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Abstract

As many cases of type 2 diabetes (T2D) are likely to remain undiagnosed,

better tools for early detection of high‐risk individuals are needed to prevent or

postpone the disease. We investigated the value of the doubly weighted genetic

risk score (dwGRS) for the prediction of incident T2D in the Lifelines and

Estonian Biobank (EstBB) cohorts. The dwGRS uses an additional weight for

each single nucleotide polymorphism in the risk score, to correct for “Winner's

curse” bias in the effect size estimates. The traditional (single‐weighted genetic

risk score; swGRS) and dwGRS were calculated for participants in Lifelines

(n= 12,018) and EstBB (n= 34,129). The dwGRS was found to have stronger

association with incident T2D (hazard ratio [HR] = 1.26 [95% confidence in-

terval: 1.10–1.43] and HR= 1.35 [1.28–1.42]) compared to the swGRS (HR=

1.21 [1.07–1.38] and HR= 1.25 [1.19–1.32]) in Lifelines and EstBB, respec-

tively. Comparing the 5‐year predicted risks from the models with and without

the dwGRS, the continuous net reclassification index was 0.140 (0.034–0.243;
p= .009 Lifelines), and 0.257 (0.194–0.319; p< 2 × 10−16 EstBB). The dwGRS

provided incremental value to the T2D prediction model with established

phenotypic predictors. It clearly distinguished the risk groups for incident T2D

in both biobanks thereby showing its clinical relevance.
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1 | INTRODUCTION

If no immediate action is taken, it is estimated that the
current number of 463 million diabetes cases will in-
crease to 700 million by the year 2045, with type 2

diabetes (T2D) as the most common type, accounting for
90% of the cases (International Diabetes Federation,
2019). T2D is often accompanied by severe comorbidities
and possible complications resulting in premature
mortality and a major burden on healthcare systems
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(Kahn, Cooper, & Del Prato, 2014; World Health
Organization, 2014). Furthermore, it is speculated that
one‐third or even half of T2D cases are undiagnosed,
since it usually starts without acute symptoms and is
difficult to detect at an early stage (International Diabetes
Federation, 2019; Langenberg et al., 2014). Therefore,
developing a powerful tool for early detection of high‐risk
individuals for T2D would allow postponing or even
preventing T2D. Genetic markers have high potential for
early detection of high‐risk individuals since they are
fixed for life (Lyssenko et al., 2008). Heritabilities of T2D
vary widely with estimates between 20% and 80% (Meigs,
Cupples, & Wilson, 2000; Poulsen, Ohm Kyvik, Vaag, &
Beck‐Nielsen, 1999). Only since the advent of genome‐
wide association studies (GWASs) progress has been
made in finding the genetic risk factors for T2D (Burton
et al., 2007; Palmer et al., 2012; Scott et al., 2007; Visscher
et al., 2017). Nonetheless, identified single nucleotide
polymorphisms (SNPs) have only been able to account
for a small proportion (approximately 10–15%) of the
total heritability of T2D (McCarthy, 2010; Prasad &
Groop, 2015). Therefore, it is crucial to further improve
the genetic prediction and risk assessment of T2D.

Individually each SNP has only a small effect on disease
risk (Reisberg, Iljasenko, Läll, Fischer, & Vilo, 2017). Several
methods have been developed and tested to combine the
effects of multiple disease‐associated SNPs into one genetic
risk score (GRS) representing part of each individual's ge-
netic susceptibility for a complex disease (Morris et al., 2012;
Reisberg et al., 2017). The most commonly used GRS in-
cludes only the genome‐wide significant SNPs, and each
included SNP is typically weighted by the effect size from
the genome‐wide meta‐analysis in which it was discovered
(Läll, Mägi, Morris, Metspalu, & Fischer, 2017). A limitation
of this GRS is the exclusion of genetic variants truly asso-
ciated with the disease (Morris et al., 2012; Reisberg
et al., 2017) for which GWASs have too low power to detect
due to the stringent significance threshold (usually
p<5× 10−8; Wray et al., 2013). Hence, another common
method is to combine thousands of SNPs in a polygenic risk
score by applying a more lenient significance threshold
ranging from p<5× 10−8 up to even p=1 depending on
the polygenic nature of the disease hypothesizing that many
of those SNPs were false negative in the discovery GWAS
(Wray et al., 2013). Some recent publications have shown
that such polygenic risk scores have considerably better
predictive power (Läll et al., 2017; Reisberg et al., 2017).

Recently, a novel polygenic method for risk prediction
called the doubly weighted GRS (dwGRS) was developed
(Läll et al., 2017). Compared to the usual polygenic GRS, a
second weight for the SNPs included in the dwGRS is added
to adjust for the Winner's curse bias, a phenomenon stating
that the effect of those SNPs reaching genome‐wide

significance in GWAS may be overestimated by chance (Läll
et al., 2017). It has been shown that the dwGRS has better
predictive power than the traditional single‐weighted GRS
(swGRS) by not only increasing the number of SNPs beyond
the genome‐wide significance threshold as in a polygenic
risk score, but also by applying more accurate weighting
(Läll et al., 2017). However, the superior performance of this
novel dwGRS has not yet been validated in independent
cohorts.

In this study, we aim to investigate the added value of
the novel dwGRS to the prediction model of incident T2D
with main established risk factors in the Lifelines and
Estonian Biobank (EstBB) cohorts.

2 | METHODS

2.1 | Study population

Data for the current study were derived from the Lifelines
Cohort Study (Lifelines) and the EstBB. Both cohorts are
large prospective cohort studies in Europe with similar aim
to improve the current understanding of genetic, environ-
mental, and phenotypic factors involved in the development
of common complex diseases (Leitsalu, Haller et al., 2015;
Scholtens et al., 2015). Lifelines is a multidisciplinary pro-
spective population‐based cohort study examining in a un-
ique three‐generation design the health and health‐related
behaviors of 167,729 persons living in the North of the
Netherlands. It employs a broad range of investigative pro-
cedures in assessing the biomedical, sociodemographic, be-
havioral, physical, and psychosocial factors which contribute
to the health and disease of the general population, with a
special focus on a multimorbidity and complex genetics. The
Lifelines participants were recruited between 2006 and 2013
and the follow‐up is ongoing (Klijs et al., 2015; Scholtens
et al., 2015). Every 5 years, biomaterials are collected, a
physical examination is done, and extensive questionnaires
are completed. In between, participants fill in questionnaires
approximately every 1.5 years.

The EstBB cohort represents the Estonian adult po-
pulation with individuals (n= 51,515) recruited between
2002 and 2011 (Leitsalu, Haller et al., 2015). Biomarkers
were collected, extensive phenotypic questionnaires
completed, and physical measurements taken at baseline.
Follow‐up data are available via linkage with national
health‐related registries and via re‐examination of parti-
cipants. Furthermore, electronic health records are up-
dated for phenotypic outcome information every half
year (Leitsalu, Alavere, Tammesoo, Leego, & Metspa-
lu, 2015; Leitsalu, Haller et al., 2015).

In the current study, subsets of individuals from
Lifelines and from EstBB, respectively, with genetic data

590 | PÄRNA ET AL.



available were analyzed (Figures S1 and S2). In Lifelines,
individuals were excluded if they had been diagnosed at
baseline with T1D, T2D, or another type of diabetes, in
case of pregnancy (without gestational diabetes), there
were missing values for body mass index (BMI), diabetes
type was unspecified, or no follow‐up data were available.
In EstBB, individuals who were included in the original
dwGRS paper (Läll et al., 2017) or their first‐degree re-
latives (pi‐hat≥ 0.35), and other first‐degree relatives
from the remaining sample were excluded (n= 3,121) to
get an independent validation dataset. In addition, in-
dividuals were excluded if T1D or T2D had been diag-
nosed at baseline, or in case of pregnancy, extreme age
values (age <18 years or >90 years), missing phenotype
information, and no follow‐up information available. In
case of duplicate samples in the remaining sample, one of
them was removed. In Lifelines, duplicate samples and
first‐degree relatives were excluded as part of the quality
control of the genotyping. This yielded 12,018 and 34,129
individuals from Lifelines and from EstBB, respectively,
for analysis. Additional sensitivity analyzes including
only largely unrelated individuals (i.e., pi‐hat < 0.125)
were conducted in EstBB (n= 26,669).

Lifelines and EstBB have been approved by the
Medical Ethics Committee of the University Medical
Center Groningen and by the Ethics Committee of Hu-
man Studies, University of Tartu, Estonia, respectively,
and all participants signed an informed consent.

2.2 | Type 2 diabetes

In the Lifelines cohort, the information about T2D was
collected at four time points: at baseline, and at 1.5, 3,
and 5 years after recruitment. At baseline, the participant
was diagnosed with T2D if at least one of the four fol-
lowing T2D diagnosis criteria was met (American Dia-
betes Association, 2017): (a) fasting plasma glucose (FPG)
≥7.0 mmol/L; (b) glycated hemoglobin (HbA1c) ≥6.5%;
(c) use of T2D medication (anatomical therapeutic che-
mical [ATC] codes A10A or A10B); or (d) self‐reported
T2D in combination with self‐reported T2D medication
use. At 1.5 and 3 years, the T2D diagnosis was based only
on self‐reported T2D as only questionnaire data were
available. At 5 years, diagnosis was based on FPG and/or
HbA1c measures and/or on self‐reported T2D, since
medication use was not recorded (Van Zon et al., 2018).
FPG was determined in fasting state and measured using
a hexokinase method (Integra analyzer; Roche). HbA1c
level was measured with a turbidimetric inhibition im-
munoassay (Modular Roche; Jansen et al., 2013).

In EstBB, the data on T2D diagnoses were obtained
via linkage with the Electronic Medical Records database

of the Estonian Health Insurance Fund. T2D was in the
first place diagnosed by the general practitioner accord-
ing to World Health Organization guidelines (WHO;
World Health Organization, 2011) and in the EstBB da-
tabase, it was recorded as International Classification of
Diseases (ICD‐10) code E11.

2.3 | Phenotypic prediction model

One of the most well‐known noninvasive prediction
models is the Finnish Diabetes Risk Score (FINDRISC;
Lindstrom & Tuomilehto, 2003). It has been tested and
validated worldwide (Meijnikman et al., 2016; Witte,
Shipley, Marmot, & Brunner, 2010; Zhang, Zhang,
Zhang, Hu & Chen, 2014) and it contains age, BMI, waist
circumference, physical activity, fruit and vegetable
consumption, use of antihypertensive medication or
blood pressure, history of high blood glucose, and family
history of diabetes. Therefore, our selection of phenotypic
predictors was based on the FINDRISC model with some
modifications imposed by the current data sets. To con-
struct the prediction model in Lifelines, the following
variables were available: (a) age; (b) BMI (Janssen,
Katzmarzyk, & Ross, 2002); (c) waist circumference
(Jansen et al., 2013); (d) physical activity (measured with
the Short Questionnaire to Assess Health; Wendel‐Vos,
Schuit, Saris, & Kromhout, 2003); (e) fruit and vegetable
consumption (measured with the extensive semi‐
quantitative baseline food frequency questionnaire; Sie-
belink, Geelen, & de Vries, 2011); (f) antihypertensive
medication usage (ATC code C02, C03, C07, C08, C09;
WHO, 2017); (g) blood pressure (Messerli, Williams, &
Ritz, 2007), whereas participants were categorized as
hypertensive with blood pressure higher than 140/
90mmHg, and/or antihypertensive medication usage was
recorded (Amini et al., 2016). With respect to physical
activity, for better comparison of two biobanks we cate-
gorized participants into “low activity” (0–3 days a week
active for ≥30min) or “high activity” (≥4 days a week
active for ≥30) in Lifelines. Two variables for fruit and
vegetable intake (in grams per 1,000 kcal) were divided
into quintiles and awarded with scores ranging from 0 to
4 (subscale score of the original Lifelines Diet Score;
Vinke et al., 2018). The original FINDRISC predictors
“history of high glucose levels” and “family history of
diabetes” were dropped from the model as they were not
available in Lifelines.

In EstBB, data on all the phenotypic FINDRISC
variables were obtained from the 16‐module ques-
tionnaire about lifestyle, diet, and clinical diagnosis based
on the WHO International Classification of Diseases
(WHO, 2016), which was filled in at baseline during a
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computer‐assisted personal interview (Leitsalu, Haller
et al., 2015). Most of the FINDRISC variables were
measured and categorized in the same way as in Lifelines
with the exceptions for the following: (a) physical activity
was categorized as “active” and “non‐active” based on
the question of “Have you done or are you doing physical
exercises (Sunday sports)?”; (b) fruit and vegetable con-
sumption were considered as separate variables and ca-
tegorized based on consumption frequency (days per
week): not once, 1–2, 3–5, 6–7.

For some of the FINDRISC variables (waist cir-
cumference, physical activity, and fruit–vegetable con-
sumption), the number of missing values in at least one
of the cohorts was considered to be too high (>5%). Be-
cause of their minor importance as predictors of incident
T2D (Lindstrom & Tuomilehto, 2003), these variables
were excluded from the analyzes to provide comparable
results between the two cohorts.

2.4 | Genetic risk score

For both biobanks, each participant's genetic predisposi-
tion for T2D was expressed by a GRS constructed ac-
cording to the traditional swGRS and novel dwGRS
method (Läll et al., 2017). The swGRS included 1,000
independent SNPs (Läll et al., 2017) with their risk alleles
weighted by the effect size from the genome‐wide meta‐
analysis on T2D by the DIAGRAM consortium (Morris
et al., 2012). The number of 1,000 SNPs was chosen be-
cause in the original GRS paper (Läll et al., 2017), this
number of SNPs provided a fit for the dwGRS (see next
paragraph) that was not significantly different from the
best‐fitting swGRS in either the BMI‐unadjusted or BMI‐
adjusted analysis and we wanted to have the same
number of SNPs in the swGRS.

The selection of SNPs for the dwGRS in the Lifelines
sample was based on the list of 7,502 independent SNPs
that were selected in the original study (Läll et al., 2017),
where also the more detailed SNP selection process was
described. Briefly, summary statistics from the large scale
meta‐analysis on T2D unadjusted for BMI performed by
the DIAGRAM consortium (Morris et al., 2012) were
used for GRS construction. As the Estonian Metabochip
(includes approximately 200,000 SNPs in genes asso-
ciated with cardiac and metabolic diseases) was part of
the DIAGRAM consortium, the meta‐analysis was reran
without the EstBB data to obtain independent effect sizes.
These new results were used to clump the EstBB Meta-
bochip genotyping data (based on a p‐value for associa-
tion with T2D p< .5; r2≤ 0.05 and a minimal distance of
2Mb) to get a set of independent SNPs (Purcell
et al., 2007). This yielded a final set of 7,502 SNPs to

construct the GRSs. Six of these SNPs were not available
in Lifelines leaving 7,496 SNPs for further analysis. These
SNPs were extracted from the genotyped and imputed
GWAS data in Lifelines. Genotyping was done with the
Illumina CytoSNP 12 v2 chip and imputation was per-
formed with Minimac (Howie, Fuchsberger, Stephens,
Marchini, & Abecasis, 2012) using the 1000 Genomes
Phase 1 global reference panel (The 1000 Genomes Pro-
ject Consortium, 2015). The median imputation quality of
the 7,496 SNPs was 0.94 and for 77.8% of them the im-
putation quality was >0.8. However, as low‐quality SNPs
still contribute to the GRS (Nolte et al., 2017), we in-
cluded all SNPs in the analysis. Standard quality control
was done for genetic data in Lifelines (Nolte et al., 2017)
and in EstBB (Läll et al., 2019).

In the dwGRS, additional to the traditional weight
(i.e., the regression coefficient from the meta‐GWAS), a
second weight is introduced π̂i , which is the estimated
probability that the specific marker belongs to the set of
1,000 top SNPs with the strongest association with a
disease (Equation 1).

∑π β XdwGRS = ˆ (1000) ˆ .
i

N

i

=1

i i
(1)

The motivation for this is that the traditional GRS
systematically includes more SNPs whose effects are
overestimated by chance and excludes more of those with
an underestimated effect, which may therefore unjustly
be excluded from the risk score calculation. In this study
we used the same estimated probabilities as earlier (Läll
et al., 2017), since these do not depend on the validation
cohort. To better interpret the effect sizes of the GRSs,
they were standardized within both cohorts.

2.5 | Statistical analyzes

Normally distributed continuous variables were de-
scribed with mean and standard deviation (SD) and
nonnormally distributed with median and interquartile
range (IQR). For categorical variables counts and per-
centages were presented.

Throughout the study, data from the two biobanks—
Lifelines and EstBB—have been analyzed separately. In
EstBB, the Cox proportional hazard model was used for
survival analysis since the exact time of diagnosis was
available. Proportional hazards assumptions were con-
firmed by Schoenfeld's test. In Lifelines, data of T2D di-
agnosis were interval‐censored, as it was only known
whether the event occurred within a certain time inter-
val. Time intervals (in months) between baseline, 1.5, 3,
and 5‐year follow‐up were used. We used accelerated
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failure time (AFT) analysis to test association of the
FINDRISC variables and the GRSs with incident T2D.
For better interpretation of the results of the AFT, the
AFT coefficient of each predictor was converted to a
hazard ratio (HR) using the formula HRi = exp(−αi/σ),
where αi is the coefficient from the AFT model and σ is
the scale factor of the residuals. The corresponding 95%
confidence intervals (CIs) for HR were calculated simi-
larly using αi± 1.96 × SD(αi).

To assess the added value of the dwGRS in risk pre-
diction of incident T2D, three models were fitted in both
cohorts: (a) model adjusted for the baseline phenotypic
risk factors available in both cohorts (i.e., baseline model/
Model 1); (b) baseline model plus the swGRS (Model 2);
(c) baseline model plus the dwGRS (Model 3).

To test the prediction improvement by using dwGRS
after 5 years of follow‐up, the following analyzes were
applied on smaller subsets of cases that were diagnosed
with T2D at most 5 years after baseline plus controls with
a follow‐up time of at least 5 years (Lifelines: n= 5,243;
EstBB: n= 33,057). To assess the prediction improvement,
the Harrell's C‐statistic was determined for all the models
with an increase in the statistics value reflecting the in-
cremental predictive value of the genetic profile. Ad-
ditionally, in EstBB, the predictive value of the dwGRS
was tested among a high‐risk group (age: 35–79 and BMI:
25–30) for incident T2D to check whether the performance
of the dwGRS improved in case of selecting a high‐risk
sample. In Lifelines, the high‐risk group analysis was not
possible due the smaller sample size. To obtain Harrell's C‐
statistics and to present cumulative incidence in Lifelines,
a Cox proportional hazard model was applied using the
middle of the time interval as time of diagnosis. Con-
fidence intervals for a change in C‐statistics were esti-
mated with a bootstrapping procedure. Additionally,
continuous net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) indices were
calculated to assess the prediction improvement (Kundu,
Aulchenko, Van Duijn, & Janssens, 2011; Pencina,
D'Agostino, D'Agostino, & Vasan, 2008). Continuous NRI
denotes the proportion of cases correctly assigned a higher
probability by the improved model compared to the old
model without GRS minus the corresponding proportion
of controls, multiplied by 2 (Pencina, Steyerberg, &
D'Agnostino, 2011). IDI denotes the average increase in
risk estimates for participants who were diagnosed with
T2D during follow‐up plus the average decrease in risk
estimates for participants without diagnosis according to
improved model (Fischer et al., 2014; Pencina et al., 2011).

Finally, a Cox proportional hazard model was applied
to assess the risk of incident T2D by dwGRS quintiles and
Kaplan–Meier graphs of cumulative incidence of T2D on
all individuals in Lifelines and EstBB, respectively.

The statistical package IBM SPSS for Windows (ver-
sion 22.0; IBM Corp., Armonk, NY) and R version 3.5.2
(in Lifelines) and version 3.6.0 (in EstBB) for Windows (R
Development Core Team, 2008) were used for statistical
analyzes. p< .05 was considered significant.

3 | RESULTS

Baseline characteristics of participants in both studies are
presented in Table 1. In total, 12,018 individuals from
Lifelines and 34,129 from EstBB were studied. The age
range was similar in both cohorts and the proportion of
males was lower than the proportion of females. How-
ever, there were more females in EstBB than in Lifelines
(58.1% compared to 48.6%, respectively). In Lifelines, a

TABLE 1 Descriptives for Lifelines and Estonian Biobank
cohorts

Lifelines
cohort

Estonian
Biobank

Characteristics n= 12,018 n= 34,129

Incident cases, n (%) 255 (2.1) 1,565 (4.6)

Follow‐up time (y) 4.7 (3.8–5.5) 7.0 (5.7–7.9)

Age range (y) 18–89 18–90

Sex, n (male %) 4,971 (41.4) 10,904 (31.9)

BMI (kg/m2) 26.2 ± 4.1 25.9 ± 5.0

Hypertension, n (%) 3,479 (28.9) 9,530 (27.9)

Waist circumference (cm) 91.3 ± 11.8 85.4 ± 14.0

Physical activitya

Low/inactive 3,828 (34.6) 11,803 (43.3)

High/active 7,224 (65.4) 15,448 (56.7)

Fruit consumptionb

Low 2,201 (35.6) 10,595 (31.1)

Medium 2,496 (40.3) 12,426 (36.4)

High 1,489 (24.1) 11,101 (32.5)

Vegetable consumptionb

Low 2,222 (35.9) 23,241 (68.1)

Medium 2,712 (43.9) 8,587 (25.2)

High 1,252 (20.2) 2,296 (6.7)

Note: Mean ± SD; median (interquartile range); n (%). Low consumption =
not eating at all or 1–2 days per week, medium consumption = eating 3–5
days per week, and high consumption = eating 6–7 days per week in
Estonian Biobank.
Abbreviation: BMI, body mass index.
aPhysical activity categorization: low = 0–3 days a week active for ≥30min
and high = ≥4 days a week active for ≥30min in Lifelines. Active versus
inactive in Estonian Biobank.
bFruit and vegetable consumption: Low consumption = 1st and 2nd quintile,
medium consumption = 3rd quintile, high consumption = 4th and 5th
quintile of Lifelines Diet Score in Lifelines cohort.
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total of 255 (2.1%) and in EstBB 1,565 (4.6%) individuals
developed T2D during follow‐up (with median follow‐up
of 4.7 years [IQR: 3.8–5.5] and 7.0 years [IQR: 5.7–7.9],
respectively). The mean BMI (26.2 ± 4.1 and 25.9 ± 5.0,
respectively) in both cohorts fell in the overweight cate-
gory and waist circumference was slightly larger in
Lifelines than in EstBB (91.3 vs. 85.4, respectively). Pre-
valence of hypertension was similar in both cohorts
(28.9% and 27.9%, respectively). For the physical activity
and fruit and vegetable consumption, a solid comparison
cannot be based because the underlying questions were
different between the cohorts.

3.1 | Association between traditional
baseline risk factors and incident T2D

The results of model 1, which includes only the established
phenotypic risk factors, are shown in Table 2 for Lifelines
and Table 3 for EstBB, respectively. All the models de-
monstrated significant association between the character-
istics measured at baseline and higher incident T2D. Male
participants of Lifelines and EstBB had a significantly
higher risk for incident T2D during the follow‐up time
(HR= 1.49, 95% CI: 1.15–1.93 and HR= 1.23, 95% CI:
1.11–1.38, respectively). With every unit increase in BMI,
the risk of having T2D increased 1.15 (95% CI: 1.11–1.18)
and 1.13 (95% CI: 1.12–1.14) times, and having hyperten-
sion increased the risk of T2D 2.63 (95% CI: 1.94–3.56) and
1.91 (1.68–2.16) times in Lifelines and EstBB, respectively.

3.2 | Association between the GRS and
incident T2D

The dwGRS showed a stronger effect on incident T2D
(Model 3) than the swGRS (Model 2) in both cohorts.

Every SD increase in dwGRS increased the risk of incident
T2D 1.26 times (95% CI: 1.10–1.43, 5.25 × 10−04) and 1.35
times (95% CI: 1.28–1.42, 2.85 × 10−32) in Lifelines and
EstBB, respectively, compared to the swGRS (HR= 1.21
[95% CI: 1.07–1.38] and HR= 1.25 [95% CI: 1.19–1.32] in
Lifelines and EstBB, respectively, while accounting for
other traditional risk factors at baseline. When adding the
GRS to the model (Models 2 and 3), the effect sizes of age,
sex, BMI, and hypertension remained similar to Model 1
and were still associated with significantly higher incident
T2D (Tables 1 and 2). Analyzes on the subset of largely
unrelated individuals in EstBB (only fourth or lower de-
gree relatives) showed similar results (Table S1).

3.3 | Assessing the incremental value of
the dwGRS for risk prediction of
incident T2D

In both cohorts, the Harrell's C‐statistic value became
larger when a GRS was added to the prediction model
with baseline phenotypic risk factors. After adding the
dwGRS to the prediction model in Lifelines, the C‐statistic
increased by 0.003 (95% CI: −0.003 to 0.022) compared to
model with baseline risk factors, and in EstBB, it increased
by 0.007 (95% CI: 0.004–0.010). When focusing on a high‐
risk group for incident T2D with age 35–79 and BMI 25–30
in EstBB, the change in C‐statistics was much larger: the
C‐statistic increased by 0.021 (95% CI: 0.009–0.035) when
dwGRS was added to the prediction model compared to
the model with baseline risk factors. Comparing the 5‐year
prediction estimates of model with dwGRS and without
GRS, the continuous NRI was 0.140 (95% CI: 0.034–0.243;
p= .009), and 0.257 (95% CI: 0.194–0.319; p< 2× 10−16) in
Lifelines and EstBB, respectively, which indicates more
accurate prediction performance of the model with the
dwGRS than without a GRS, and a significant incremental

TABLE 2 Effects of the single and doubly weighted genetic risk scores on incident type 2 diabetes in the Lifelines cohort

Characteristic
Model 1 HR
(95% CI) p‐value

Model 2 HR
(95% CI) p‐value

Model 3 HR
(95% CI) p‐value

Age 1.32 (1.18–1.48) 1.71 × 10−06 1.32 (1.18–1.48) 1.39 × 10−06 1.32 (1.18–1.48) 1.45 × 10−06

Sex (male) 1.49 (1.15–1.93) 2.83 × 10−03 1.48 (1.14–1.92) 3.12 × 10−03 1.47 (1.13–1.90) 3.81 × 10−03

BMI 1.15 (1.11–1.18) 2.94 × 10−21 1.15 (1.11–1.18) 1.94 × 10−21 1.15 (1.11–1.18) 2.36 × 10−21

Hypertension 2.63 (1.94–3.56) 4.40 × 10−10 2.62 (1.93–3.54) 5.29 × 10−10 2.62 (1.93–3.55) 5.22 × 10−10

swGRS – – 1.21 (1.07–1.38) 3.58× 10−03 – –

dwGRS – – – – 1.26 (1.10–1.43) 5.25 × 10−04

Note: All models account for age2.
Abbreviations: BMI, body mass index; CI, confidence interval; dwGRS, doubly weighted genetic risk score; HR, hazard ratio; swGRS, standardized
single‐weighted genetic risk score.
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predictive value of dwGRS on incident T2D in both co-
horts. The IDI was 0.0028 (−0.0001 to 0.0070; p= .138)
and 0.003 (0.002–0.004; p= 5× 10−05) in Lifelines and
EstBB accordingly.

3.4 | dwGRS risk categories

The cumulative incidences of T2D stratified by dwGRS
categories are shown in Figure 1 (Lifelines) and 2

(EstBB). Categories were formed based on the dwGRS
quintiles: three middle quintiles were combined to fulfill
the proportionality assumption. In Lifelines, the logrank
test p‐value was .009 implying significant differences in
T2D incidences between the dwGRS categories. In EstBB,
there is a clear distinction in cumulative incidence of
T2D between the dwGRS categories (logrank
p= 2.95 × 10−12).

Using the categorical dwGRS in the survival analysis
in Lifelines reveals a risk of getting T2D that is 2.31 times

TABLE 3 Effects of swGRS and dwGRS on incident T2D in the EstBB

Characteristic
Model 1 HR
(95% CI) p‐value

Model 2 HR
(95% CI) p‐value

Model 3 HR
(95% CI) p‐value

Age 1.17 (1.14–1.20) 1.04 × 10−27 1.16 (1.13–1.20) 3.40 × 10−27 1.16 (1.13–1.20) 4.96 × 10−27

Sex (male) 1.23 (1.11–1.38) 2.44 × 10−04 1.23 (1.11–1.38) 2.06 × 10−04 1.24 (1.11–1.39) 1.29 × 10−04

BMI 1.13 (1.12–1.14) 1.06 × 10−153 1.13 (1.12–1.14) 3.93 × 10−152 1.14 (1.12–1.15) 5.36 × 10−155

Hypertension 1.91 (1.68–2.16) 7.86 × 10−25 1.89 (1.67–2.14) 3.13 × 10−24 1.89 (1.68–2.14) 2.14 × 10−24

swGRS – – 1.25 (1.19–1.32) 6.63 × 10−19 – –

dwGRS – – – – 1.35 (1.28–1.42) 2.85 × 10−32

Note: All models account for age2 and for genotyping platforms.
Abbreviations: BMI, body mass index; CI, confidence interval; dwGRS, doubly weighted genetic risk score; EstBB, Estonian Biobank; HR, hazard ratio; swGRS,
standardized single‐weighted genetic risk score; T2D, type 2 diabetes.

FIGURE 1 Cumulative incidence of type 2 diabetes (T2D) by three categories of doubly weighted genetic risk score (dwGRS) in
the Lifelines cohort. The dwGRS was stratified into quintiles, with quintiles 2–4 combined into one middle category. In the figure,
only follow‐up of 5.5‐years is presented since only 25% of individuals were followed for longer
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(95% CI: 1.33–4.01; p= .002) higher in the highest dwGRS
quintile than in the lowest quintile of the dwGRS while
accounting for the baseline phenotypic risk factors. In the
middle category of quintiles 2–4 of the dwGRS, the risk of
having incident T2D is 1.34 times (95% CI: 0.89–2.01;
p= .163) higher than in the lowest quintile. In EstBB,
participants who belong to the highest dwGRS quintile,
have a 2.81 times (95% CI: 2.15–3.68; p= 5.51 × 10−14)
higher risk for incident T2D compared to the lowest
quintile of the dwGRS. The category including quintiles
2–4 of the dwGRS is again associated with a 1.66 times
(95% CI: 1.40–1.96; p= 4.37 × 10−09) higher risk. These
results demonstrate the ability of the dwGRS to identify
high‐risk individuals for incident T2D in both cohorts.

4 | DISCUSSION

The current study focused on testing the potential of the
novel dwGRS when added to the prediction model of
incident T2D for adult participants in the Lifelines and
EstBB cohorts. Our main findings were that dwGRS had
a significant effect on incident T2D risk independently
from the traditional phenotypic risk factors and associa-
tion of dwGRS with incident T2D was stronger than for
swGRS in both biobanks.

The stronger association of dwGRS with incident T2D
in both biobanks could be explained by two character-
istics of the dwGRS that are different from the swGRS.
First, the swGRS only incorporates SNPs below a certain
significance threshold, but in the dwGRS all SNPs re-
gardless of significance level could be used. Secondly, in
the dwGRS an extra weight is added (i.e., the estimated
probability of the SNP belonging among the k strongest
associated SNPs) to correct for the Winner's curse bias.
This bias arises when the SNPs are selected to be in-
cluded in the GRS based on their statistical significance,
giving stronger weight to the SNPs that have their effect
overestimated by chance. If the GRS is constructed in this
way, the extra weight shrinks the effect estimates of SNPs
that have the strongest association with the phenotype,
thus reducing this bias. As a result, a more accurate re-
presentation of the genetic risk is achieved, and stronger
association between GRS and incident T2D obtained. The
swGRS was also significantly associated with incident
T2D, but the model fit was slightly lower than for the
dwGRS. In other words, the dwGRS appeared to have
more clinical value than the traditional swGRS. There-
fore, in the current study, only the dwGRS was chosen for
the analyzes on prediction improvement.

Our findings on the stronger association of the
dwGRS with incident T2D were consistent with the

FIGURE 2 Cumulative incidence of T2D by three categories of dwGRS in the Estonian Biobank cohort. The dwGRS was
stratified into quintiles, with quintiles 2–4 combined into one middle category. In the figure, only follow‐up of 8 years is presented
since only 25% of individuals were followed for longer. dwGRS, doubly weighted genetic risk score; T2D, type 2 diabetes
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original study, where the dwGRS methodology was in-
troduced (Läll et al., 2017). That study was also carried
out on subjects from EstBB, but those subjects and their
relatives were not included in the current study to get
independent samples (Läll et al., 2017). The current study
was the first one to test and demonstrate the validity of
the doubly weighting method on a different part of the
same cohort and on another external cohort for the as-
sociation with incident T2D. The dwGRS improved the fit
of the incident T2D prediction model as demonstrated by
the increase in Harrell's C‐statistics value in both cohorts.
Testing the incremental value of dwGRS in a high‐risk
group (BMI: 25–30 and age: 35–79) in the EstBB resulted
in an even larger increase in the value of the C‐statistic,
which demonstrates the prediction efficiency of the
dwGRS, especially in high‐risk individuals. We used the
continuous NRI to investigate the clinical relevance of
the dwGRS and confirmed a significantly better perfor-
mance of the prediction model with dwGRS than with-
out, in both biobanks. As concluded in previous literature
(Läll et al., 2017; Reisberg et al., 2017), the added value of
a GRS might seem to be small, but its real clinical value
should be the ability to differentiate between the risk
categories of incident T2D. For example, our results of
having 2.31 and 2.81 times higher risk of incident T2D in
the highest quintile of dwGRS compared to the lowest
quintile in Lifelines and EstBB, respectively, while ad-
justing for age, sex, BMI, and hypertension (already es-
tablished risk factors), clearly differentiates a group of
individuals at high risk for T2D. Therefore, they should
be under more frequent surveillance to help postpone or
avoid the onset of incident T2D.

Strengths of the current study are the availability of
two large European cohorts both with a wide range of
predictors and follow‐up data available. This enabled the
current dwGRS validation study in two independent co-
horts: (a) external validation in the Lifelines cohort, and
(b) internal validation in the EstBB (using a different
sample than originally). In addition, the new EstBB da-
taset was larger than the original one and additionally,
due to a longer follow‐up time, a larger number of in-
cident T2D cases was available in the current study.

The SNP selection in the original dwGRS study was
based on the meta‐analysis of the GWASs of samples
genotyped with Cardio‐MetaboChip and OmniExpress
platforms. Even though the Cardio‐MetaboChip only
contains SNPs from specific genes selected for cardio-
metabolic traits and genome‐wide data were available in
the Lifelines cohort, we used the same selection of SNPs
in Lifelines as in the original dwGRS study for compar-
ability purposes (Läll et al., 2017). The similarity of the
presented results in both large cohorts provides strong
evidence for the additional value of dwGRS on top of

known environmental or phenotypic risk factors. How-
ever, future studies should be conducted to construct the
optimal dwGRS using the full spectrum of genome‐wide
SNPs, which might result in an even more accurate
prediction. Finally, the current SNP selection was based
on the DIAGRAM meta‐GWAS results from 2012, but
newer meta‐GWAS data with approximately eight‐fold
increase in sample size are already available providing
more accurate SNP effects, which will likely result in a
substantially improved dwGRS prediction (Mahajan
et al., 2018).

Another strength of the current study was the ex-
tensive information about T2D diagnosis. In Lifelines, the
official T2D diagnosis criteria (WHO, 2011) with sup-
portive T2D medication information and both fasting
plasma glucose and HbA1c measures were available at
baseline. However, a limitation is that the exact date of
T2D diagnosis was not known, that the T2D diagnosis at
1.5 and 3 years was based only on self‐report, and that
information on T2D medication use was not available at
the 5‐year follow‐up. Nevertheless, it has been shown
that the reliability of self‐reported T2D is above 90%
(Schneider, Pankow, Heiss, & Selvin, 2012), thus we be-
lieve that our results are valid. We were able to account
for the unknown exact date of diagnosis by applying a
more sophisticated survival analyzes method of interval‐
censored accelerated failure time modeling
(Radke, 2003). Nevertheless, these limitations could be
the cause of the slightly worse performance of the sur-
vival and prediction models in Lifelines. Other putative
causes for this worse performance might be the smaller
cohort size, the relatively shorter follow‐up time available
and consequently the lower number of incident T2D
cases compared to the EstBB, and a lower imputation
quality of the SNPs. The imputation quality for 22.8% of
the SNPs included in the Lifelines dwGRS was below 0.8,
which is usually regarded as low quality, compared to the
imputation quality >0.9 for all the SNPs included in the
dwGRS construction in EstBB. Having more SNPs with
lower quality is due to the CytoSNP array used for gen-
otyping in Lifelines, which has a low coverage of the
whole genome (approximately 250,000 SNPs). Never-
theless, it has been shown in a study previously con-
ducted in Lifelines that even SNPs with poor imputation
quality improved the amount of trait variance explained
when these were included in the GRS (Nolte et al., 2017).
Another limitation of our study is the high number of
missing values for some of the predictive environmental
variables such as physical activity, fruit and vegetable
consumption, and waist circumference. As a con-
sequence, these variables were left out of the prediction
models. Nevertheless, even the original FINDRISC study
showed that physical activity and fruit and vegetable

PÄRNA ET AL. | 597



consumption did not add much to the predictive power of
the model (Lindstrom & Tuomilehto, 2003). Further-
more, waist circumference is highly correlated with BMI
(0.82 in both cohorts), so it would not add much to the
prediction model. Of note, our aim was not to construct
the best prediction model for incident T2D with as many
relevant predictive variables included as possible, but to
test the additional value of dwGRS in addition to the
phenotypic predictors.

4.1 | Clinical implications and future
research

Improving the identification of individuals at increased
risk for T2D is urgently needed to combat the ongoing
T2D epidemic and reduce high healthcare costs. Since in
Estonia, there are highly favorable conditions for im-
plementing personalized medicine, several pilot projects
have already been initiated, in which EstBB participants
are receiving health‐related feedback with the dwGRS
included in the risk‐prediction algorithm for T2D. Fur-
thermore, the dwGRS can be used to classify individuals
into risk categories for T2D for application in the clinic.
High‐risk individuals should be monitored more fre-
quently with the ultimate goal of delaying or even pre-
venting the onset of T2D. In addition, the genetic risk
score could be seen as a long‐term predictor as opposed
to the phenotypic risk factors, which may only become
predictive in a relatively short time period before the
disease onset. Therefore, we believe that the GRS could
be a useful tool to improve public health through post-
poning or preventing disease onset and it should be ad-
ded to the disease prediction algorithms if available.
Nevertheless, future research focusing on improving the
method for constructing the GRS is needed for even more
precise T2D prediction. This method should also be ap-
plied to other complex diseases and cohorts of different
ethnicity to test the generalizability and strengthen the
validity of the dwGRS.

In conclusion, the dwGRS was associated with in-
creased risk of incident T2D independently of phenotypic
risk factors. This association was stronger than for the
swGRS. The dwGRS improved the risk prediction and
reclassification while accounting for already established
phenotypic risk factors in both biobanks. Categorizing
the dwGRS demonstrated the ability of the dwGRS to
detect high‐risk individuals for incident T2D, thus offer-
ing promise for personalized prediction and prevention.

ACKNOWLEDGMENTS
The authors wish to acknowledge the services of the Es-
tonian Biobank and the Lifelines Cohort Study, the

contributing research centers delivering data, and all the
study participants. The authors would like to thank Petra
Vinke for sharing the syntax to calculate the Lifelines Diet
Score for our study. The Lifelines Cohort Study, and gen-
eration and management of GWAS genotype data for the
Lifelines Cohort Study is supported by the Netherlands
Organization of Scietific Research NWO (grant
175.010.2007.006), the Economic Structure Enhancing
Fund (FES) of the Dutch goverment, the Ministry of Eco-
nomic Affairs, the Ministry of Education, Culture and
Science, th Ministry of Health, Welfare and Sports, the
Northern Netherlands Collaboration of Provinces (SNN),
the Province of Groningen, University Medical Center
Groningen, the University of Groningen, Dutch Kidney
Foundation and Dutch Diabetes Research Foundation.
EGCUT received financing from the Estonian Research
Council grants GP1GV9353 and IUT20‐60, the Centre of
Excellence for Genomics and Translational Medicine
(GENTRANSMED), the University of Tartu (SP1GVAR-
ENG), the EU structural fund through the Archimedes
Foundation, grant 3.2.1001.11‐0033, and EU 2020 grant
692145 ePerMed. This work was supported by: European
Union through the European Regional Development Fund,
project No. 2014‐2020.4.01.16‐0024 (K. P.), and through the
Horizon 2020 grant no. 777107‐ PRESICE4Q (K. F.). Es-
tonian Research Council grant PUT PRG687 (K. L.).

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

ORCID
Katri Pärna http://orcid.org/0000-0002-0013-6077

REFERENCES

American Diabetes Association (2017). Classification and diagnosis
of diabetes. Diabetes Care, Suppl 1, S11–S24. https://doi.org/10.
2337/dc17-S005

Amini, M., Bashirova, D., Prins, B. P., Corpeleijn, E., Study¶, L. L. C.,
Bruinenberg, M., … Alizadeh, B. Z. (2016). Eosinophil count is a
common factor for complex metabolic and pulmonary traits and
diseases: The lifelines cohort study. PLoS One, 11(12), e0168480.
https://doi.org/10.1371/journal.pone.0168480

Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N.,
Deloukas, P., Duncanson, A., … Compston, A. (2007). Genome‐
wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature, 447(7145), 661–678.
https://doi.org/10.1038/nature05911

Fischer, K., Kettunen, J., Würtz, P., Haller, T., Havulinna, A. S.,
Kangas, A. J., … Metspalu, A. (2014). Biomarker profiling by

598 | PÄRNA ET AL.

http://orcid.org/0000-0002-0013-6077
https://doi.org/10.2337/dc17-S005
https://doi.org/10.2337/dc17-S005
https://doi.org/10.1371/journal.pone.0168480
https://doi.org/10.1038/nature05911


nuclear magnetic resonance spectroscopy for the prediction of
all‐cause mortality: An observational study of 17,345 persons.
PLoS Medicine, 11(2), 1001606. https://doi.org/10.1371/journal.
pmed.1001606

Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., &
Abecasis, G. R. (2012). Fast and accurate genotype imputation in
genome‐wide association studies through pre‐phasing. Nature
Genetics, 44(8), 955–959. https://doi.org/10.1038/ng.2354

International Diabetes Federation. (2019). IDF Diabetes Atlas 2019.
In International Diabetes Federation. Retrieved from http://
www.idf.org/about-diabetes/facts-figures

Jansen, H., Stolk, R. P., Nolte, I. M., Kema, I. P., Wolffenbuttel, B. H. R.,
& Snieder, H. (2013). Determinants of HbA1c in nondiabetic
Dutch adults: Genetic loci and clinical and lifestyle parameters,
and their interactions in the lifelines cohort study. Journal of
Internal Medicine, 273(3), 283–293. https://doi.org/10.1111/joim.
12010

Janssen, I., Katzmarzyk, P. T., & Ross, R. (2002). Body mass index,
waist circumference, and health risk. Archives of Internal
Medicine, 162(18), 2074–2079. https://doi.org/10.1001/archinte.
162.18.2074

Kahn, S. E., Cooper, M. E., & Del Prato, S. (2014). Pathophysiology
and treatment of type 2 diabetes: Perspectives on the past,
present, and future. The Lancet, 383(9922), 1068–1083. https://
doi.org/10.1016/S0140-6736(13)62154-6

Klijs, B., Scholtens, S., Mandemakers, J. J., Snieder, H., Stolk, R. P.,
& Smidt, N. (2015). Representativeness of the LifeLines cohort
study. PLoS One, 10(9), 1–12. https://doi.org/10.1371/journal.
pone.0137203

Kundu, S., Aulchenko, Y. S., Van Duijn, C. M., & Janssens, A. C. J. W.
(2011). PredictABEL: An R package for the assessment of risk
prediction models. European Journal of Epidemiology, 26,
261–264. https://doi.org/10.1007/s10654-011-9567-4

Langenberg, C., Sharp, S. J., Franks, P. W., Scott, R. A.,
Deloukas, P., Forouhi, N. G., … Wareham, N. J. (2014). Gene‐
lifestyle interaction and type 2 diabetes: The EPIC InterAct
case‐cohort study. PLoS Medicine, 11(5), e1001647. https://doi.
org/10.1371/journal.pmed.1001647

Leitsalu, L., Alavere, H., Tammesoo, M. L., Leego, E., & Metspalu, A.
(2015). Linking a population biobank with national health
registries—the Estonian experience. Journal of Personalized
Medicine, 5(2), 96–106. https://doi.org/10.3390/jpm5020096

Leitsalu, L., Haller, T., Esko, T., Tammesoo, M. L., Alavere, H.,
Snieder, H., … Metspalu, A. (2015). Cohort profile: Estonian
biobank of the Estonian genome center, university of Tartu.
International Journal of Epidemiology, 44(4), 1137–1147.
https://doi.org/10.1093/ije/dyt268

Lindstrom, J., & Tuomilehto, J. (2003). The diabetes risk score: A
practical tool to predict type 2 diabetes risk. Diabetes Care,
26(3), 725–731.

Lyssenko, V., Jonsson, A., Almgren, P., Pulizzi, N., Isomaa, B.,
Tuomi, T., … Groop, L. (2008). Clinical risk factors, DNA
variants, and the development of type 2 diabetes. New England
Journal of Medicine, 359(21), 2220–2232. https://doi.org/10.
1056/NEJMoa0801869

Läll, K., Lepamets, M., Palover, M., Esko, T., Metspalu, A.,
Tõnisson, N., … Fischer, K. (2019). Polygenic prediction of
breast cancer: Comparison of genetic predictors and

implications for risk stratification. BMC Cancer, 19(1), 1–9.
https://doi.org/10.1186/s12885-019-5783-1

Läll, K., Mägi, R., Morris, A., Metspalu, A., & Fischer, K. (2017).
Personalized risk prediction for type 2 diabetes: The potential of
genetic risk scores. Genetics in Medicine, 19(3), 322–329.
https://doi.org/10.1038/gim.2016.103

Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M.,
Rayner, N. W., … McCarthy, M. I. (2018). Fine‐mapping of an
expanded set of type 2 diabetes loci to single‐variant resolution
using high‐density imputation and islet‐specific epigenome
maps. BioRxiv, 245506. https://doi.org/10.1101/245506

McCarthy, M. I. (2010). Genomics, type 2 diabetes, and obesity. The
New England Journal of Medicine, 363(24), 2339–2350.

Meigs, J. B., Cupples, L. A., & Wilson, P. W. F. (2000). Parental
transmission of type 2 diabetes: The Framingham Offspring
study. Diabetes, 49(12), 2201–2207.

Meijnikman, A. S., De Block, C. E. M., Verrijken, A., Mertens, I.,
Corthouts, B., & Van Gaal, L. F. (2016). Screening for type 2
diabetes mellitus in overweight and obese subjects made easy
by the FINDRISC score. https://doi.org/10.1016/j.jdiacomp.
2016.05.004

Messerli, F. H., Williams, B., & Ritz, E. (2007). Essential
hypertension. Lancet, 370(9587), 591–603. https://doi.org/10.
1016/S0140-6736(07)61299-9

Morris, A. P., Voight, B. F., Teslovich, T. M., Ferreira, T., Segré, A. V.,
Steinthorsdottir, V., … McCarthy, M. I. (2012). Large‐scale
association analysis provides insights into the genetic
architecture and pathophysiology of type 2 diabetes. Nature
Genetics, 44(9), 981–990. https://doi.org/10.1038/ng.2383

Nolte, I. M., van der Most, P. J., Alizadeh, B. Z., de Bakker, P. I.,
Boezen, H. M., Bruinenberg, M., … Snieder, H. (2017). Missing
heritability: Is the gap closing? An analysis of 32 complex traits
in the Lifelines Cohort study. European Journal of Human
Genetics, 25(7), 877–885. https://doi.org/10.1038/ejhg.2017.50

Palmer, N. D., McDonough, C. W., Hicks, P. J., Roh, B. H., Wing, M. R.,
An, S. S., … Mooser, V. (2012). A genome‐wide association search
for type 2 diabetes genes in african americans. PLoS One, 7(1),
e29202. https://doi.org/10.1371/journal.pone.0029202

Pencina, M. J., D'Agostino, R. B., D'Agostino, R. B., & Vasan, R. S.
(2008). Evaluating the added predictive ability of a new marker:
From area under the ROC curve to reclassification and beyond.
Statistics in Medicine, 27(2), 157–172. https://doi.org/10.1002/
sim.2929

Pencina, Steyerberg, W. E., & D'Agnostino, B. R., Sr. (2011).
Extensions of net reclassification improvement calculations to
measure usefulness of new biomarkers. Statistics in Medicine,
30(1), 11–21. https://doi.org/10.2217/FON.09.6.Dendritic

Poulsen, P., Ohm Kyvik, K., Vaag, A., & Beck‐Nielsen, H. (1999).
Heritability of type II (non‐insulin‐dependent) diabetes
mellitus and abnormal glucose tolerance: A population‐based
twin study. Diabetologia, 42(2), 139–145. https://doi.org/10.
1007/s001250051131

Prasad, R. B., & Groop, L. (2015). Genetics of type 2 diabetes—
pitfalls and possibilities. Genes, 6(1), 87–123. https://doi.org/10.
3390/genes6010087

Purcell, S., Neale, B., Todd‐Brown, K., Thomas, L.,
Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A
tool set for whole‐genome association and population‐based

PÄRNA ET AL. | 599

https://doi.org/10.1371/journal.pmed.1001606
https://doi.org/10.1371/journal.pmed.1001606
https://doi.org/10.1038/ng.2354
http://www.idf.org/about%2010diabetes/facts%2010figures
http://www.idf.org/about%2010diabetes/facts%2010figures
https://doi.org/10.1111/joim.12010
https://doi.org/10.1111/joim.12010
https://doi.org/10.1001/archinte.162.18.2074
https://doi.org/10.1001/archinte.162.18.2074
https://doi.org/10.1016/S0140-6736(13)62154-6
https://doi.org/10.1016/S0140-6736(13)62154-6
https://doi.org/10.1371/journal.pone.0137203
https://doi.org/10.1371/journal.pone.0137203
https://doi.org/10.1007/s10654-011-9567-4
https://doi.org/10.1371/journal.pmed.1001647
https://doi.org/10.1371/journal.pmed.1001647
https://doi.org/10.3390/jpm5020096
https://doi.org/10.1093/ije/dyt268
https://doi.org/10.1056/NEJMoa0801869
https://doi.org/10.1056/NEJMoa0801869
https://doi.org/10.1186/s12885-019-5783-1
https://doi.org/10.1038/gim.2016.103
https://doi.org/10.1101/245506
https://doi.org/10.1016/j.jdiacomp.2016.05.004
https://doi.org/10.1016/j.jdiacomp.2016.05.004
https://doi.org/10.1016/S0140-6736(07)61299-9
https://doi.org/10.1016/S0140-6736(07)61299-9
https://doi.org/10.1038/ng.2383
https://doi.org/10.1038/ejhg.2017.50
https://doi.org/10.1371/journal.pone.0029202
https://doi.org/10.1002/sim.2929
https://doi.org/10.1002/sim.2929
https://doi.org/10.2217/FON.09.6.Dendritic
https://doi.org/10.1007/s001250051131
https://doi.org/10.1007/s001250051131
https://doi.org/10.3390/genes6010087
https://doi.org/10.3390/genes6010087


linkage analyses. The American Journal of Human Genetics,
81(3), 559–575. https://doi.org/10.1086/519795

R Development Core Team. (2008). R: A language and environment
for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3‐900051‐07‐0

Radke, B. R. (2003). A demonstration of interval‐censored survival
analysis. Preventive Veterinary Medicine, 59(4), 241–256. https://
doi.org/10.1016/S0167-5877(03)00103-X

Reisberg, S., Iljasenko, T., Läll, K., Fischer, K., & Vilo, J. (2017).
Comparing distributions of polygenic risk scores of type 2
diabetes and coronary heart disease within different
populations. PLoS One, 12(7), 0179238. https://doi.org/10.
1371/journal.pone.0179238

Schneider, A. L. C., Pankow, J. S., Heiss, G., & Selvin, E. (2012).
Validity and reliability of self‐reported diabetes in the
atherosclerosis risk in communities study. American Journal
of Epidemiology, 176(8), 738–743. https://doi.org/10.1093/aje/
kws156

Scholtens, S., Smidt, N., Swertz, M. A., Bakker, S. J., Dotinga, A.,
Vonk, J. M., … Stolk, R. P. (2015). Cohort profile: LifeLines, a
three‐generation cohort study and biobank. International
Journal of Epidemiology, 44(4), 1172–1180. https://doi.org/10.
1093/ije/dyu229

Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y.,
Duren, L., … Gonçalo, R. (2007). A genome‐wide association
study of type 2 diabetes in Finns detect multiple susceptibility
variants. Science, 316(5829), 1341–1345. https://doi.org/10.
1126/science.1142382.A

Siebelink, E., Geelen, A., & de Vries, J. H. M. (2011). Self‐reported
energy intake by FFQ compared with actual energy intake to
maintain body weight in 516 adults. British Journal of Nutrition,
106(2), 274–281. https://doi.org/10.1017/s0007114511000067

The 1000 Genomes Project Consortium. (2015). A global reference
for human genetic variation. Nature, 526(7571), 68–74. https://
doi.org/10.1038/nature15393

Vinke, P. C., Corpeleijn, E., Dekker, L. H., Jacobs, D. R.,
Navis, G., & Kromhout, D. (2018). Development of the food‐
based Lifelines Diet Score (LLDS) and its application in 129,
369 Lifelines participants. European Journal of Clinical
Nutrition, 72(8), 1111–1119. https://doi.org/10.1038/s41430-
018-0205-z

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I.,
Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery:
Biology, function, and translation. American Journal of Human
Genetics, 101(1), 5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

Wendel‐Vos, G. C. W., Schuit, A. J., Saris, W. H. M., &
Kromhout, D. (2003). Reproducibility and relative validity of
the short questionnaire to assess health‐enhancing physical

activity. Journal of Clinical Epidemiology, 56(12), 1163–1169.
https://doi.org/10.1016/S0895-4356(03)00220-8

Witte, D. R., Shipley, M. J., Marmot, M. G., & Brunner, E. J. (2010).
Performance of existing risk scores in screening for undiagnosed
diabetes: An external validation study. Diabetic Medicine, 27(1),
46–53. https://doi.org/10.1111/j.1464-5491.2009.02891.x

World Health Organization. (2011). Use of glycated haemoglobin
(HbA1c) in the diagnosis of diabetes mellitus. 1–25. https://doi.
org/10.1016/j.diabres.2011.03.012

World Health Organization. (2014). Global status report on
noncommunicable diseases 2014. World Health Organization,
176. ISBN 9789241564854

World Health Organization. (2016). ICD10 – version: 2016. Retrieved
September 10, 2017, from World Health Organization website:
http://apps.who.int/classifications/icd10/browse/2016/en#/I25

World Health Organization. (2017). WHOCC – ATC/DDD Index.
https://doi.org/10.1002/0471684228.egp13486

Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., &
Visscher, P. M. (2013). Pitfalls of predicting complex traits from
SNPs. Nature Reviews Genetics, 14(7), 507–515. https://doi.org/
10.1038/nrg3457

Van Zon, S. K. R., Reijneveld, S. A., Van Der Most, P. J., Swertz, M. A.,
Bültmann, U., & Snieder, H. (2018). The interaction of genetic
predisposition and socioeconomic position with type 2 diabetes
mellitus: Cross‐sectional and longitudinal analyses from the
lifelines cohort and biobank study. Psychosomatic Medicine, 80(3),
252–262. https://doi.org/10.1097/PSY.0000000000000562

Zhang, L., Zhang, Z., Zhang, Y., Hu, G., & Chen, L. (2014).
Evaluation of Finnish diabetes risk score in screening
undiagnosed diabetes and prediabetes among U.S. adults by
gender and race: NHANES 1999‐2010. PLoS ONE, 9(5), https://
doi.org/10.1371/journal.pone.0097865

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section.

How to cite this article: Pärna K, Snieder H, Läll
K, Fischer K, Nolte I. Validating the doubly weighted
genetic risk score for the prediction of type 2 diabetes
in the Lifelines and Estonian Biobank cohorts. Genetic
Epidemiology. 2020;44:589–600.
https://doi.org/10.1002/gepi.22327

600 | PÄRNA ET AL.

https://doi.org/10.1086/519795
https://doi.org/10.1016/S0167-5877(03)00103-X
https://doi.org/10.1016/S0167-5877(03)00103-X
https://doi.org/10.1371/journal.pone.0179238
https://doi.org/10.1371/journal.pone.0179238
https://doi.org/10.1093/aje/kws156
https://doi.org/10.1093/aje/kws156
https://doi.org/10.1093/ije/dyu229
https://doi.org/10.1093/ije/dyu229
https://doi.org/10.1126/science.1142382.A
https://doi.org/10.1126/science.1142382.A
https://doi.org/10.1017/s0007114511000067
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/s41430-018-0205-z
https://doi.org/10.1038/s41430-018-0205-z
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/S0895-4356(03)00220-8
https://doi.org/10.1111/j.1464-5491.2009.02891.x
https://doi.org/10.1016/j.diabres.2011.03.012
https://doi.org/10.1016/j.diabres.2011.03.012
http://apps.who.int/classifications/icd10/browse/2016/en#/I25
https://doi.org/10.1002/0471684228.egp13486
https://doi.org/10.1038/nrg3457
https://doi.org/10.1038/nrg3457
https://doi.org/10.1097/PSY.0000000000000562
https://doi.org/10.1371/journal.pone.0097865
https://doi.org/10.1371/journal.pone.0097865
https://doi.org/10.1002/gepi.22327



