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Abstract

Background: The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation,
growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors
is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the
signaling events associated with ErbB activation.

Methodology/Principal Findings: Systems biology has contributed significantly to our current understanding of ErbB
signaling networks. However, although computational models have grown in complexity over the years, little work has
been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of
membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the
epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of
an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the
reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the
effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners.

Conclusions/Significance: Mathematical models of signal transduction rarely consider the contributions of spatial
organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal
aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency
of signal propagation from ligand-engaged growth factor receptors.
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Introduction

The ErbB family of receptors, under normal physiological

conditions, regulate key cellular processes such as growth,

proliferation and differentiation [1,2,3]. Overexpression of these

receptors deregulates normal cellular function and is a contribut-

ing factor to tumorigenesis [4]. There are four members of the

ErbB family (ErbB1, ErbB2, ErbB3 and ErbB4) and each family

member has its own unique ligand specificity [5], kinase activity

[2] and spatial organization on the membrane [1,6]. In our

current study, we have focused solely on the epidermal growth

factor receptor (typically abbreviated ErbB1 or EGFR) and the

ErbB1 activation of ERK, which is a mitogen activated protein

kinase [7]. Ligand binding to ErbB1 stabilizes a conformation of

the extracellular domain that allows receptor dimerization [8].

Dimerized receptors are active tyrosine kinases, capable of

transautophosphorylation [8]. Phosphorylation of receptor cyto-

plasmic tails results in recruitment of SH2-containing adaptor and

signaling proteins, such as Grb2, Sos, and Shc, that form a

signaling scaffold to activate ERK [9].

Due to the importance of the ErbB1-activated ERK pathway,

several ordinary differential equation (ODE) models have been

developed to gain insight into this pathway [10,11,12,13]. While

ODE models have provided insight into the dynamics of this

pathway, these models assume that the cell is a homogeneous well-

mixed system. In other words, the ODE models neglect spatial

localization and organization, such as membrane receptor

clustering [3,14]. Over the past decade, ODE models of the
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ErbB1-induced ERK pathway have evolved in complexity,

becoming both larger and having more experimentally con-

strained parameters [15]. The first ErbB1/EGFR model was

introduced in 1996 and had 35 reactions [16], whereas the most

complete models available contain hundreds of reactions [10,15].

The question remains whether these well-mixed deterministic

models are capable of quantitatively describing the temporal

dynamics of signaling, since there is significant evidence that cell

membrane organization promotes the formation of localized

‘‘signaling platforms’’ [17,18,19,20]. Major advances in our

understanding of the membrane have led to a revision of the

original Fluid Mosaic model (Singer and Nicholson, 1972), to a

more ordered structure with distinct membrane microdomains of

lipids and proteins [21,22,23] Advanced microscopy techniques

have demonstrated that membrane properties, such as transient

confinement zones and corrals, may restrict and govern the

spatial-temporal dynamics of lipids and membrane proteins

[24,25,26,27,28,29]. The challenge is to develop computational

approaches that can account for membrane spatial heterogeneity

and evaluate the impact on signal propagation.

Spatial modeling has been implemented in many scientific

disciplines, including physics, material sciences, chemistry, engi-

neering and biological systems. However, the modeling method-

ologies used vary, with typical approaches including partial

differential equations [30], agent-based modeling [31] and spatial

Monte Carlo (MC) methods [32,33,34]. Spatial MC platforms are

particularly powerful numerical simulation tools for studying the

dynamics of membrane components [35,36,37,38]. The applica-

tion of spatial MC methods has been implemented by our group

[36] to study ErbB reaction/diffusion and herein to study the

effect of spatial heterogeneity on signal propagation. We report the

development of a new computational framework that merges a

spatial kinetic Monte Carlo (SKMC) algorithm for modeling

reaction and diffusion events on the membrane with a stochastic

simulator algorithm (SSA) [39] for modeling cytosolic reactions.

This new algorithm, the Coupled Spatial and Non-spatial

Simulation Algorithm (CSNSA), has enabled us to determine the

effects that receptor clustering has on the initiation of signaling.

Results

Establishing Parameters for the Spatial Model
One goal of our study was to evaluate whether simulation results

from a spatial stochastic model would differ significantly from a

deterministic solution that assume all components are well-mixed.

As a starting point, we began with the original ODE model

developed by Kholodenko and colleagues [12]. We noted,

however, that the ODE model produced results that deviated

from the same group’s experimental data [12]. We performed a

sensitivity analysis to identify the most important enzymatic

reaction parameters in the system. Based upon this analysis, we

determined that incorporation of receptor degradation mecha-

nisms results in a better fit to the experimental data (Figure 1A)

and we fit the new parameters using the PottersWheel MatLab

toolbox [40]. Additional reactions added during our model

development are illustrated in blue within Figure 1B and the

entire set of reaction parameters are summarized in Table 1. Our

model modifications are consistent with other models that include

negative feedback reactions [10,11,13]. In addition, it is

noteworthy that the new parameters fit using the ODE model

were not explicitly dependent on receptor diffusion. Appendix S1

describes our analytical approach to demonstrate the validity of

this fit.

Validating the CSNSA hybrid approach
The novelty of the CSNSA approach lies in its computationally

efficient framework that considers receptor diffusion and reaction

in the 2-dimensional confines of the plasma membrane, while

cytosolic reactions occur stochastically under well-mixed condi-

tions. The simulated space is illustrated in Figure 2, with a full

description of the CSNSA algorithm in the Methods section

below. As an initial test, results were compared with the ODE

solution (as described in Figure 1) and the experiment results in

Kholodenko et al [12]. The simulation space was populated with

an initial random distribution of receptor at a density of 141

receptors per mm2, each diffusing at 1610214 m2s21 [41]. In both

ODE and CSNSA models, reactions were initiated by addition of

Figure 1. Parameter optimization and summary of reaction network. A) Optimization of modeling parameters based upon sensitivity
analysis and ODE solution. Green line: Kinetics of Shc phosphorylation in EGF-stimulated hepatocytes (20 nM EGF) as determined by Kholodenko et
al. [12]. Red line: results obtained using the ODE model of [12]. Blue line: improved fit of ODE solution to experimental data after incorporation of
receptor degradation reactions. B) Summary of reaction network in the ODE and CSNSA models. Note that, in the spatial CSNSA model, stars mark
membrane reactions handled by the spatial stochastic Monte Carlo algorithm. All remaining reactions are governed by the Gillespie algorithm.
Additional reactions that were added to the original ODE model from Kholodenko et al. [12] are shown in blue. Numbering of reactions is arbitrary.
doi:10.1371/journal.pone.0006316.g001
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EGF ligand (20 nM). Results show that, when receptors are

randomly distributed, the two approaches give similar results for

the rate and extent of ErbB1 phosphorylation and for the

recruitment of PLCc (Figure 3). The CSNSA model predicts a

slightly lower peak value and less sustained recruitment of Shc

(Figure 3) when compared to the ODE solution. These results

emphasize that the CSNSA hybrid stochastic model is comparable

to deterministic solutions in the absence of local concentration

gradients or membrane inhomogeneities.

Predicting the Impact of Receptor Density vs. Clustering
We next used the CSNSA to determine the effects of receptor

spatial distribution and density on downstream signaling. We

defined three different conditions, as shown in the schematic of

Figure 4. In the first condition (magenta), the simulation space

contained a modest density of dispersed receptors (106 receptors

per mm2). In the second condition (dark blue), the simulation space

contained a high density of well dispersed receptors (705 receptors

per mm2). The final simulation condition (cyan) began with a dense

cluster of receptors, which was initially confined to a central region

of 705 receptors per mm2 and then permitted to diffuse over time

to encompass the entire simulation space for a final density of 106

receptors per mm2. For each regime we examined how initial

receptor density and clustering conditions influenced coupling to

four of ErbB1’s adaptor proteins. The temporal profiles of the

cytosolic species Grb2, Sos, and pShc and membrane-bound

PLCc are shown in Figure 4B–E.

All temporal profiles of the CSNSA were compared with their

ODE solutions (shown in purple and red). The most notable

differences came from the clustered regime (cyan), which had the

same receptor concentration of 106 receptors per mm2 as the non-

clustered regime (magenta) but was initially confined to a smaller

region. The clustered regime showed a marked increase in the

amplitude of signal propagation in comparison to the ODE

solution. These data demonstrate that spatial models are needed to

accurately predict the consequence of membrane heterogeneity on

signal propagation and set the stage for more refined consider-

ations of signaling platforms.

Discussion

In this work, we describe a new, efficient computation

framework for evaluating the contributions of spatial organization

to important cellular processes. Although applied here to study

ErbB1 signal initiation at the plasma membrane, the algorithm

should be readily adaptable to other receptor systems, organelle

sites and biochemical cascades. We show that, when considering

well-mixed systems, solutions obtained using the CSNSA hybrid

model and the more traditional ODE solutions are comparable.

However, given the growing evidence for membrane compart-

mentalization at both the plasma membrane and internal

organelles [6,42,43], we propose that the spatial stochastic model

will more accurately predict the outcomes of events that take place

between membrane proteins and lipids and their cytosolic binding

partners.

As an example, we used CSNSA to demonstrate that receptor

clustering creates a more efficient signaling environment. The

existence of receptor clusters is well established [23,44,45], but the

significance of this membrane organization has been approached

in only a few recent publications [31,46]. Our previous work

concluded that ligand-independent ErbB1 dimerization is likely to

be dependent on two factors: density and the probability of

receptor ‘‘fluxing’’ from a closed (dimerization-incompetent) to an

open (dimerization-competent) conformation [31,47]. Because

clustering creates locally high receptor concentrations, it enhances

the probability for collision between receptors that are transiently

in the conformationally ‘‘open’’ state [31]. Here, we show that

ErbB1 clustering also enhances the signaling output of receptors,

based upon the more efficient recruitment of PLCc1, Grb2, Sos

and Shc.

The importance of spatial effects is emerging as an important

topic in systems biology, with technologies such as single particle

tracking and electron microscopy demonstrating unique spatial

domains [25,26,48,49,50,51,52]. In this work, we applied a novel

Table 1. Definition of the reactions in the spatial-temporal
simulations.

Reactions Rate Constants

Membrane Reactions

1. EGF+Ru « Rb Kf = 0.003 Kb = 0.06

2. Rb+Rb « RbRb Kf = 0.01 Kb = 0.1

3. RbRb « R Kf = 1 Kb = 0.01

4. R R RbRb Vmax = 268 Km = 56.2

5. R-Sh « R-pSh Kf = 6 Kb = 0.06

6. R –PLCc « R –pPLCc Kf = 1 Kb = 0.05

Interfacial Reactions

1. R+Shc « R-Sh Kf = 0.09 Kb = 0.6

2. R-pSh « R+pShc Kf = 0.3 Kb = 961024

3. R-pSh+Grb2 « R-pSh-G Kf = 0.003 Kb = 0.1

4. R-pSh-G « R+pSh-G Kf = 0.3 Kb = 961024

5. R-pSh-G+Sos « R-pSh-G- Kf = 0.01 Kb = 2.1461022

6. R-pSh-G-S « R+pSh-G-S Kf = 0.12 Kb = 2.461024

7. R-pSh+G-S « R-pSh-G-S Kf = 0.009 Kb = 4.2961022

8. R+Grb « R-G Kf = 0.003 Kb = 0.05

9. R-G+Sos « R-G-S Kf = 0.01 Kb = 0.06

10. R-G-S « R+G-S Kf = 0.03 Kb = 4.561023

11. R+PLCc« R –PLCc Kf = 0.06 Kb = 0.2

12. R –pPLCc « R+pPLCc Kf = 0.3 Kb = 0.006

13. R-pShGS R R-pShGS+E Kf = 8

14. R-GS R R-GS+E Kf = 48

15. R+E R Deg+E Vmax = 4.7 Km = 82

16. R-pShGS+E R Deg+E+pShGS Vmax = 7560 Km = 78

17. R-GS+E R Deg+E+GS Vmax = 5520 Km = 7560

Cytosolic Reactions

1. G-S « Grb2+Sos Kf = 1.561023 Kb = 1024

2. pShc R Shc Vmax = 2.4 Km = 14.2

3. pShc+Grb2 « pSh-G Kf = 0.003 Km = 0.1

4. pSh-G+Sos « pSh-G-S Kf = 0.03 Kb = 0.064

5. pSh-G-S « pSh+G-S Kf = 0.1 Kb = 0.021

6. pPLCc R PLCc Vmax = 2 Km = 13

7. pPLCc « pPLCc-I Kf = 1 Kb = 0.003

8. E R Deg Kf = 248

Initial concentrations (nM) are Ru (varied), EGF = 20.42VolExtracellular (VolExtracellular

is the volume of the cell (diameter of 20 mm) multiplied by the ratio of the
volume of incubation medium per cell over the cytoplasmic water volume
,33.3), PLCc= 105, Grb2 = 85, and Sos = 34. First and second-order rate
constants are in units of s21 and nM21 s21 and the Michaelis-Menten constants
Km and Vmax are in units of nM and nM s21, respectively. Reactions are
categorized as membrane reactions (handled by the SKMC), interfacial reactions
(cytosolic species associating or dissociating with receptor) handled by the
SKMC, and cytosolic reactions (handled by the SSA).

Modeling ErbB Signaling
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algorithm to show a direct link between spatial heterogeneity and

downstream signaling. We propose that future studies of receptor

signaling should seek to gain a fundamental understanding of the

spatial interactions and spatial organization of the receptors and to

apply these concepts to predictions of signaling output. ErbB

receptor clustered domains have been observed in many cancers

using different microscopy techniques [6,44]. Understanding this

bigger picture of spatial-temporal protein interactions will drive

forth knowledge of cell signaling events and offer the potential to

lead towards better drug treatment options.

Methods

Coupled Spatial, Non-spatial Simulation Algorithm
(CSNSA)

The Coupled Spatial Non-spatial Simulation Algorithm, CSNSA,

is a hybrid model that considers the diffusive behavior and

organization of receptors and other membrane components within

a 2-D framework, bordered by a well-mixed cytosol. A spatial kinetic

Monte Carlo algorithm was employed to capture the spatial-

temporal dynamics of receptors on the cell membrane [36] (Figure 5);

Figure 2. Illustration of the simulated space of the cell, consisting of two distinct domains: the cell membrane and the cytosol. The
CSNSA model incorporates a Monte Carlo approach to simulate receptor diffusions and interactions on the cell membrane and couples to a spatial
stochastic algorithm (Gillespie) for all cytosol interactions.
doi:10.1371/journal.pone.0006316.g002

Figure 3. Comparison of the CSNSA and ODE solutions for receptor phosphorylation, PLCc and SHC recruitment following EGF
stimulation. Simulated kinetics of ErbB1 phosphorylation (A), PLCc recruitment (B) and Shc phosphorylation after EGF (20 nM) using the ODE model
(dashed lines) or the CSNSA model (solid black line). Results (A,B) from both simulation methods compare well with experimental data (solid circles)
reported by Kholodenko et al. [12]
doi:10.1371/journal.pone.0006316.g003
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we used a null-event algorithm that allows ease of implementation

and variation of the underlying model. For computational simplicity,

the cytosol is treated as a well-mixed solution and modeled with the

stochastic simulation algorithm of Gillespie [39]. This assumption is

reasonable in the cytosol, given that the diffusivity of proteins in the

cytosol (1610210 m2s21) [53] is four orders of magnitude larger than

that in the plasma membrane (1610214 m2s21) [41].

The two algorithms are coupled using the CSNSA, which

employs a novel algorithm that selects and executes reactions that

allow the molecular species to evolve in space and time. The

coupling method takes into account the stochastic nature of

biological systems. The first step of the CSNSA is to select a spatial

domain (cell membrane or cytosol) and thus the corresponding

algorithm for the next event. The selection is made by computing

the probabilities of a membrane (SKMC) event or a cytosolic

(SSA) event, which are calculated as:

PSKMC~
Ctot,SKMC

Ctot

and

Figure 4. The spatial model predicts that receptor clustering enhances signaling efficiency by creating locally high receptor densities. A)
Schematic illustration of three simulation cases: dispersed (left), high-receptor density (middle), and highly clustered (right). See legend for key to colored lines
in each plot. Results predict the kinetics of Grb2 activation (B), PLCc phosphorylation (C), Shc phosphorylation (D) and Sos activation (E). Active Grb2 is
equivalent to: RGrb2+RGrb2Sos+RpShcGrb2+RpShcGrb2Sos+Grb2Sos+pShcGrb2+pShcGrb2Sos; Total phosphorylated PLCc= RpPLCc+pPLCc+pPLCcI; total
phosphorylated Shc = RpShc+RpShcGrb2+RpShcGrb2Sos+pShc+pShcGrb2+pShcGrb2Sos; total Sos RGrb2Sos+RpShcGrb2Sos+Grb2Sos+pShcGrb2Sos.
doi:10.1371/journal.pone.0006316.g004
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PSSA~
Ctot,SSA

Ctot

where Ctot is defined as,

Ctot~Ctot,SKMCzCtot,SSA:

The total transition rate for the SKMC, Ctot,SKMC , is the sum of all

transition rates for all SKMC events, or more specifically the transition

rate for diffusion (Ctot,Diff ) and the sum of the reaction events (Ctot,k)

for all NRxn reaction types, Ctot,SKMC~Ctot,Diff z
PNRxn

k~1

Ctot,k, where

Ctot,kis the total transition rate for each reaction type defined over all

lattice sites NL, Ctot,k~
PNL

i~1

Ci,k. Ctot,Diff is defined as the sum of the

transition diffusion rate CDiff over all lattice sites NL,

Ctot,Diff~
PNL

i~1

Ci,Diff . Thus, Ctot,SKMC is defined as:

Ctot,SKMC~
XNL

i~1

Ci,Diff z
XNRxn

k~1

XNL

i~1

Ci,k:

The SSA only accounts for stochastic variations in species

populations and does not consider the spatial organization in the

cytosol, and therefore does not contain a diffusion term. The

Ctot,SSA is defined as the sum of Ck over all reaction types,

Ctot,SSA~
PNRxn

k~1

Ck.

The combined MC method operates like a single MC method

by considering the superposition of all processes. Time is updated

in a ‘‘combined’’ manner from Ctot with an average time step as,

Dt~ 1
Ctot

. Given that the two algorithms are different (null-event vs.

rejection free), the CSNSA is a hybrid method. In order to

properly match time scales, upon selection of a spatial event, the

SKMC model is continuously executed until a successful event is

selected, as shown in Figure 6, based on probability theory

described in [33]. The complete algorithm, which is shown in

Figure 7, was implemented in Fortran 90. Since the algorithm is

stochastic, 10 simulations with different seeds for the random

number generator were used. The CSNSA was benchmarked by

comparison to an ODE model in a reaction-limited system, where

the diffusion coefficient in the CSNSA was made fast compared to

the reaction rates (Figure 4). The typical CPU time for 50

receptors/lattice is ,15 min, for 125 receptors/lattice is

,2880 min, and for 500 receptors/lattice is ,14400 min on an

IntelH XeonTM CPU 3.2 GHz processor with 8.00 GB of Ram.

Spatial Kinetic Monte Carlo (SKMC)
Once an algorithm is selected and executed, transition

probabilities are computed again at each time step. Computing

Ctot,SKMC involves computing the C values for the SKMC over the

entire lattice. This computation is the most CPU intensive step in

the simulation algorithm. We, therefore, used an optimized

computation method. In order to maximize efficiency, a local

region that is affected by the previous reaction event is defined

[36], and the C for each lattice site is computed for this region

both before and after the event has been executed. This eliminates

scanning the entire lattice before and after an event is

implemented, and the new Ctot,SKMC is calculated by:

Figure 5. The spatial kinetic Monte Carlo algorithm, as
implemented in the CSNSA. This algorithm differs from the original
algorithm of Mayawala et al [46] in the time update, which occurs
recursively until a successful event is selected. Time is not updated
when a null event occurs. A detailed description is provided in the text.
doi:10.1371/journal.pone.0006316.g005

Figure 6. Schematic of CSNSA. Coupled Spatial Nonspatial
Simulation Algorithm, CSNSA, combines the spatial stochastic algorithm
[39] depicted in the right branch, with the spatial kinetic Monte Carlo
algorithm [56] in the left branch. Upon selection of a branch, a
successful event has been executed, species populations are updated,
transition rates and probabilities are recomputed, and time advances.
The CSNSA is described in greater detail within the text.
doi:10.1371/journal.pone.0006316.g006
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Ctot,SKMC~Cold
tot,SKMC{Cold

localzCnew
local

where, Cold
tot,SKMC is the total transition probability computed

initially or at a previous successful MC event, Cold
local is the sum of

transition probabilities of all sites affected by an executed event

based on the old configuration, and Cnew
local is the sum of transition

probabilities of all sites affected by an executed event based on the

new configuration.

The SKMC algorithm is a modified null-event lattice MC

method; for further details see Mayawala et al. [36]. All reactions

that are on the lattice or reacting with a species on the lattice are

handled by the SKMC (see Figure 2, * denotes membrane

reactions and ` denotes interfacial reactions). These reactions

include ligand association and dissociation, receptor dimerization

and decomposition, receptor phosphorylation and dephosphory-

lation, and phosphorylated receptor associating with and disasso-

ciating from cytosolic species. When an interfacial reaction occurs,

a molecule of the cytosolic species is subtracted from the cytosolic

population and the membrane species is converted to a new

species at the same location on the lattice.

The spatial domain is a two-dimensional lattice with periodic

boundary conditions. The initial condition of the lattice is dependent

on user specifications and can either be randomly populated or

clustered in pre-defined domains. The algorithm is implemented by

selecting an occupied lattice site, choosing a successful (reaction or

diffusion) or unsuccessful (null) event based on the probabilities, and

if a successful event was chosen, executing the event.

An event is selected by computing the probability distribution

for all events, defined as: PX
i ~

CX
i

Cmax
, for lattice site i and event x.

Table 2 shows the events executed by this algorithm and the

equations for computing CX for each event. Cmax is defined as

Cmax~4
Cd

4
zmax

X
all forward reaction events

Cr

( ) !

zmax
X

all backward reaction events

Cr

( )

where the multiple of four accounts for events occurring in each of

the four directions on the square lattice.

The spatial algorithm is coupled with the Stochastic Simulation

Algorithm (SSA); therefore, unlike the original SKMC algorithm

[36], the CSNSA is recursive in that it continuously selects an event

until a successful event is chosen and executed as shown in Figure 6;

therefore time is not updated if an unsuccessful event is selected.

Stochastic Simulation Algorithm (SSA)
The non-spatial SSA developed by Gillespie [39] was used to

model protein association reactions in the cytosol. The algorithm

begins with initializing species populations and time; then

propensities for all reactions are computed, and an event is

randomly selected and the time is updated. This is a rejection free

method; therefore, a reaction event is chosen and time is updated

by an increment whose average is Dt~ 1
Ctot

.

Interfacial Reactions
Interfacial reactions occur when a cytosolic species binds to or

detaches from a receptor on the square lattice. In the former case,

a molecule from the cytosolic species is subtracted from the cytosol

population and a new product is produced at the site that was

previously occupied by the reacting receptor. In the latter case, the

converse procedure occurs. An example is shown in Table 1

(Interfacial Reaction #1), in which a cytosolic species, Shc, binds to

a receptor, R, occupying site k producing product R-Shc at site k.

The rate constants for cytosolic reactions are calculated by first

computing the cytosolic volume (Vcyt = 1/3 rL2 mm3), where r is

the radius of the cell, and L is the lattice dimension. Next we

compute the number of molecules per mm3, Nsp. By multiplying

the product of Vcyt and Nsp with the rate constant (given in terms

of molecules21 s21for bimolecular reactions or s21 for unim-

olecular reactions), we obtain a transition rate with units of

molecules s21.

Sensitivity Analysis
To elucidate a mechanism that agrees with the experimental

results [12] and explains the biological nature of our system, we

modified the reaction scheme developed by Kholodenko et al.

[12]. A sensitivity analysis was performed on the reaction

mechanism, using the decoupled direct method and the backward

differentiation formula method, as implemented in the NASA

Glenn chemical kinetics and sensitivity analysis code LSENS

[54,55]. In addition to the species concentrations, these methods

automatically follow the temporal evolution of the first-order

Figure 7. Schematic of the SSA algorithm, as coupled to the hybrid
algorithm. This algorithm is used for all cytosolic interactions. Being a
rejection free algorithm, a successful event (reaction) is chosen and executed
in each iteration.
doi:10.1371/journal.pone.0006316.g007
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sensitivity coefficients dC/dgj. The vector C contains the

concentrations of all biochemical species and g j is a parameter

of interest, such as an initial concentration or a rate constant. The

parameters of the new system were refined, and fits were

performed for the new reactions shown in blue in Figure 1 and

for the Michaelis-Menten reactions using PottersWheel. The

parameters to refine were determined to be sensitive using the

LSENS package.

Supporting Information

Appendix S1
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