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ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by
alternatingly cycling between ticks and vertebrates. During each stage of the infec-
tious cycle, B. burgdorferi produces surface proteins that are necessary for interac-
tions with the tick or vertebrate tissues it encounters while also repressing the syn-
thesis of unnecessary proteins. Among these are the Erp surface proteins, which are
produced during vertebrate infection for interactions with host plasmin, laminin, gly-
cosaminoglycans, and components of the complement system. Erp proteins are not
expressed during tick colonization but are induced when the tick begins to ingest
blood from a vertebrate host, a time when the bacteria undergo rapid growth and
division. Using the erp genes as a model of borrelial gene regulation, our research
group has identified three novel DNA-binding proteins that interact with DNA to
control erp transcription. At least two of those regulators are, in turn, affected by
DnaA, the master regulator of chromosome replication. Our data indicate that B.
burgdorferi has evolved to detect the change from slow to rapid replication during
tick feeding as a signal to begin expression of Erp and other vertebrate-specific pro-
teins. The majority of other known regulatory factors of B. burgdorferi also respond
to metabolic cues. These observations lead to a model in which the Lyme spirochete
recognizes unique environmental conditions encountered during the infectious cycle
to “know” where they are and adapt accordingly.
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All organisms require mechanisms to detect their environment, in order to produce
only those proteins that are useful in specific conditions. This is particularly impor-

tant for vector-borne pathogens, which must survive in two distinct host types while
also facilitating transmission back and forth between those hosts. An understanding of
a pathogen’s sensory and signal transduction mechanisms may reveal critical compo-
nents that can be targeted for development of novel therapies.

Lyme disease (Lyme borreliosis) is a potentially debilitating disease of humans and
domestic animals. The incidence of this disease has been steadily increasing, in part
due to expanding ranges of vector ticks (1). Lyme disease can manifest in many tissues
and organs, with symptoms that include arthritis, meningitis, facial nerve paralysis, and
atrioventricular nodal block. Failure to treat this infection promptly and adequately can
result in persistent debilitating effects or, sometimes, death (2–4).

The infectious agent of Lyme disease, Borrelia burgdorferi sensu lato (hereafter called
B. burgdorferi, for simplicity), does not produce classical toxins or other recognizable
virulence factors that directly cause host damage. Instead, disease symptoms are due
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to overly robust immune system reactions to bacterial components (5–10). Thus, to
cause clinical disease, B. burgdorferi needs only to colonize and survive in the patient’s
body.

B. burgdorferi is transmitted to humans and other vertebrates through the bites of
infected Ixodes species ticks. Transmission is a complex, multistep process (5, 11, 12). First,
bacteria within the midgut of a tick detect when the tick vector is imbibing a blood meal,
change from a relatively inert metabolism to one of rapid replication and movement, and
then alter the composition of their outer membrane proteins from tick-specific adhesins to
proteins that are optimal for vertebrate infection. Next, bacteria penetrate the tick midgut
wall, invade the salivary glands and ducts, and pass with saliva into the bite wound.
Following inoculation into the vertebrate host, B. burgdorferi migrates through solid host
tissues and in the bloodstream and then establishes long-term colonization of a variety of
organs and tissues. These complexities require that B. burgdorferi efficiently determines its
location in the tick-vertebrate infectious cycle and produces only those proteins and other
factors that are essential for that time and place.

The Lyme disease spirochete encodes only two regulatory two-component systems
(13, 14). Only one of those, Hk1-Rrp1, includes a signal receptor/histidine kinase that
passes through the inner membrane and can, therefore, detect an external signal(s) (15–
19). The other two-component system, Hk2-Rrp2, has a cytoplasmic receptor/histidine ki-
nase, implying response to an internal signal(s) (19–25). However, investigations have
revealed that B. burgdorferi employs a complex signaling network to control production of
proteins (26–28). With the exception of Hk1-Rrp1, all known regulatory factors are con-
trolled by rates of bacterial replication and/or levels of cytoplasmic factors (27–29). That
realization begs the question of why B. burgdorferi can coordinate differential expression
of numerous proteins during its complex infectious cycle by sensing internal cues.

Herein, we describe the elucidation of signaling pathways that are used by B. burg-
dorferi to control production of a family of infection-associated proteins, along with a
hypothesis of how that network meshes with the Lyme spirochete’s natural tick-verte-
brate infectious cycle.

B. BURGDORFERI AS AMODEL VECTOR-BORNE PATHOGEN

In addition to being the causative agent of a significant human disease, B. burgdor-
feri has emerged as a valuable model organism for studies of vector-borne bacteria
and of the Spirochaetota phylum in general. The following features of B. burgdorferi
contributed to completion of the studies described in the remainder of this review and
which continue to advance our understanding of this infectious bacterium and the
pathogenesis of Lyme disease.

B. burgdorferi is readily cultivated in the laboratory (30, 31). Although currently used
culture media are complex and contain undefined ingredients, analyses of bacterial
physiological responses can be readily observed in response to variations in concentra-
tions of medium ingredients, temperature, pH, osmotic strength, or other factors (19,
29, 32–34). For instance, replacement of glucose with other compounds enabled char-
acterization of carbohydrate utilization by B. burgdorferi (35).

Additionally, the entire infectious cycle of the Lyme disease bacterium can be repli-
cated in the laboratory, using ticks and model vertebrate hosts such as mice, rats, rab-
bits, and macaques (36–39). Thus, functions for proteins and other bacterial factors can
be precisely assessed during infection processes.

B. burgdorferi is a member of Spirochaetota, a phylum of bacteria that diverged
many millennia ago from the ancestors of the more commonly studied Proteobacteria
and Firmicutes (40, 41). Initial attempts to genetically manipulate B. burgdorferi were
unsuccessful, due to a combination of commonly used selectable markers not being
transcribed by the spirochete and the inability of commonly used plasmids to replicate
(42, 43). However, a stepwise approach, from recombination of an antibiotic resist-
ance-encoding mutation into the chromosome, followed by use of that locus to inte-
grate circular DNA via single crossover, led to the development of numerous selectable
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markers, cloning vectors, fluorescent tags, and other genetic tools (42–60). CRISPR-in-
terference (CRISPRi) methods were recently developed and have been exploited to
knock down expression levels of B. burgdorferi proteins (61).

B. burgdorferi naturally contains multiple, distinct replicons, some of which encode
essential infection-associated genes, and extended cultivation may result in spontaneous
loss of one or more of those replicons (13, 14, 62–64). However, there are simple methods
to screen transformants for the presence of all replicons, adding a step to the generation
of mutants in infectious bacteria but a step that is usually not insurmountable (65). Studies
of cultured B. burgdorferi can be simplified by using clonal strains with minimal, yet highly
stable, genomes (66, 67). To date, all known regulatory factors of Lyme disease Borrelia
spp. are encoded on replicons that are never, or rarely, lost during cultivation (27, 28).

INITIAL OBSERVATIONS OF GENE/PROTEIN REGULATION AND SUBSEQUENTMODELS

Despite the infectious agent of Lyme disease having been identified in 1982 (68,
69), the first investigations of gene and protein regulation by B. burgdorferi were not
published until 1995. B. burgdorferi requires a specific outer surface protein, OspC, for
the initial stages of vertebrate infection (70–81). In their seminal studies, Schwan and
colleagues observed that B. burgdorferi within the midguts of unfed ticks did not pro-
duce OspC, while the onset of tick feeding induced the bacteria to produce substantial
quantities of OspC (32) (Fig. 1).

Schwan et al. further observed that B. burgdorferi cultured at 23°C produced signifi-
cantly less OspC protein than did bacteria that had been transferred from 23 to 37°C
(32). This change is not a heat shock response but requires several generations of bacte-
rial replication at the warmer temperature (33). Such temperature shift studies are gener-
ally accomplished in the laboratory by diluting a mid-exponential phase 23°C culture
1:100 into fresh medium, incubating the new aliquot at 35 to 37°C to mid-exponential

FIG 1 Natural infectious cycle of the Lyme disease spirochete. There are three postembryonic life
stages of Ixodes species ticks: larva, nymph, and adult (not shown). Each stage feeds once and then
molts to the next stage. Adult females feed once, lay eggs, and then die. In areas where Lyme disease
is endemic, larvae and nymphs feed on the same vertebrate species, while adults feed on different
hosts and therefore do not play major roles in the maintenance of B. burgdorferi. There is essentially no
transmission of B. burgdorferi through tick eggs, so larvae are uninfected upon hatching. Larvae acquire
B. burgdorferi if they feed on an infected reservoir vertebrate. Bacteria colonize the tick’s midgut and
persist through the molt into the nymph stage. When a nymphal tick begins to feed, bacteria in the
midgut undergo significant metabolic changes, penetrate the midgut wall, enter the salivary glands,
and are injected into the vertebrate host with the tick’s saliva. B. burgdorferi in persistently infected
vertebrates produces Erp surface proteins but not OspC. The spirochetes cease production of Erps after
acquisition by feeding larvae, such that unfed nymphal ticks are colonized by bacteria that lack both
Erps and OspC. When the tick begins to feed, OspC and Erps are induced, and transmitted bacteria
produce both classes of surface proteins. B. burgdorferi spirochetes cease production of OspC within a
few days of vertebrate infection but continue to express Erps on their outer surfaces.
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phase, and then harvesting both cultures at the same time (32, 33). Simultaneous har-
vesting is possible because B. burgdorferi replicates several times faster when cultured at
35 to 37°C than it does at 23°C (33).

The choices of 23°C and 35 to 37°C were made because they mimic temperatures
experienced by B. burgdorferi in unfed and feeding ticks, respectively (32). Some other
vector-borne bacteria are known to modulate their proteomic profiles in response to
temperature (82, 83). Those results led to hypotheses that B. burgdorferi possesses
mechanisms to sense temperature, which then conveys a signal(s) to affect transcrip-
tion of target genes. To date, a thermosensitive regulator has not been experimentally
demonstrated to exist in B. burgdorferi.

Subsequent studies revealed that it is actually the change in bacterial replication rate
that results in changed levels of OspC and several other surface proteins (29). Moreover,
differences in replication rates also affected levels of the regulatory proteins known to
control ospC and other loci. This was demonstrated through the use of two incomplete
formulations of culture medium that support B. burgdorferi replication at 35°C at rates
that are similar to growth in complete medium at 23°C (29). B. burgdorferi was then cul-
tured to mid-exponential phase in either of the incomplete media at 35°C and then
diluted into complete medium and cultured to mid-exponential phase at 35°C. All of the
slow-replication conditions (either of the incomplete media at 35°C or complete medium
at 23°C) resulted in substantially lower levels of OspC protein than after passage to the
fast-replication condition (complete medium at 35°C) (29). Further indication that tem-
perature, per se, was not the signal for OspC repression/induction was observed when B.
burgdorferi that had been stored at 280°C was inoculated into complete medium and
grown at 23°C. Bacteria passaged from280 to 23°C produced OspC at levels comparable
to those normally observed after passage from 23°C to 35 to 37°C (29). Thus, the condi-
tion before passage to 23°C impacted the expression of OspC. Note that a mechanism
that strictly detects temperature would not be affected by the preceding conditions. The
significance of B. burgdorferi’s ability to detect changes in replication rate and respond
by altering its proteome are discussed further below.

Since the initial observations of Schwan et al. in 1995 (32), numerous studies have
been undertaken to elucidate mechanisms by which the Lyme disease spirochete
senses its environment and controls expression of genes and proteins. While genetic
and biochemical analyses have identified several DNA-binding proteins and other fac-
tors that have impacts on gene expression (26–28), few published studies have exam-
ined their mechanisms of action at a molecular level. To date, the most completely
defined mechanism is that which controls production of B. burgdorferi Erp proteins.
Analyses of that gene and protein family have provided important insights on borrelial
sensory and regulatory mechanisms, as follows.

B. BURGDORFERI erp GENES AND Erp PROTEINS

Individual Lyme disease spirochete cells naturally maintain numerous erp operons,
each of which is carried on an episomal cp32 prophage (14, 64, 84–92). The original
isolate of the B. burgdorferi type strain, B31, contained at least 11 cp32-derived epi-
somes, 10 of which carry mono- or bicistronic erp operons, and encoded 13 distinct
Erp outer surface lipoproteins (13, 14, 85, 86). Some borrelial erp genes have been
given various other names, including ospE, ospF, elp, bbk2.10, bbk2.11, and p21, but we
consider it easier to view them as a single family of genes, since all possess highly con-
served features such as (i) genomic location, (ii) promoter and operator DNA sequen-
ces, and (iii) regulatory mechanisms and (iv) encode surface-localized lipoproteins with
conserved leader and N-terminal amino acid sequences (91, 93).

All Erp proteins are surface-exposed lipoproteins (94, 95). Dual-labeling studies
found that all of the Erp proteins of B. burgdorferi type strain B31 are simultaneously
coexpressed (96). Immunofluorescence microscopy and quantitative reverse transcrip-
tion (RT)-PCR determined that B. burgdorferi produces little to no detectable amounts
of any Erp protein during colonization of unfed tick midguts, but the genes and
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proteins are induced upon tick feeding (97, 98). The erp genes and Erp proteins are
expressed during transmission from tick to vertebrates, throughout vertebrate infec-
tion, and continue to be expressed during transmission from infected vertebrates to
naive ticks (Fig. 1) (98, 99). Consistent with that expression profile, all identified func-
tions of Erp proteins involve interactions between B. burgdorferi and its vertebrate
hosts, including binding to complement factors H, C1r, and C1s, plasmin, laminin, and
glycosaminoglycans (100–104).

As noted above, almost all Lyme disease borreliae naturally contain numerous erp operons,
each located on a separate cp32 prophage. Why do individual bacteria contain multiple, dis-
tinct erp genes? One early hypothesis suggested that erp loci might recombine during verte-
brate infection as a mechanism to generate antigenic diversity. However, analyses of clonal
strains before, during, and after passage through mice revealed absolute conservation of erp
sequences (105, 106). A report suggesting genetic variation was later found to have undoubt-
edly detected PCR artifacts (106, 107). At present, the most reasonable explanation for the si-
multaneous coexpression of numerous Erp proteins with distinct sequences is due to the
broad host range of vector ticks. For example, Ixodes scapularis in the northeastern United
States might feed on rodents, birds, or other vertebrates (108). Only the nymph and adult
stages of Ixodes species ticks can transmit Lyme disease spirochetes, and each stage feeds
only once (Fig. 1). For B. burgdorferi to successfully infect a vertebrate, the bacteria must be
able to interact with the new host’s tissues while also fending off immune system responses.
Those features often differ considerably between the various potential hosts of B. burgdorferi.
Continuing our example, B. burgdorferi in an I. scapularis tick in the northeastern United States
cannot “predict” the type of host that the tick is feeding on, and so Lyme spirochetes express
a wide variety of host-interactive surface proteins during transmission to increase the probabil-
ity that their surface proteomes are adequate to infect the vertebrate into which they are de-
posited. Supporting this hypothesis, different Erp proteins exhibit different affinities for the
complement factor H proteins of different potential vertebrate hosts (109, 110). This hypothe-
sis can also explain why B. burgdorferi simultaneously produces numerous other polymorphic
protein families, such as the CspA/pFam54, Rev, and Mlp outer surface proteins (111–118).

MECHANISMS CONTROLLING TRANSCRIPTION OF erp OPERONS

DNA sequences 59 of all erp operons are highly conserved, and a single transcriptional
start site was mapped to 14 bp 59 of the initial erp gene’s start codon (66, 119). To iden-
tify cis sequences required for regulation of erp transcription, erp 59 DNA sequences
were fused to gfp, and then independently replicating plasmids with each construct
were introduced into B. burgdorferi (66). As noted above, erp operons are transcribed at
greater levels when B. burgdorferi are cultured at 35 to 37°C than at 23°C. Thus, trans-
formants were cultured at both temperatures, and bacterial green fluorescent protein
(GFP) levels were determined by flow cytometry (66). Successive deletions of 59 DNA
revealed that an approximately 145-bp region 59 of the transcriptional start site is neces-
sary for regulation of transcription. Deletion of that region resulted in constitutive, high-
level transcription (66). This regulatory region was designated the erp operator.

Electrophoretic mobility shift assays (EMSAs) with B. burgdorferi cytoplasmic extracts
detected that protein(s) bound specifically to erp operator DNA (66). DNA affinity chroma-
tography/pulldown was then employed to purify proteins that bound to the erp operator
(120, 121). Three proteins were detected, which were subsequently identified by mass spec-
trometry. All three are novel nucleic acid-binding proteins: BpaB (borrelial ParB analog)
(122), BpuR (borrelial PUR domain) (123), and EbfC (erp-binding factor, chromosomal) (120).

All small borrelial replicons, including the cp32s, carry a bpaB gene. In most repli-
cons, bpaB is located 39 of a putative parA. Biochemical studies indicate that BpaB is
analogous to the ParB proteins of other bacterial replicons. Each B. burgdorferi replicon
contains a unique parA-bpaB locus, which is presumed to enable the compatibility of
multiple replicons within individual cells (13, 14, 64, 86, 124). However, the various
parA-bpaB pairs are maintained across different isolates. For example, 12 distinct parA-
bpaB pairs have been identified in the cp32 prophages of Lyme disease spirochete
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isolates collected throughout the world (64, 91, 124, 125). All cp32-encoded BpaB pro-
teins contain a conserved amino acid sequence that is not found in any other type of
BpaB, and that domain is required for binding to erp operator DNA (122). As a conse-
quence, BpaB proteins from any cp32 will bind to the erp operator elements of all of
the erp loci in that bacterial cell (122). This cross talk would facilitate the observed si-
multaneous coexpression of all erp operons in a bacterium (96).

BpaB serves as the repressor of erp transcription. A high-affinity BpaB-binding site is
located 59 of all erp promoter elements (Fig. 2). BpaB bound to this site facilitates bind-
ing of additional BpaB proteins to adjacent DNA. The lower affinity for those DNA
sequences is apparently offset by protein-protein interactions between the BpaB mole-
cules. BpaB spreads along DNA from the initial nucleation site and evidently prevents
RNA polymerase from interacting with erp promoter sequences (122, 126). Consistent
with BpaB being the erp repressor, cp32 bpaB genes are transcribed at higher levels
during tick colonization than they are during vertebrate infection (126).

BpuR is encoded on the B. burgdorferi main chromosome and so is considered to be
a host protein that is coopted by cp32 prophages for regulation of their own genes (120,
123). The erp operator elements contain a single BpuR-binding site, 59 of the BpaB-bind-
ing sequence (Fig. 2). BpuR binding to that site enhances the repressive activity of BpaB,
and it thus serves as a corepressor (123). Correlating with that activity, bpuR is expressed
at greater levels in unfed ticks than it is during vertebrate infection (127).

Homologs of BpuR are encoded by some other species of bacteria and, intriguingly,
by all multicellular eukaryotes (123, 128, 129). The hallmark of these proteins is a struc-
turally conserved “PUR” domain. All assessed PUR proteins bind to double-stranded
DNA, single-stranded DNA, and RNA. Identified RNA targets of BpuR include its own
mRNA, creating a feedback loop in which BpuR represses its own translation (Fig. 3)
(127, 130). Additional binding sites have been detected throughout the borrelial tran-
scriptome, and numerous physiological effects are apparent when BpuR is dysregu-
lated (127).

FIG 2 Mechanism by which B. burgdorferi controls transcription of erp operons. (A) All erp operons
include a 59 operator that consists of a BpaB-binding site, two to three EbfC-binding sites, and a BpuR-
binding site. The BpaB- and EbfC-binding sites are adjacent, and the two proteins compete for binding
to the DNA. (B) In the midgut of an unfed tick, or under slow-replication culture conditions, BpaB and
BpuR levels are elevated, while EbfC levels are low. BpaB binds to its high-affinity binding site and then
spreads along the DNA, stabilized by protein-protein interactions. The presence of BpuR enhances
transcription repression by BpaB, possibly by influencing the direction of BpaB multimerization. (C) In a
feeding tick, during vertebrate infection, or during culture under rapid replication conditions, EbfC
levels are high, while BpaB and BpuR levels are low. Binding of EbfC to erp operator DNA blocks
binding by BpaB, freeing the promoter for recognition by RNA polymerase. Promoter 235 and 210
elements are indicated by solid black bars 59 of the open reading frames (ORFs). The illustrated
structures of BpuR and EbfC are adapted from the solved and modeled proteins (123, 128, 131).
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EbfC is also encoded on the main chromosome (120). All erp operons contain 2 to 3
EbfC binding sites adjacent to their BpaB-binding site (Fig. 2). EbfC and BpaB compete
for binding to the erp operator (131). EbfC can inhibit the transcriptional repression of
BpaB and thus serves as the antirepressor (126). The ebfC gene is more highly tran-
scribed during vertebrate infection than during tick colonization, paralleling the
expression pattern of the erp genes (126).

Almost all known species of eubacteria encode a well-conserved homolog of EbfC,
which has also been referred to as “ORF-12” or “YbaB” (132–137). We and others subse-
quently examined several EbfC homologs and determined that they, too, bind DNA
(134, 135). Through studies that included visualization of GFP-tagged EbfC in B. burg-
dorferi, we determined that EbfC colocalizes with borrelial chromatin and fits the crite-
ria of being a bacterial nucleoid-associated protein (“histone-like” protein) (138).

The mechanisms by which BpaB, BpuR, and EbfC control transcription of erp oper-
ons is diagrammed in Fig. 2. During colonization of the tick midgut, BpaB and BpuR are
relatively highly expressed, while EbfC is repressed. As a result, BpaB binds to the high-
affinity site in the erp operator and spreads along the DNA, enhanced by BpuR. When
the tick begins to feed on a vertebrate host, BpaB and BpuR levels decrease, while EbfC
is induced, resulting in EbfC outcompeting BpaB for the erp operator and facilitating
promoter recognition by RNA polymerase.

DnaA BINDS TO THE PROMOTER REGIONS OF THE bpuR AND ebfC OPERONS

Subsequent studies of BpaB, BpuR, and EbfC found that each regulates transcription
and/or translation of numerous other genes and proteins (127, 138, 139). The majority
of investigations have focused on the chromosomally encoded BpuR and EbfC

FIG 3 Current understanding of erp regulatory circuits. Each cp32 produces a distinct BpaB. However,
all cp32-encoded BpaB proteins contain a conserved amino acid motif that binds to erp operator
DNA. That feature permits cross talk and coordinated repression/derepression of all erp operons in a
bacterium. BpuR can bind its own mRNA and inhibit translation. DnaA binds to bpuR promoter DNA
between the 210 and 235 sequences. EbfC is cotranscribed with dnaX, which encodes the tau
subunit of DNA polymerase III. Both DnaA and EbfC bind to sequences between the dnaX-ebfC
promoter and the initiation codon of dnaX. EbfC also binds to the 59 untranslated region of the
dnaX-ebfC mRNA. DnaA binds to its own 59 DNA. Promoter 235 and 210 elements are indicated by
solid black bars 59 of the ORFs. The illustrated structures of BpuR and EbfC are adapted from the
solved and modeled proteins (123, 128, 131).
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proteins, since they control bacterial genes in addition to being coopted by the cp32
prophages for erp regulation.

The bpuR gene is located in a monocistronic operon (Fig. 3) (13, 123). The master
regulator of chromosomal replication, DnaA, binds over the bpuR promoter (Fig. 3)
(127). The apparent involvement of DnaA in the expression of bpuR is hypothesized to
explain how BpuR concentration is coordinated with the rate of bacterial replication.

In B. burgdorferi, ebfC is the second gene in a bicistronic operon, following dnaX. The
dnaX gene encodes the tau (t ) subunit of the DNA polymerase III holoenzyme. Both
DnaA and EbfC proteins bind specifically to sites between the promoter and the dnaX
start codon (A. C. Krusenstjerna, T.C. Saylor and B. Stevenson, unpublished data). As with
the bpuR operon, binding of DnaA to the dnaX-ebfC operon may connect EbfC levels
with the rate of bacterial replication. Involvement of DnaA in the expression of tau would
also coordinate synthesis of the DNA polymerase III holoenzyme with DNA replication.
Nearly all eubacteria encode a homolog of EbfC, and the majority also cotranscribe ebfC
with dnaX (138). Little is known about how those other species regulate transcription of
their dnaX-ebfC operons, other than there being evidence of a protein-binding site 59 of
dnaX in Escherichia coli and Caulobacter crescentus (140–143). Thus, detailed studies of
the B. burgdorferi dnaX-ebfC operon may provide insight into a wide range of bacteria.

OTHER REGULATED GENES AND PROTEINS

Other than the erp operons, the B. burgdorferi ospC and rpoS operons are the best
studied, but our understanding of their regulatory mechanisms is far from complete.
Both rpoS and ospC are repressed during colonization of unfed ticks and are greatly
enhanced upon tick feeding (32, 144). Both genes are also influenced by the bacterial
division rate in culture, their levels increasing upon shifts to conditions of rapid division
(29). The effects of replication rate in culture parallel the effects on erp operons, as was
described above.

Regulation of the ospC gene requires the RpoS alternative sigma factor (145, 146).
Yet, other factors are undoubtedly at play with regulation of ospC, since that gene is
repressed early during vertebrate infection while RpoS continues to be produced
(147). A DNA sequence(s) 59 of the ospC promoter is necessary for transcriptional regu-
lation (148–150). The role(s) of that upstream sequence has yet to be fully examined.

RpoS plays critical roles in adapting B. burgdorferi for transmission from tick to ver-
tebrate and for vertebrate infection (151). The rpoS gene is induced during tick feeding,
but the molecular mechanisms underlying control of RpoS synthesis have yet to be
defined. Another alternative sigma, RpoN, is necessary for rpoS induction, as is the acti-
vated form of the Rrp2 unit of the Hk2-Rrp2 two-component regulatory system (21–23,
145, 152–154). But at least one additional promoter is involved with transcription of
rpoS, which is dependent upon the housekeeping sigma RpoD, and that transcript is
influenced by the small RNA DsrA and the chaperone Hfq (155, 156). Two proteins,
BosR and BadR, bind DNA sequences 59 of rpoS, but their modes of action have not
been fully elucidated (157–164). Another protein, BBD18, appears to affect RpoS
through a posttranscriptional mechanism (165–168).

Despite uncertainties about the mechanisms controlling OspC and RpoS, it is clear
that both are upregulated during tick feeding and in culture under conditions of rapid
bacterial replication (29, 32, 147, 151, 169).

METABOLIC CUES DIRECT B. BURGDORFERI PROTEIN PRODUCTION

It is important to recognize that even though the tick-vertebrate infectious cycle
involves a large number of distinct interactions between B. burgdorferi and its hosts,
the cycle never varies. The bacteria move from a feeding tick into a vertebrate, and
then from that vertebrate into another tick, in a back-and-forth dance that has per-
sisted for millennia. The absence of variation means that B. burgdorferi does not require
the contingency systems that are found in free-living bacteria. Moreover, its
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predictable routine has evidently permitted B. burgdorferi to refine its regulatory sys-
tem to detect conditions that occur only at specific times.

After B. burgdorferi is acquired by a feeding tick larva, and the tick completes diges-
tion of that blood meal, the spirochetes enter an extended period of limited nutritional
resources. Quantification of B. burgdorferi in tick midguts shows essentially no bacterial
replication after the blood meal has been digested (12, 170). This period of low meta-
bolic activity may last for many months. The tick’s next blood meal brings a rapid and
dramatic change to the Lyme spirochete’s metabolism, with a doubling time of
approximately 2 h (12, 170–173). The only time during B. burgdorferi’s infectious cycle
where bacterial metabolism quickly shifts from slow to rapid is when the tick feeds on
a vertebrate.

In the laboratory, shifting B. burgdorferi from a condition of slow replication to a
condition of rapid replication mimics conditions in a tick as it initiates feeding and
results in significant increases of Erp, EbfC, RpoS, and OspC proteins (29). Under those
same conditions, levels of BpaB and BpuR decrease significantly (29). The evident roles
of DnaA in controlling EbfC and BpuR, and ultimately Erp, link chromosomal replication
and bacterial division to production of surface proteins that are involved with verte-
brate infection. Continued bacterial replication during vertebrate infection would
maintain the signals to produce Erp proteins.

We further hypothesize that other signals that affect borrelial gene regulation are
also tied to the bacterium’s invariant life cycle (29, 147). Among known environmental
signals are pH, osmolarity, carbon sources, redox potential, metal ions, and carbon diox-
ide (34, 157, 158, 164, 174–186). Many of those conditions change during tick feeding or
differ between tick and vertebrate tissues. Further studies are needed to determine how
each of those environmental conditions correlates with the B. burgdorferi infectious
cycle. Similarly, it is likely that the consistent infectious cycles of other vector-borne
pathogens may also be regulated by detection of physiological changes that occur only
at a specific step in the cycle.
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