only a few cases [2-4]. IRIDA is a rare autosomal-recessive
disorder [5] mapped to chromosome 22 (22q12.3-13.2) [2],
which contains TMPRSS6 (transmembrane protease serine 6,
also known as matriptase-2) the gene responsible for IRIDA
[6]. Tmprss6 was initially characterized in the mask mouse,
in which chemically induced mutations resulted in the loss
of the Tmprss6 protease domain. Similar to IRIDA patients
and Tmprss6~/~ mice [7], the mouse model is hallmarked by
microcytic anaemia due to ineffective dietary iron absorption
[8].

TMPRSS6 is a member of the TTSP (type II transmembrane
serine protease) family and is mainly expressed in the liver [9].
Similar to other TTSP members, TMPRSS6 consists of a short
N-terminal intracytoplasmic tail, a type Il transmembrane domain,
a stem region composed of two extracellular CUB [complement
factor C1s/Clr, urchin embryonic growth factor and BMP (bone

morphogenetic protein)] domains and three LDLR (low-density-
lipoprotein receptor class A) domains and a C-terminal trypsin-
like serine protease domain [9]. Between the transmembrane
domain and the stem region there is a low homology SEA (sea
urchin sperm protein, enteropeptidase and agrin) domain [10].
TMPRSSG is rich in post-translational modifications. Consensus
sites for N-glycosylation are located within the SEA domain, the
second CUB domain and within the second LDLR domain [11]. A
total of 37 evolutionarily conserved extracellular cysteine residues
located within the CUB, the LDLR and the protease domains are
at least partially involved in the formation of disulfide bridges
[11]. In silico analysis of human TMPRSS6 revealed a possible
phosphorylation site within the intracytoplasmic tail, which was
hypothesized to be involved in signal transduction [9]. TMPRSS6
is produced as a zymogen, a single chain inactive proenzyme,
which auto-activates itself by cleavage at an arginine residue at the
consensus site RIVGG between the prodomain and the catalytic
domain. The activated catalytic domain remains attached to the
rest of the protein at the cell surface via a single disulfide bridge
[9].

Functionally, TMPRSS6 has been linked to the hepatic iron-
sensing pathway by the observation that hepcidin levels are
strongly increased in IRIDA patients and Tmprss6 mutant mice
[2,6,8]. Hepcidin is a small peptide hormone produced by the
liver in response to iron levels, inflammatory signals, hypoxia
and the erythropoietic drive. Hepcidin controls systemic iron
fluxes by binding to the iron exporter ferroportin, inducing its
internalization and degradation [12]. Thus high hepcidin levels,
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as observed in IRIDA, inhibit intestinal iron absorption and
macrophage iron release.

Under physiological conditions, TMPRSS6 down-regulates
hepcidin levels by binding and proteolytically degrading the
hepcidin activator and BMP co-receptor HIV (haemojuvelin),
a protein mutated in hereditary haemochromatosis type 2 [13].
TMPRSS6 mutations that decrease its proteolytic activity and
prevent HJ'V cleavage cause increased hepcidin levels that impair
iron release from the duodenal enterocytes and macrophages [13].
TMPRSS6 mutations linked to IRIDA are detected throughout the
TMPRSS6 gene. These include missense, nonsense, frameshift
and splice junction mutations [14]. Missense mutations are
predominantly located in the CUB (G442R), LDLR (D521N,
E522K) and protease (L674F and R774C) domains. Only a single
mutation so far has been reported in the SEA domain (A118D)
[15].

In the present paper, we report a novel homozygous missense
mutation (c.422A>G) in exon 4 of TMPRSS6 that replaces
a tyrosine residue with a cysteine residue at amino acid
141. Interestingly, this mutation, located in the SEA domain,
abolishes TMPRSS6 autocatalytic activation, causing an increase
in hepcidin levels and the characteristic IRIDA phenotype.
Together with a previous report [15], our finding suggests that
the SEA domain plays an essential role in TMPRSS6 maturation
and yields new insights into the proteolytic activation mechanism
of this TTSP family member.

MATERIALS AND METHODS
Urinary hepcidin analysis

Hepcidin analysis was performed essentially as described
previously [16]. Briefly, morning urine from the patient and from
four age-and sex-matched healthy volunteers was centrifuged
for 5min at 3000 g. After centrifugation, 7 ul of supernatant
and 3 pul of 0.1M ammonium acetate buffer (pH 6) were mixed,
incubated for 5 min at room temperature (22°C) and directly
applied to a pre-activated CM 10 ProteinChip. Following 30 min
of incubation in a humid chamber, the CM10 strip was washed
three times with 30 mM ammonium acetate (pH 6) and air-dried.
A total of 1 ul of SPA (sinapic acid) was added on to each
spot, air-dried and reapplied. ProteinChips were read using a PBS
IIc SELDI-TOF (surface-enhanced laser-desorption ionization—
time-of-flight) mass spectrometer (BioRad Laboratories) pre-
calibrated with a standard reference including synthetic hepcidin.
Data acquisition parameters were set up to the following: high
mass 50000 Da, mass optimization from 1500 to 10000 Da,
laser intensity 180, detector sensitivity 9, mass deflector 1500 Da,
two warming shots at an intensity of 185 (without warming shot
collection), and acquisition of 50 shots every five positions from
27 to 87.

Data analysis was performed using the Ciphergen ProteinChip®
Software version 3.2. Hepcidin levels, measured as arbitrary
intensity units, were normalized against creatinine values obtained
from the same samples (Analysezentrum, University Clinic of
Heidelberg, Heidelberg, Germany). All samples were spotted and
analysed in triplicate.

Patient clinical analysis

Informed consent was obtained from the parents of the patient and
the healthy volunteers according to German law. Haematological
parameters were measured at the Zentrum fiir Kinder und
Jugendmedizin, St. Annastift, Ludwigshafen, Germany. The iron-
related values (ferritin, transferrin, transferrin saturation, serum
transferrin receptor, free serum iron, iron-binding capacity, zinc
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protoporphyrin, haptoglobin and erythropoietin) were measured
at the Professor Seelig Laboratories, Karlsruhe, Germany.
Patient DNA was extracted from peripheral blood by using
the Qiagen DNeasy blood and tissue kit. Exons 1-18 of
the TMPRSS6 gene were amplified by PCR using Platinum
Taq DNA Polymerase (Invitrogen) and primer pairs published
previously [6]. Sequencing was performed by GATC Biotech.
Chromatograms were visualized with FinchTV (Geospiza) and
were analysed with SeqMan (DNAstar). ALAS2 (aminolevulinate
6 synthase 2; exons 1-10), SLC25A28 (solute carrier family 25,
member 28; exons 1-4), and SLC11A2 (solute carrier family 11,
member 2; exons 2—-16) were PCR-amplified and sequenced at
the Professor Seelig Laboratories, Karlsruhe, Germany.

Plasmids

The vector pcDNA3.1-TMPRSS6, expressing the wild-type
TMPRSS6 ORF (open reading frame) fused to the FLAG epitope
at the C-terminus and the vector pcDNA3.1-mycHIJV expressing
human HJV c¢DNA in fusion with the Myc epitope were kindly
provided by Dr Clara Camaschella (Division of Genetics and Cell
Biology, San Raffaele Scientific Institute, Milan, Italy) [13].

The vector pcDNA3-HJV was created by cloning the PCR-
amplified HJV OREF into the HindIII/EcoRI sites of the pcDNA3
vector. The HJV cDNA was PCR-amplified from HUH-7
cell-derived template cDNA by using the following primers:
HIV-F: CCCAAGCTTATGGGGGAGCCAGGCCA; and HJV-
R: CCCGAATTCTTACTGAATGCAAAGCCACAGAAC (the
recognition site of the restriction enzyme used to clone the PCR
product is in bold).

The vector pcDNA3.1-TMPRSS6(Y141C), expressing the
Y 141C-mutated TMPRSS6 protein fused to the FLAG epitope at
the C-terminus, was obtained using the Gene Tailor Site-Directed
Mutagenesis System (Invitrogen) with the pcDNA3.1-TMPRSS6
as the template and the primers: Y141C-F: CTACAACTCCA-
GCTCCGTCTGTTCCTTTGGGGA; and Y141C-R: AGACG-
GAGCTGGAGTTGTAGTAAGTTCCCA.

The vector for the minigene system was generated by PCR
amplification of 100 ng of patient genomic DNA using primers
spanning from exons 3 to 5 within the TMPRSS6 gene and Pfu
Ultra DNA polymerase (Stratagene): ex3-F: AAAGAATTCGG-
TACAAGGCGGAGGTGATG; and ex5-R: AAACTCGAGCC-
AGGATCACTAGGCCCTCG (the recognition site of the
restriction enzyme used to clone the PCR product is in bold).

The PCR fragment was restriction-digested and cloned into
the EcoRI/Xhol sites of the pcDNA3 vector (Invitrogen). The
pEGFP-TMPRSS6 and pEGFP-TMPRSS6(Y 141C) vectors were
obtained by subcloning the coding sequence of TMPRSS6 from
the pcDNA3.1-TMPRSS6 and pcDNA3.1-TMPRSS6(Y 141C) to
pEGFP-n1 using the HindlIII restriction sites.

All of the vectors were controlled via automatic sequencing
performed by GATC Biotech.

Cell culture

The human hepatoma HuH-7 cell line and the human fibro-
blast HeLa cell line were cultured in high glucose DMEM
(Dulbecco’s modified Eagle’s medium) with GlutaMAX
(Invitrogen) supplemented with 10% (v/v) heat-inactivated
FBS (fetal bovine serum) (Invitrogen), 100 units/ml penicillin,
100 pg/ml streptomycin and 1 mM sodium pyruvate. The human
hepatoma Hep3B cell line was cultured in EMEM (Eagle’s
minimum essential medium) supplemented with 10 % (v/v) FBS,
1 mM sodium pyruvate, 1 mM glutamine, 100 units/ml penicillin
and 100 pg/ml streptomycin. Cells were maintained ina 5 % CO,
atmosphere at 37 °C. Cell transfections were performed by using
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the TransIT-LT1 Transfection Reagent (Mirus Bio), according to
manufacturer’s guidelines.

Microscopy

To analyse intracellular TMPRSS6 protein expression, 1.5 x 10°
HeLa cells were plated on 420 mm? Lab-Tek chambered
coverglass slides (Nunc) and transfected with pPEGFP-TMPRSS6
or pEGFP-TMPRSS6(Y141C). After 48h, the medium was
replaced with DMEM complete medium without Phenol Red and
the cells were analysed by live microscopy.

To analyse surface TMPRSS6 protein expression, 1.5 x 10°
HeLa cells were plated on to a glass coverslip and transfected with
pcDNA3.1-TMPRSS6 or pcDNA3.1-TMPRSS6(Y141C). After
48 h, the samples were fixed in 3% PFA (paraformaldehyde),
blocked with 1% (w/v) BSA/0.3 M glycine in PBS, incubated
overnight at 4°C with an anti-FLAG (1:200 dilution; Sigma
F3165) primary antibody and subsequently for 1 h with a FITC-
conjugated anti-(mouse IgG) antibody (1:250 dilution; Sigma
F5262). Cells were mounted on slides with Mowiol and analysed
by microscopy. In both cases, samples were visualized using a
PerkinElmer Improvision Ultraview VoX Spinning disc confocal
microscope and were analysed with Improvision Volocity 5.3.1
and ImagelJ 1.42q.

RNA isolation and qRT-PCR (quantitative real-time PCR)

Total RNA was isolated using the Qiagen RNAeasy kit
according to the manufacturer’s instruction. Total RNA (1 pg)
was reverse-transcribed in a 25 ul reaction mixture using
MMLV (Moloney-murine-leukaemia virus) reverse transcriptase
(Fermentas) and random oligomers as primers. SYBR green real-
time PCR was performed using the ABI StepONE Plus real-
time PCR system (Applied Biosystems) using the following
primers: hs_GAPDH-F, CATGAGAAGTATGACAACAGCCT;
hs_GAPDH-R, AGTCCTTCCACGATACCAAAGT; hs_HAMP-
F, CTCTGTTTTCCCACAACAGAC; and hs_ HAMP-R, TAG-
GGGAAGTGGGTGTCTC.

Relative hepcidin mRNA expression was normalized to
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) mRNA.
Results were calculated using the Pfaffl method [17].

Luciferase assay

Hep3B cells (9.5 x 10° cells/well) were plated on to a 12-
well plate. After 24 h, the cells were transfected with 200 ng
of pGL3-hepcidin(WT_2.7Kb) reporter vector containing 2.7 kb
of the 5-flanking genomic region of the human hepcidin
gene plus its 5-UTR (untranslated region), 10 ng of a control
plasmid containing the Renilla gene under the control of the
CMV (cytomegalovirus) promoter, 400 ng of pcDNA3-HJV
vector and 200 ng of pcDNA3.1-TMPRSS6 or pcDNA3.1-
TMPRSS6(Y141C). The next day, cells were lysed in passive
lysis buffer (Promega), and cellular extracts were analysed for
luciferase activity using the Dual Luciferase Reporter assay
system (Promega) and a Centro LB 960 luminometer (Berthold
Technologies).

Immunoprecipitation assay

HeLa cells (2 x 10°) were transfected with 7.5 g of pcDNA3.1-
mycHJV and with 7.5 ug of pcDNA3.1-FLAG (mock),
7.5 ng of pcDNA3.1-TMPRSS6 or 7.5 ug of pcDNA3.1-
TMPRSS6(Y141C). After 24 h, cells were lysed in NET buffer
[SO0 mM Tris/HC1 (pH 7.4), 150 mM NaCl, 5 mM EDTA, 1%
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(v/v) Triton X-100] supplemented with sodium fluoride, PIC
(phosphoinositidase C), PSMF and sodium orthovanadate, The
lysate was incubated with 40 ul of pre-equilibrated anti-FLAG
M2 affinity gel (Sigma A2220) for 4 h. After three washing steps
in NET buffer, samples were eluted in Laemmli loading buffer
[62.5 mM Tris/HCI (pH 6.8),2 % (w/v) SDS, 10 % (v/v) glycerol,
0.1 % 2-mercaptoethanol and 0.0 005 % Bromophenol Blue] and
the eluted proteins were separated by SDS/PAGE (10 % gel) for
Western blotting. Immunorecognition was performed by using
an anti-FLAG (Sigma F7425) or an anti-c-Myc (Sigma C3956)
polyclonal antibody.

Analysis of TMPRSS6 autocatalytic cleavage

HeLa cells (2.2 x 10%) were seeded on to a 10-cm-diameter dish
and transfected with 15 ug of pcDNA3.1-TMPRSS6, 15 ug of
pcDNA3.1-TMPRSS6(Y141C) or 15 ug of pcDNA3.1-FLAG
(mock) using the TransIT-LT1 Transfection Reagent (Mirus Bio)
in DMEM complete medium. The next day, cells were washed
with PBS and the medium was exchanged with serum-free
OPTImem (Gibco) with or without 0.1 mM 2-mercaptoethanol
to create a reduced environment. After 12 h, the supernatant was
collected and concentrated using an Amicon Ultra 3K centrifugal
filter (Millipore) (90 min at 4 °C at 4000 g). The cells were lysed
in NET buffer supplemented with sodium fluoride, PIC, PSMF
and sodium orthovanadate.

Protein concentrations were determined using the BCA
(bicinchoninic acid) assay (Pierce). A portion (50 ug) of
total protein extract or concentrated supernatant was separated
by SDS/PAGE (10% gel) and transferred on to a Protran
BAS3 nitrocellulose membrane. Monoclonal anti-tubulin (Sigma
T5168), anti-FLAG (Sigma F7425), peroxidase-conjugated
anti-(mouse IgG) (Sigma A9044) and peroxidase-conjugated
anti-(rabbit IgG) (Sigma A0545) antibodies were used for
immunorecognition.

Bioinformatic analysis

Sequence alignment of the SEA domain was performed by
ClustalW (EBI; http://www.ebi.ac.uk/clustalw/). The sequences
were retrieved from the GenBank® database using the following
accession numbers: Pan troglodites, XR_024662; from the
NCBI (National Center for Biotechnology Information) protein
database using the following accession numbers: Homo sapiens,
NP_705837; Rattus norvegicus, NP_001124028; Mus musculus,
NP_082178; Canis familiaris, XP_531743; Macaca mulatta,
XP_001085319 and Monodelphis domestica, XP_001376304;
and from the ENSEMBL database with the following
accession numbers: Pongo pygmaeus, ENSPPYP00000013149;
Cavia porcellus, ENSCPOP00000004089; and Ornithorhynchus
anatinus, ENSOANP00000021472.

The ribbon structure was obtained by using the crystal structure
of the SEA domain of transmembrane protease from M. Musculus
(PDB ID 2E7V) as the structural template and was readapted using
the Swiss-Prot DeepView program version 4.0.1.

RESULTS
Patient clinical synopsis

Our patient is the second son of healthy non-consanguineous
parents from Lebanon. Haematological disorders have not
been reported in his family. In his second year of age,
microcytic hypochromic anaemia was diagnosed. Subsequent iron
supplementation did not improve his haematological parameters.
As a 10-year-old boy, his family moved to Germany and he was
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Table 1

An asterisk indicates pathological values. MCH, mean corpuscular haemoglobin content; MCV,
mean corpuscular volume.

Haematological parameters

Parameter Patient value Normal range
Ferritin (ng/ml) 86 17-105
Transferrin (mg/dl) 262 210-315
Iron (1g/dl)* 12-18 92-184
Transferrin saturation (%) 3.3-48* 15-45
Soluble transferrin receptor (1.g/dl) 4.77-5.03* 0.83-1.76
MCV (fl)* 59.8-62.5* 83-97

MCH (pg)* 16.4-17.7* 28-34
Haemoglobin (g/dI)* 7.9-9.4* 14-18

Zinc protoporphyrin (mmol/mol of hagm) ~ 378.2* <40

referred to our Pediatric Haematology Department because of
chronic weakness, occasional bone pain and extensive sleeping.
His physical strength and fitness were normal, and he attended a
regular school. He ate normal varied food and had normal appetite
and stools. He had not suffered from infection or fever in recent
months. Body weight was in the normal range between the tenth
and 25th percentile, but his height had fallen to just below the
third percentile. The laboratory parameters showed a persistent
decrease in haemoglobin (7.9-9.4 g/dl), erythrocyte number
[(4.82-5.5) x 10%/ul], mean corpuscolar volume (59.8-62.5 fl),
and mean corpuscolar haemoglobin (16.4—17.7 pg). Reticulocytes
and other blood cell counts were within the normal range, with
the exception of thrombocytes which sometimes were increased
with a maximum of 5.48 x 10°/ul. We found normal serum liver
and renal parameters, including normal total protein and albumin.
Analysis of iron metabolism parameters showed normal values for
serum ferritin, transferrin and iron-binding capacity. By contrast,
transferrin saturation (3.3-4.8 %) and serum iron levels (12—
18 pg/dl) were pathologically low, whereas serum transferrin
receptor levels (4.77-5.03 ng/dl) and zinc protoporphyrin in
erythrocytes (332-378 wmol/mol of haemoglobulin; normal <40)
were significantly increased. Bone marrow cytology showed
normal blast numbers, erythropoiesis and megakaryopoiesis,
both with discrete dysplastic features, and granulopoiesis. Iron
staining discovered a clear lack of iron in macrophages. The bone
marrow cytogenetic findings were normal. Pathologically low *Fe
incorporation was observed from a scintigraphic examination, and
this finding corresponded with the clinical observation of non-
effective iron supplementation.

The haematological data collected from the proband are
summarized in Table 1.

Urinary hepcidin levels are elevated in the IRIDA patient

Hypochromic microcytic anaemia with low transferrin saturation
that cannot be treated by iron supplementation is a strong
indication for IRIDA. Since this disorder is hallmarked by
increased hepcidin expression, we analysed urinary hepcidin
levels in the patient compared with four age-matched healthy
male donors. The amount of the 25-amino-acid mature hepcidin
peptide (Hamp-25) was analysed using SELDI-TOF MS and
CM10 ProteinChip-arrays [16]. Hepcidin levels were normalized
against creatinine (Figure 1). The data show severely increased
(15-fold) hepcidin levels in the patient’s urine, supporting the
diagnosis of IRIDA.

¢.442A>G, a novel mutation in exon 4 of TMPRSS6

To PCR-amplify all 18 TMPRSS6 exons and exon/intron
boundaries, PCR primers were designed within intronic
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Urine was analysed from the IRIDA patient and four healthy age-matched male volunteers
(Ctrl) by SELDI-TOF MS applying CM10 ProteinChips. Hepcidin arbitrary intensity units were
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Sequence analysis of the TMPRSS6 gene indicates heterozygosity for the novel ¢.442A>G
mutation in both parents, and homozygosity for the same mutation in the affected proband
(marked by an arrow).

sequences. Sequence analysis of the PCR products failed
to detect any TMPRSS6 mutation associated previously with
IRIDA. Instead, we identified a homozygous nucleotide exchange
(c.442A>G) within exon 4 which, together with exons 3 and
5, constitutes the SEA domain. To exclude hemizygosity of the
allele, we also sequenced exon 4 of TMPRSS6 of both parents. As
shown in Figure 2, a heterozygous c¢.442A>G base substitution
was detected in both parents, clearly indicating that the mutation
was homozygous in the patient.

Mutations in ALAS2, SLC25A28 (MFRN2) and SLCII1A2
(DMTI) were excluded in previous analyses. Within the
SLCI1A2 gene, a heterozygous SNP (single nucleotide poly-
morphism) in intron 5 (IVS5 + 60 C>T) was detected. Genetic
haemoglobin analysis discovered a heterozygote «?’-globin
gene deletion which resulted in an a™-thalassaemia trait.

TMPRSS6 ¢.422A>G does not affect splicing of exon 4

The novel c.442A>G mutation within exon 4 of the TMPRSS6
gene is located ten nucleotides from the 3’-end of the exon and
replaces the codon triplet TAT by TGT. This raises the possibility
that the newly formed GT sequence could act as an aberrant ‘splice
donor’ that may trigger incorrect splicing between the exons 4 and
5, leading to a premature termination of the TMPRSS6 protein.
Because TMPRSS6 expression is restricted to liver tissue [9],
a splicing defect cannot be investigated by mRNA analysis of the
patient’s blood cells. We therefore designed a minigene that spans
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A minigene spanning exons 3 to 5 of the TMPRSS6 gene was transfected in Hela cells. Correct splicing between exons 4 and 5 was detected by sequence analysis of the resulting cDNA. The
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¢DNA (GenBank® accession number NM_153609).
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SESAKAQKMLOELVASTRLGTYYNSSSVYSFGEGPLTCFFWFILDIPEYQRLTLSPEVVRELLVDELLS--NSS
TETAKAQKMFQELVASTRLGTYYNSSSIYAFGEGPLICFFWFILDIPEYQRLTLSPEVVRELLVGELLS--NSS
FRSESAKAQGMLRELITSTRLGTHYNSSSVYAFGEGPLTCFFWFVLKIPEHLQPTLSPEMVRVLLVEELLTAANAS
FRSETARAQKMLKELIASTRLGTYYNSSSVYSFGEGPLTCFFWFILQIFPEHRRPMLSPEVVRALLVEELLSTANSS
SETAKAQKMLRELIFTTRLAPYYNSSTVYAFGEGPLT
TSSRLYSGSVAVLDRQFFPDLANHESGAFRSEIAKAQIMLKELISATRLSAYYNSSTVYSFGAKPLTCFFWFILOVPNSKVQKMSPDWVKEVLVDELKARANAS

CFFWFILQIPESRRQTLTPEAVKEVLVERLLSNANET

SEA DOMAIN

Figure 4 The tyrosine residue at position 141 is highly phylogenetically conserved

() Alignment of the TMPRSS6 SEA domain. Tyr'*', shown in bold red, is highly evolutionarily conserved. (B) Ribbon structure of the human SEA domain of TMPRSS6 generated by
adaptation of the crystal structure of the SEA domain of the murine TMPRSS11d transmembrane protease (PDB ID 2E7V). The localization of Tyr'*" within the second B-sheet of this domain is

indicated.

exons 3 to 5 (including introns 3 and 4) of the TMPRSS6 gene
containing the c¢.442A>G mutation to transfect HeLa cells. As
shown in Figure 3, this minigene construct is correctly spliced,
suggesting that the c¢.442A>G mutation is unlikely to cause
aberrant splicing.

TMPRSS6(Y141C) impairs TMPRSS6 maturation

The c.442A>G base substitution exchanges a tyrosine residue
with a cysteine residue at amino acid 141 within the SEA
domain of TMPRSS6. Phylogenetic sequence analysis of the

© 2010 The Author(s)

TMPRSS6 protein indicates that amino acid residue 141 is
highly conserved, suggesting that this tyrosine residue may be
important for TMPRSS6 function (Figure 4A). Introduction of an
additional cysteine residue within the second S-sheet of the
SEA domain (Figure 4B) may interfere with secondary structure
formation of TMPRSS6, a protein that already contains 37
cysteine residues. We therefore next assessed whether the
TMPRSS6(Y141C) mutation causes protein mislocalization.
TMPRSS6(Y141C) or TMPRSS6 protein fused to EGFP
(enhanced green fluorescent protein) was expressed in HeLa
cells and the fluorescent signal was analysed by confocal
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TMPRSS6

TMPRSS6(Y141C)

Figure 5
regions

TMPRSS6 and TMPRSS6(Y141C) localize to similar subcellular

(A) Localization of transfected TMPRSS6-EGFP and TMPRSS6(Y141C)-EGFP in Hela
cells by live confocal microscopy. (B) Cell-surface expression of TMPRSS6-FLAG and
TMPRSS6(Y141C)—FLAG in transiently transfected HelLa cells. Cells were fixed without
permeabilization, and membrane proteins were detected using an anti-FLAG antibody. Signal
detection was by confocal microscopy.

microscopy. As shown in Figure 5(A), both the overexpressed
wild-type and mutant TMPRSS6 proteins localize predominantly
in intracellular compartments (e.g. the endoplasmic reticulum).
To assess membrane localization of TMPRSS6, Hela cells
were transfected with TMPRSS6 or TMPRSS6(Y141C), both
C-terminally fused with a FLAG epitope that is predicted
to be located in the extracellular space. The cells were
analysed by immunocytochemistry using primary anti-FLAG
and secondary FITC-conjugated antibodies on fixed non-
permeabilized cells. As shown in Figure 5(B), both the
TMPRSS6 and TMPRSS6(Y141C) proteins localize to the cell
surface, suggesting that faulty processing and localization of the
TMPRSS6 mutant protein does not explain IRIDA in the patient.

TMPRSS6 was shown to control hepcidin mRNA expression by
binding and proteolytically cleaving HJV [18]. To assess whether
amino acid residue 141 of TMPRSSG6 is critical for binding HIV
we next transfected HeLa cells with a Myc-tagged HJV fusion
construct alone or together with plasmids coding for TMPRSS6
or TMPRSS6(Y 141C) proteins both tagged with a FLAG epitope.
Immunoprecipitation of TMPRSS6 or TMPRSS6(Y141C) using
anti-FLAG antibodies both detects HIV protein at the expected
molecular mass of 55 kDa (Figure 6A, lanes 2 and 3). No signal
was detected in the sample transfected with HJV and a control
vector (Figure 6A, lane 1). This experiment demonstrates that the
Y141C mutation does not affect binding to HJV.

TMPRSS6, like other serine proteases, is auto-activated
by proteolytic cleavage within a RIVGG motif at its pro-
domain/catalytic domain junction site. Once cleaved, the 30 kDa
catalytic domain remains attached to the rest of the protein
via a disulfide bridge. HelLa cells were transfected with a
control plasmid or with plasmids coding for TMPRSS6 or

© 2010 The Author(s)

TMPRSS6(Y141C). Subsequently, both the cell lysates as
well as the concentrated medium supernatant were analysed
for TMPRSS6 expression by Western blotting. Interestingly,
only conditioned medium from cells transfected with the
TMPRSS6 plasmid revealed a TMPRSS6 protein fragment of
approx. 30 kDa, which corresponds to the expected mass of
cdTMPRSS6 (catalytic domain of TMPRSS6) (Figure 6B, lane
2). A similar fragment failed to be detected in cells transfected
with the TMPRSS6(Y141C) (Figure 6B, lane 3) or control
vectors (Figure 6B, lane 1), despite efficient expression of
the TMPRSS6(Y141C) protein as detected in the cell lysate
(Figure 6B, middle panel). Analysis of equal protein amounts
was assured by detection of tubulin (Figure 6B, lower panel).

A lack of cdTMPRSS6 in the conditioned medium of
TMPRSS6(Y 141C)-transfected cells may either indicate a lack
of proteolytic auto-activation of the mutated protein or increased
binding stability of the catalytic domain to the rest of the protein,
due to the formation of an extra disulfide bond in the Y141C-
mutated protein.

In an attempt to distinguish between these two possibilities,
we repeated the experiment but added the reducing agent 2-
mercaptoethanol (0.1 mM) to the cell culture medium. As shown
in Figure 6(C) (upper panel, lanes 3 and 4), HeLa cells transfected
with TMPRSS6(Y141C) failed to release cdTMPRSS6 into the
medium, both under normal and reducing conditions. By contrast,
cdTMPRSS6 was readily detected under both conditions in cells
transfected with the wild-type construct (Figure 6C). Efficient
protein expression of TMPRSS6 and the mutant form were found
in the cell lysate (Figure 6C, lower panel).

Taken together these data support the interpretation that
TMPRSS6(Y141C) fails to be auto-activated by proteolytic
cleavage.

TMPRSS6(Y141C) overexpression increases hepcidin mRNA
expression

TMPRSS6(Y 141C) overexpression leads to the synthesis of an
inactive form of TMPRSS6. To assess whether this defect affects
hepcidin mRNA expression, we next transfected the human
hepatoma cell line Hep3B with a firefly luciferase reporter
vector under the control of the full-length hepcidin promoter,
together with expression vectors coding for HIV and TMPRSS6
or TMPRSS6(Y141C) proteins. Firefly luciferase activity was
normalized with Renilla luciferase under the control of a
constitutive CMV promoter.

As expected, transfection of the HI'V expression vector resulted
in a 3.5-fold increase in luciferase activity. Co-transfection
with TMPRSS6 completely abolished this effect. Importantly,
co-transfection of TMPRSS6(Y141C) only slightly attenuated
the HJV-controlled hepcidin response, resulting in a 2-fold
activation of the hepcidin promoter (Figure 7A). Similar findings
were obtained analysing endogeneous hepcidin mRNA levels
(Figure 7B), suggesting that the amino acid substitution at position
141 is sufficient to inhibit HI V-controlled hepcidin activation and,
thus, probably explains the IRIDA phenotype.

DISCUSSION

In the present paper, we report the clinical case of a 10-year-
old boy with IRIDA hallmarked by microcytic hypochromic
anaemia that could not be resolved by iron administration. Iron
treatment was probably ineffective as a consequence of high
hepcidin levels in the blood, reflected by increased urinary
hepcidin excretion (Figure 1), which blocks duodenal iron
uptake and macrophage iron release [19]. Sequence analysis
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Figure 6 TMPRSS6(Y141C) binds HJV, but fails to auto-catalytically activate itself

(A) Hela cells were transfected with plasmids expressing HJV-Myc or pcDNA3.1-FLAG (mock), TMPRSS6-FLAG or TMPRSS6(Y141C)-FLAG as indicated. After TMPRSS6E immunoprecipitation using
an anti-Flag antibody (IPaFLAG), TMPRSS6 and the TMPRSS6-bound HJV were immunorecognized by Western blotting using an anti-FLAG antibody (WBoFLAG) or an anti-Myc antibody (WBaMyc)
respectively. (B) HeLa cells were transfected with pcDNA3.1-FLAG (mock), TMPRSS6-FLAG or TMPRSS6(Y141C)-FLAG. After 24 in serum-free medium, the conditioned medium (CM) was collected,
concentrated and analysed for the presence of the proteolytic TMPRSSE fragments by Western blotting. (C) HelLa cells were transfected with TMPRSS6-FLAG or TMPRSS6(Y141C)-FLAG, washed
and incubated with serum-free OPTImem (Gibco) with or without 0.1 mM 2-mercaptoethanol (8-ME) for 12 h. The conditioned medium was collected, concentrated and analysed by Western blotting

for cdTMPRSSS. Effective TMPRSSE transfection was assessed in the cell lysate (CL).

detected a homozygous mutation (c.422A>G) within exon 4
of the TMPRSS6 gene (Figure 2). We initially hypothesized
that replacing the codon triplet TAT with TGT may generate
an additional ‘splice donor’ sequence. However, a transfected
minigene containing the mutation was accurately spliced between
exon4 and 5 (Figure 3), suggesting that an amino acid replacement
of a tyrosine residue by a cysteine residue at amino acid 141 may
affect TMPRSS6 function. The mutation is located within the
SEA domain of TMPRSS6, which is predicted to be localized
within the extracellular part of the TMPRSS6 protein. An SEA
domain is also present in enteropeptidase, another TTSP family
member, in all of the HAT/DESC (human airway trypsin-like
protease/differentially expressed in squamous cell carcinoma)

© 2010 The Author(s)

subfamily proteins and in the closely related matriptase and
matriptase-3 [20]. The biological role of this domain remains
to be determined. In some proteins, the SEA domain is subject to
autoproteolysis causing the production of a soluble form of
the protein that is released from the cell surface. Such an
autoproteolytic event can be accelerated by conformational stress
within the SEA domain itself [21]. Cleavage occurs between
the glycine and serine residues within a conserved GSVVV
(mucin), GSVIV (enteropeptidase) or GSVIA (matriptase) motif
[21-23]. It is not yet clear whether the SEA domain of the human
TMPRSS6 is also subject to autoproteolysis. Analysis of the
primary amino acid sequence failed to detect a common cleavage
motif identifying only a putative GSLRV motif.
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Figure 7 TMPRSS6(Y141C) expression fails to efficiently suppress hepcidin promoter activity

(A) Luciferase assay. The reporter plasmid pGL3-hepcidin(WT_2.7kb) was transfected with either HJV alone or together with TMPRSS6 or TMPRSS6(Y141C) in Hep3B cells. At 24 h later, luciferase
activity was measured and normalized against Renilla luciferase. Results are mean + S.D. fold changes of transfected cells compared with cells transfected with the reporter construct (WT_2.7kb)
only. (B) gRT-PCR assay. Hep3B cells were transfected with either HJV alone or together with TMPRSS6 or TMPRSS6(Y141C). At 24 h later, total RNA was extracted. Hepcidin mRNA expression was

analysed by gRT-PCR and was normalized to GAPDH. Results are mean + S.D. fold changes.

The TMPRSS6(Y 141C) protein localizes to similar subcellular
regions as the wild-type TMPRSS6 protein (Figure 5), suggesting
that selective retention of TMPRSS6(Y141C) protein within
the cytoplasm does not occur. Immunoblotting of medium
supernatant of TMPRSS6(Y141C)- and TMPRSS6-transfected
cells failed to detect the entire extracellular domain of the
TMPRSS6 protein as a consequence of cleavage within the SEA
domain, in contrast with findings by Ramsay and co-workers [10],
who detected fragments of the appropriate size in both wild-type
and mutant TMPRSS6 proteins.

So far, it is not clear which protein domain of TMPRSS6
binds to HJV and vice versa. In the present report, we
show that the TMPRSS6(Y141C) mutation does not affect co-
immunoprecipitation with HJV, suggesting that the interaction
domain may be localized within other domains of TMPRSS6.

Finally, we show that the Y141C amino acid substitution
affects the maturation of the TMPRSS6 protein. TMPRSS6
is initially synthesized as an inactive proenzyme that, upon
auto-activation, cleaves the C-terminal catalytic domain within
the RIVGG consensus sequence. The cleaved domain remains
attached to the rest of the protein via a disulfide bond. Western
blot analysis (under reducing conditions) of tissue culture
medium from cells transfected with TMPRSS6 revealed a 30 kDa
fragment that corresponds in size to the activated cdTMPRSS6
protein. In addition, we detected a minor 60 kDa fragment
that has been proposed previously to represent a dimeric form
of cdTMPRSS6 [18]. Interestingly, both the 30 and 60 kDa
fragments were undetectable in TMPRSS6(Y 141C)-transfected
cells. It is unlikely that the additional cysteine residue in
TMPRSS6(Y141C) may have stabilized the interaction between
cdTMPRSS6 and the rest of the protein, because the addition of
2-mercaptoethanol to the cell culture medium did not result in the
detection of cdTMPRSS6 upon expression of TMPRSS6(Y141C)
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(Figure 6C). Our present data thus suggest that the tyrosine
residue at amino acid 141 is probably required for TMPRSS6
autocatalytic cleavage. TMPRSS6 auto-activation is critical for
protein function because transfection of TMPRSS6(Y141C)
fails to attenuate hepcidin promoter activity (Figure 7). As a
consequence, hepcidin levels will be increased (Figure 1) and
IRIDA will develop.

Interestingly, an additional mutation in the SEA domain
(A118D) was recently shown to be critical for TMPRSS6 auto-
activation [15]. It is thus intriguing to speculate that the SEA
domain could act as a scaffold structure that maintains TMPRSS6
folding in order for auto-activation to occur. Replacement of a
tyrosine residue with an additional cysteine residue within the
second S-sheet of the SEA domain (Figure 4B) may interfere with
the formation of disulfide bridges within TMPRSS®6, a protein that
already contains 37 cysteine residues. Alternatively, the mutation
could affect N-linked glycosylation of the SEA domain that may
affect protein stability.

Together with other findings, our present results suggest that
unprocessed TMPRSS6(Y 141C) still reaches the cell surface and
interacts with HJV, but fails to cleave HJV. As a consequence,
the BMP/SMAD4 signalling pathway is hyperactive resulting in
excess hepcidin transcription. Functional characterization of the
TMPRSS6(Y141C) thus gives novel insight into understanding
TMPRSS6 function and the pathogenesis of IRIDA.
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