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Background: Autoimmune thyroiditis (AIT) is a common autoimmune disease that causes thyroid dysfunction. Clinical symptoms in 
Hashimoto thyroiditis patients were improved after oral administration of dioscin. However, the mechanisms involved in the 
therapeutic effect remain unclear.
Methods: The protective effects and potential mechanisms of dioscin for autoimmune thyroiditis were explored in a rat model of 
thyroglobulin-induced autoimmune thyroiditis. Firstly, the rat model of AIT was obtained by subcutaneous injection of thyroglobulin 
and drinking the sodium iodide solution, followed by gavage administration for 8 weeks. Rats were sacrificed after anaesthesia, serum 
and thyroid samples were preserved. Serum triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), 
thyrotropin (TSH), thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), and thyrotropin receptor antibody (TRAb) 
expressions were measured by enzyme-linked immunosorbent assay (ELISA). Morphological changes were observed by H&E 
staining. Next, we used transcriptomics techniques to find the potential therapeutic target of dioscin. Finally, we validated the 
transcriptomic results by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC-P), respectively.
Results: Animal experiments showed that dioscin regulated T3, T4, FT3, TSH, TgAb, TPOAb, and TRAb and alleviated the 
pathological process in a dose-dependent manner, with the high-dose group showing optimal efficacy. In the transcriptome, the 
nuclear factor kappa B (NF-κB) pathway was identified by KEGG enrichment analysis and validated by RT-PCR and IHC-P. The 
relative expression of NF-κB, mechanistic target of rapamycin (mTOR), and toll-like receptor 4 (TLR4) mRNA and protein were 
decreased in the dioscin-treated group compared to the AIT model group.
Conclusion: Our results suggest that dioscin treatment improved thyroid function and downregulated TGAb, TPOAb and TRAb 
levels in rat models of AIT, which may alleviate the pathological process and suppress the inflammatory response by inhibiting mTOR 
and TLR4/NF-κB pathways.
Keywords: dioscin, autoimmune thyroiditis, transcriptome, TLR4/NF-κB

Introduction
Autoimmune thyroiditis refers to an organ-specific autoimmune disease characterised by structural destruction of thyroid 
tissue and hypothyroidism caused by lymphocyte-infiltrating autoantibodies (TPOAb and TgAb) in the thyroid tissue.1 

High titers of TgAb are present in most patients with AIT (40%-70%), and more than 80% of patients with AIT have 
high titers of TPOAb.2 In general, the diagnosis can be confirmed by thyroid ultrasound and antibody testing in clinical 
practice. The prevalence of AIT is increasing year by year and is much higher in women than in men.3

The pathogenesis of AIT is unclear and may be related to genetic susceptibility, environmental factors, and 
endogenous factors. Their interaction leads to the destruction of immune tolerance, the production of thyroid autoanti-
gens and to the subsequent activation of T lymphocytes, which induce lymphocyte migration to the thyroid and produce 
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anti-thyroid autoantibodies.4 Currently, there are no specific treatment options for AIT, which are limited and carry a high 
risk of serious side effects, including surgical treatment, thyroid hormone therapy or immunomodulatory therapy. 
Therefore, there is an urgent need to find a new effective and safe drug for AIT.

Dioscin is a natural steroidal saponin extracted from the roots of the Dioscorea plants, Dioscorea nipponica and 
Dioscorea zingiberensis.5 In recent years, the anti-inflammatory, immunomodulatory, antiallergic, antifungal, and antiviral 
effects of dioscin have attracted increasing attention due to its effective role in the treatment of brain, liver, kidney, stomach, 
and intestinal injuries, and metabolic diseases such as obesity, diabetes, hyperuricemia, and osteoporosis.6 Dioscin exerts 
good anti-inflammatory effects.7 Clinical symptoms were improved after oral administration of dioscin.8 Further experiments 
on animal and cellular mechanisms revealed that dioscin can promote the differentiation of the CD4+CD25+Foxp3+ Treg 
cells and subsequently upregulate the SUMOylation of interferon regulatory factor 4 by downregulating the expression of 
SUMO specific peptidase 1. However, there are limitations to the previous hypothetical research. To fully understand the 
therapeutic effects and molecular mechanisms of dioscin activity, transcriptome sequencing was used to investigate 
the effects of dioscin on gene expression in the thyroid tissue from AIT rats. The overall aim of this study was to observe 
the protective effects of dioscin in the rat model of AIT and to explore the possible mechanism of action involved.

Materials and Methods
Animals
Four-week-old female specific pathogen-free (SPF) Lewis rats (80 ± 10 g) were purchased from Beijing Vital River 
Laboratory Animal Technology Co. (License No. SCXK, Beijing, 2016–0006). The rats were housed in the laboratory of 
the Experimental Animal Center of Beijing University of Traditional Chinese Medicine [No. SYXK (Jing) 2020–0033] 
under SPF conditions in a temperature -controlled breeding room with a 12 h:12 h light-dark cycle. All experimental 
procedures were approved by the Laboratory Animal Ethics Committee of Beijing University of Chinese Medicine (No. 
BUCM-4-2019070303-3003.).

Reagents
Dioscin (high performance liquid chromatography [HPLC] ≥98%, lot: Y20A10Z95575, Shanghai Yuanye Bio- 
Technology Co., Ltd, Shanghai, China, chemical structure shown in Figure 1A was dissolved in 0.5% CM cellulose 
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Figure 1 Dioscin attenuates thyroid dysfunction and inflammatory infiltration in Lewis rats. (A) The chemical structure of dioscin. (B) Autoimmune thyroiditis induction and 
dioscin administration scheme. (C–J) Serum results of thyroid function, TGAb, TPOAb and TRAb. (n =10). *P < 0.05, **P < 0.01, ***P < 0.001, ns= P > 0.05.
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sodium salt solution (lot: SL29151602, Coolaber, Beijing, China) and added to 0.02% dimethyl sulfoxide (lot: 1129E031, 
Solarbio, Beijing, China) to prepare the suspension for in vivo studies.

Sodium iodide was prepared as a 0.064% solution using deionized water as the solvent and stored in tin foil wrapped 
away from light (NaI, CAS No. 7681-82-5, 99% AR, Maya-R). The emulsifier was prepared as follows: porcine 
thyroglobulin (PTg) was dissolved in phosphate buffered saline to make a 0.1% solution, then mixed with Freund’s 
complete adjuvant (CFA) in a 1:1 volume ratio and emulsified. The final concentration of PTg was 0.05%. Freund’s 
incomplete adjuvant (IFA) was prepared similarly to the CFA solution (lot. SLBW7430, SIGMA, St. Louis, MO, USA; 
IFA, lot. SLBZ0619, Sigma; PTg, lot.018K7012, SIGMA).

AIT Induction in Rats and Drug Treatment
Ten rats were randomly selected as the normal group, and the rest were subjected to the AIT model (Figure 1B). To 
induce the AIT animal model,9 from the first week of the experiment, the rats were allowed to drink 0.064% NaI freely, 
while the non-model control rats were allowed to drink double-distilled water freely. In the third week, the model rats 
were immunized for the first time: thyroid globulin emulsion with Freund’s complete adjuvant was injected subcuta-
neously into the paw pad, back, and neck of the rats at multiple sites at 0.2 mL each. Two injections were given 2 days 
apart in one week. Enhanced immunization: 0.2 mL was injected into the paw pad, subcutaneous back, and subcutaneous 
neck of rats from week 4 to week 8. To verify the success of the model development, blood samples were collected from 
the orbital vein, and the level of TPOAb antibody in peripheral serum was detected by ELISA. Serum TPOAb 
concentration in the model group is at least 10 times that of the normal group. In this study, before administration, the 
serum TPOAb (IU/mL) concentration of the model rats was 178.682±11.160 and that of the normal group was 9.347 
±0.839. The TPOAb in model rats was 19.117 times that of normal rats, and it is considered that the model is successful. 
Three model rats were randomly selected for histologic evaluation of thyroid changes. Rats were grouped before drug 
administration with no statistically significant difference in TPOAb levels between the groups.

Fifty rats were randomly divided into the normal group (control), AIT-model group, dioscin low-dose group, dioscin 
middle-dose group, dioscin high-dose group, with 10 rats in each group. After the AIT model was achieved, rats in the 
dioscin low-dose (dioscin-L) group (25 mg/kg/d), dioscin middle-dose (dioscin-M) group (50 mg/kg/d) and dioscin high- 
dose (dioscin-H) group (100 mg/kg/d) were given the corresponding drug suspensions, and rats in the normal (control) 
group and the model group were given the same volume of deionized water,1 mL/100 g/d, continuously for 8 weeks.

The dioscin-H treatment group was evaluated by transcriptome, RT-PCR and IHC-P analysis. The dioscin-L and 
dioscin-M groups were excluded due to better efficacy of the high dose.

Serum and Histology Examination
After the treatments, the rats were anesthetized with 1% pentobarbital sodium, and blood was collected from the 
abdominal aorta to obtain serum. T3, T4, FT3, FT4, TSH, TGAb and TRAb were detected by Beijing Sino-UK 
Institute of Biological Technology. The expression level of TPOAb was detected by ELISA (TPOAb ELISA Kit, lot: 
C0336030355, CUSABIO, Wuhan, China). One unilateral thyroid gland was excised and fixed in 4% paraformaldehyde 
for pathological observation, while the contralateral thyroid gland was immediately placed in liquid nitrogen for 
transcriptome, RT- PCR and IHC-P.

Transcriptome Sequencing
Transcriptome sequencing and analysis were performed by OE biotech Co., Ltd. (Shanghai, China).

RNA Extraction and Library Preparation
Total RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA) according to the 
manufacturer’s protocol. RNA integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). Samples with an RNA Integrity Number (RIN) ≥ 7 were subjected to library preparation using the 
TruSeq Stranded mRNA LTSample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s 
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instructions. These libraries were then sequenced on the Illumina sequencing platform (HiSeqTM 2500 or Illumina 
HiSeq X Ten) and 125bp/150bp paired-end reads were generated.

Bioinformatics Analysis
Quality Control and Mapping 
The raw data (raw reads) were processed using Trimmomatic.10 The reads containing ploy-N and the low quality reads 
were removed to obtain the clean reads, which were then mapped to the reference genome using hisat2.11

Gene-Level Quantification, Analysis of Differentially Expressed Genes, Cluster Analysis, GO, and KEGG Enrichment 
The FPKM, or Fragments Per kilobase of transcript Per Million mapped Reads,12 value of each gene was calculated 
using cufflinks,13 and the read counts of each gene were obtained using htseq-count.14 Differentially expressed genes 
(DEGs) were identified using the DESeq15 R package functions estimate SizeFactors and nbinomTest. A P-value <0.05 
and foldChange >2 or foldChange <0.5 were set as the thresholds for significant differential expression. Hierarchical 
cluster analysis of DEGs was performed to explore gene expression patterns. GO enrichment and KEGG16 pathway 
enrichment analysis of DEGs were respectively performed using R, based on the hypergeometric distribution.

Transcript-Level Quantification, Analysis of Differentially Expressed Transcript, Cluster Analysis, GO and KEGG 
Enrichment 
Transcript-level quantification, FPKM, and read count values for each transcript (protein_coding) were calculated using 
bowtie217 and eXpress.18 DEGs analysis was the same as above: 2.5.2.2.

Real-Time Quantitative RT-PCR
RNA extraction and real-time quantitative reverse transcription (RT)-PCR were conducted by OE biotech Co., Ltd. (Shanghai, 
China). Quantification was performed with a two-step reaction process: RT and PCR. Each RT reaction consisted of 0.5 μg RNA, 2 
μL of 5×TransScript All-in-one SuperMix for qPCR and 0.5 μL of gDNA Remover, in a total volume of 10 μL. Reactions were 
performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA) for 15 min at 42°C and 5 s at 85°C. The 
10 μL RT reaction mix was then diluted 10-fold in nuclease-free water and stored at −20°C. Real-time PCR was performed using 
the LightCycler 480 II Real-time PCR Instrument (Roche, Basel, Switzerland) with 10 μL PCR reaction mixture containing 1μL 
of cDNA, 5 μL of 2×PerfectStartTM Green qPCR SuperMix, 0.2 μL of forward primer, 0.2 μL of reverse primer, and 3.6 μL of 
nuclease-free water. Reactions were incubated in a 384-well optical plate (Roche) at 94°C for 30s, followed by 45 cycles of 94°C 
for 5s and 60°C for 30s. Each sample was run in triplicate for analysis. At the end of the PCR cycles, melting curve analysis was 
performed to validate the specific generation of the expected PCR product. Primer sequences were designed in the laboratory and 
synthesized by TsingKe Biotech based on the mRNA sequences obtained from the NCBI database as follows: AdipoR (102 bp) 
Forward primer (5→3): CCCTGGCTCTATTACTCCTT, Reverse primer (5→3): CCACTGTGCCACAATGAT; AMPK (82bp) 
Forward primer (5→3): TCTATGAACTGGAGGAGCACA, Reverse primer (5→3): GAAATGCAGACAAGTGGCTTA; 
CREB (105 bp) Forward primer (5→3): CGCAGGTCCATCAGTTACA, Reverse primer (5→3): GGATGA 
TGAGAGCCAACGA; Leptin (85bp) Forward primer (5→3): TTGGTCCTATCTGTCCTATGTT, Reverse primer (5→3): 
GGTGACAATGGTCTTGATGAG; PGC-1a (83bp) Forward primer (5→3): GAAATTGAGGAATGCACCGTA, Reverse 
primer (5→3): AAAGCGTCACAGGTGTAAC; TLR4 (102bp) Forward primer (5→3): GACATGGCAGTTTCTGAGTAG, 
Reverse primer (5→3): AGAAGGCGATACAATTCGAC; NF-κB (93bp) Forward primer (5→3): TCCAGTG 
TGTGAAGAAGCGA, Reverse primer (5→3): GCTGCTCCTCTATGGGAAC; mTOR (100 bp) Forward primer (5→3): 
AAGTTCAGCCCTTCTTTGAC, Reverse primer (5→3): AGAATCAGACAGGCACGA; β-actin (72 bp) Forward primer 
(5→3): GCGAGTACAACCTTCTTGC, Reverse primer (5→3): TATCGTCATCCATGGCGAAC.The expression levels of 
mRNAs were normalized to β-actin and were calculated using the 2-ΔΔCt method.

Immunohistochemistry
The main steps of immunohistochemical detection included dewaxing, hydration, 3% hydrogen peroxide treatment, high 
temperature antigen retrieval, goat serum sealing, primary antibody 4°C overnight, rewarming PBS wash, secondary 
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antibody drop, DAB color development, hematoxylin staining, hydrochloric acid and alcohol differentiation, tap water 
wash, dehydration, and sealing. Images were captured under a microscope, and the Image-Pro Plus 6.0, Media 
Cybernetics system was used to detect absorbance and determine integrated option density (IOD)/area of TLR4 
(ab22048, Abcam, Cambridge, MA, USA), NF-κB p65 (ab16502, Abcam), or mTOR (ab32028, Abcam), and to perform 
statistical processing.

Statistical Analysis
Statistical analysis was carried out using SPSS 20.0 statistical software (SPSS Inc., USA). When the sample size is 
greater than or equal to 10, we use the Shapiro–Wilk test to assess the normality of the data. When the sample size is less 
than 10, we employed Q-Q plots for a visual assessment of normality.19 Mean ±standard deviation (SD) was reported for 
normally distributed data, while median (quartile 25%, 75%) [M (Q1, Q3)] was used for non-normally distributed data. 
The Student’s t-test was employed for comparing normally distributed data between two groups, and one-way analysis of 
variance (ANOVA) followed by the least significant difference (LSD) test for groups with equal variances or Dunnett’s 
T3 test for groups with unequal variances was used for three or more groups. Non-normally distributed data was 
compared using the Mann–Whitney U-test for two groups and the nonparametric Kruskal–Wallis test for three or more 
groups. Statistical significance was determined by a P-value of less than 0.05.

Results
Serum Expression of Thyroid Function
Compared with the normal group, the levels of T3 (Dunnett’s T3 test, P<0.001), T4 (Kruskal–Wallis test, P<0.001), FT3 
(Dunnett’s T3 test, P<0.001), and FT4 (Kruskal–Wallis test, P<0.001) in the model group increased significantly, while 
the levels of TSH decreased (Dunnett’s T3 test, P<0.001). Compared with the model group, the concentrations of T3 in 
the dioscin-H (Dunnett’s T3 test, P=0.030), T4 in the dioscin-M (Kruskal–Wallis test, P=0.047) and dioscin-H (Kruskal– 
Wallis test, P=0.003) groups decreased. The concentrations of FT3 in the dioscin-M (Dunnett’s T3 test, P=0.008) and 
dioscin-H (Dunnett’s T3 test, P<0.001), and FT4 in the dioscin-M (Kruskal–Wallis test, P=0.011) groups decreased. The 
TSH in the dioscin-L (Dunnett’s T3 test, P=0.001), dioscin-M (Dunnett’s T3 test, P<0.001), and dioscin-H (Dunnett’s T3 
test, P<0.001) levels increased significantly (Figure 1C-G).

Thyroid Serum Antibody Expression
Compared with the normal group, TGAb, TRAb and TPOAb in the model group increased significantly (Dunnett’s T3 
test, P<0.001). Compared with the model group, the concentrations of TGAb in the dioscin-L (Dunnett’s T3 test, 
P<0.001), dioscin-M (Dunnett’s T3 test, P<0.001) and dioscin-H (Dunnett’s T3 test, P<0.001), TPOAb in the dioscin-L 
(Dunnett’s T3 test, P<0.001), dioscin-M (Dunnett’s T3 test, P<0.001) and dioscin-H (Dunnett’s T3 test, P<0.001), and 
TRAb in the dioscin-H-treated (Dunnett’s T3 test, P=0.032) groups were significantly reduced (Figure 1H-J).

Pathological Changes in Thyroid Tissue
In the normal group, a large number of intact thyroid follicles were observed microscopically, with moderate size, 
uniform presence of red colloids, and intact follicular epithelial cells. In the model group, a diffuse lymphocytic 
infiltration was observed in the stroma of the thyroid follicles, a large number of follicular lumens were destroyed or 
reduced, the colloid content in the lumens was unevenly distributed or reduced, and the walls of the follicles were thin 
and ruptured. Compared with the model group, the lymphocyte infiltration in the thyroid follicular stroma was 
significantly reduced in the treatment group, the follicular epithelial cells were more intact, and the colloid content 
was slightly decreased, and the follicular structure was found to be intact. The high-dose group performed better. 
(Figure 1K).
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Analysis of Differentially Expressed Genes
Screening and Expression Level Analysis of DEGs
The DESeq software revealed that the number of differentially expressed genes in the dioscin-treated group was 189, 
with 179 genes upregulated and 10 downregulated genes compared to the AIT-model group (Figure 2A).

KEGG Enrichment Analysis of DEGs
The distribution of the differentially expressed genes and all genes in the KEGG Level in the dioscin treatment group 
were compared with those of the AIT-model group (Figure 2B). The bubble diagram of the top 20 KEGG pathways from 
the enrichment analysis (obtained by selecting pathway entries including 2 or more different genes, and sorted according 
to the -log10P value corresponding to each entry from large to small) is shown in Figure 2C.

Based on the pathways correlated with thyroid disease, the AMPK signaling pathway and the NF-kappa B signaling 
pathway were selected from the KEGG enrichment analysis. The expression of AdipoR, AMPK, PGC-1α, CREB, and 
leptin mRNA belonging to the AMPK signaling pathway were verified by RT-PCR. The expression of TLR4, NF-κB, and 
mTOR mRNA was verified by RT-PCR and the relative protein expression was detected by IHC-P.

Real-Time Quantitative RT-PCR
Compared with the AIT group, the relative expression of AdipoR (Mann–Whitney test, P=0.017), AMPK (Unpaired 
t test, P=0.022), leptin (Mann–Whitney test, P=0.960), PGC-1a (Mann–Whitney test, P=0.142), NF-κB (Mann–Whitney 
test, P=0.039), mTOR (Unpaired t test, P=0.029), and TLR4 (Unpaired t test, P=0.089) mRNA decreased in the dioscin- 
treatment group, while the relative expression of CREB (Unpaired t test, P=0.074) mRNA increased (Figure 3A).

Immunohistochemical Analysis
TLR4 and mTOR immunoreactive signals (brown staining) in thyroid tissue were located in thyroid follicles and 
follicular stroma using 400× light microscopy, suggesting that TLR4 and mTOR proteins are expressed in thyroid 
follicles and in the follicular stroma of the thyroid. The NF-κB immunoreactive signals (in brown) were located in the 
nuclei of thyroid follicular epithelial cells, indicating that NF-κB protein was expressed in the nucleus of thyroid 
follicular epithelial cells.

Comparing the IOD/Area of each region of interest for each treatment group with the normal group, the expression of 
TLR4 (Dunnett’s T3 test, P<0.001), mTOR (Kruskal–Wallis test, P<0.001), and NF-κB (Kruskal–Wallis test, P<0.001) 
protein was higher in the thyroid tissue of rats in the AIT model group. Compared with the AIT model group, the 
expression of TLR4 (Dunnett’s T3 test, P<0.001), mTOR (Kruskal–Wallis test, P=0.049), and NF-κB (Kruskal–Wallis 
test, P=0.049) protein was significantly decreased in the dioscin-treated group (Figure 3B-G).

Discussion
Since AIT is predominant in females, female Lewis rats, which are inbred, highly homogeneous, susceptible to 
autoimmune diseases, and have good reproducibility, were selected for modeling in this study.20 An animal model of 
AIT was established by drinking 0.064% sodium iodide combined with subcutaneous injection of porcine thyroglobulin 
in rats. Serologic results showed that the titers of serum TGAb, TPOAb and TRAb were significantly higher in the AIT 
model group than in the normal group. Morphological observation of randomly selected model rats showed that a large 
number of follicular lumens in the thyroid tissue of the AIT model group were destroyed or reduced, and the luminal 
colloid content was uneven or reduced with lymphocyte infiltration. In addition, this modeling method has demonstrated 
its effectiveness and good stability in several other research studies.21–23 These studies have shown consistent serological 
and pathological results with the present study, with elevated thyroid autoantibodies, thyroid follicular destruction, and 
significant infiltration of lymphocytes in the thyroid gland being the key indicators of a successful model.

Compared with the normal group, the serum levels of T3, T4, FT3, and FT4 were significantly increased and the 
levels of TSH were decreased in the AIT model group, indicating the continued destruction of the thyroid gland, leading 
to thyrotoxicosis. Serum hormone levels of T3, T4, FT3, FT4, TSH, and thyroid antibodies TgAb, TPOAb and TRAb 
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Figure 2 (A)Statistical histogram of differentially expressed genes. The horizontal axis is each comparison group; The vertical axis is the number of different genes in the 
comparison group, where up is the number of significantly different up-regulated genes and down is the number of significantly different down-regulated genes. (B) 
Comparison of differentially expressed genes and horizontal distribution of all genes in KEGG Levels. The horizontal axis is the ratio (%) of the total number of genes 
annotated to each metabolic pathway (differentially expressed genes) and all genes annotated to the KEGG pathway (differentially expressed genes), the vertical axis 
represents the name of the pathway, and the number on the right side of the column represents the number of differentially expressed genes annotated to this Levels 
pathway. (C) Bubble diagram of top 20 enrichment by KEGG. The X axis in the figure is the enrichment score. The larger the bubble, the higher the number of differential 
protein coding genes. The color of the bubble changes from purple-blue-green-red. The smaller the enrichment p-value, the higher the significance.
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Figure 3 (A) Comparison of mRNA expression in thyroid tissue (n =5). (B–D) The results of quantitative analysis of immunohistochemical staining using Image Pro-Plus 6.0 
software (n=9). (E–G) TLR4, mTOR and NF-κB protein levels in thyroid tissues shown by immunohistochemical staining. *P < 0.05, ***P < 0.001, ns= P > 0.05.

Drug Design, Development and Therapy 2023:17                                                                             https://doi.org/10.2147/DDDT.S410901                                                                                                                                                                                                                       

DovePress                                                                                                                       
2281

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


were slightly improved in the dioscin-L and dioscin-M groups after 8 weeks of oral dioscin administration compared with 
the AIT model group, but the difference was not statistically significant, indicating that dioscin concentrations in these 
two groups were not sufficient to treat AIT. In contrast, serologic tests in the high-dose group revealed a significant 
improvement in thyroid function compared to the AIT model group. Pathological results also showed that the high-dose 
group had less lymphocyte infiltration in the interstitial thyroid follicles and a more intact thyroid structure. Therefore, 
thyroid tissues from the dioscin-H group of rats were selected for transcriptomic analysis and subsequent validation, with 
the aim of understanding the potential molecular mechanisms underlying the therapeutic effects of dioscin in AIT rats.

The present study demonstrates that dioscin may have a potential therapeutic effect on AIT in female Lewis rats. 
Previous studies have investigated the efficacy of various treatments on animal models of AIT. Guo et al’s23 study 
examined the effect of Prunella vulgaris L. on AIT in rats and found that it significantly reduced TgAb levels and thyroid 
inflammation scores in experimental autoimmune thyroiditis rats compared to the AIT model group. Similarly, Yang 
et al24 showed that high doses of Isaria felina significantly reduced serum TSH, TGAb, and TPOAb levels in AIT mice. 
Our findings are consistent with these studies, suggesting that dioscin may be a potential therapeutic option for treating 
AIT. It is important to note that optimal dosages and efficacy of each treatment may vary, and the mechanisms of 
therapeutic action may also differ. Therefore, further research is necessary to determine the optimal treatments and 
dosages for animal models and human AIT.

Knowing that the thyroid gland is small and easily degraded, we tried to optimize the experimental design to use as 
few animals as possible and reduce animal injury. We obtained thyroid tissue and extracted RNA from 5 rats each from 
normal rats, the AIT model group and the dioscin high-dose group. Overall, DESeq software showed that the number of 
differentially expressed genes in the dioscin treated group was 189, with 179 genes up-regulated and 10 gens down- 
regulated compared with the AIT-model group, indicating that dioscin activated numerous genes with widely different 
functions to alleviate AIT-induced damage. The differentially expressed genes were analyzed by KEGG enrichment. We 
selected the AMPK and NF-kappa B signaling pathways for RT-PCR verification of the KEGG enrichment analysis 
based on the correlation of these pathways with thyroid disease. The expression of AdipoR, AMPK, PGC-1α, and leptin 
in the AMPK signaling pathway were all downregulated in the RT-PCR results, which was contrary to the upregulation 
revealed by the transcriptome results, so this pathway was excluded. RT-PCR verified two core genes TLR4 and NF-κB 
in the NF-kappa B signaling pathway and the expression of mTOR mRNA. Compared with the AIT-model group, the 
relative expression of mTOR (Unpaired t test, P=0.029) and NF-κB (Mann–Whitney test, P=0.039) mRNA decreased, 
while TLR4 mRNA decreased, although the differences were not significantly different. In addition, the relative 
expression of CREB mRNA increased in the dioscin-treated group, but not significantly.

TLR4 plays an important role in the pathogenesis of AIT disease.25 In Hashimoto’s thyroiditis patients, the expression 
of serum TLR4 is higher than that of unaffected individuals, and TLR4 plays an important role in the immunopatho-
logical mechanisms of the disease by inducing a pro-inflammatory response.26 In this study, TLR4 mRNA (Unpaired 
t test, P=0.089) and the TLR4 IOD/Area (Dunnett’s T3 test, P<0.001) were downregulated in the dioscin-treated group, 
suggesting that dioscin could inhibit the inflammatory response in thyroid tissue through TLR4. After activation of the 
TLR family proteins, the downstream signal transduction pathway is activated, resulting in a complex signal cascade 
amplification response. NF-κB is an important downstream molecule regulated by TLR4.27 After activation, it can induce 
the synthesis and release of various inflammatory mediators, which can further activate innate immune cells and the 
adaptive immune system.28 Therefore, NF-kB plays an important role in both the inflammatory and immune responses.29 

Inhibition of NF-κB activity plays an important role in the treatment of AIT. For example, agents such as DHA, which 
inhibit the phosphorylation of the PI3K/AKT pathway and inhibit the expression of p-NF-κB, and have been proposed as 
a useful drugs for the treatment of AIT.30 In this study, TLR4, NF-κB mRNA, and the corresponding IOD/Area in the 
IHC analysis were downregulated (Kruskal–Wallis test, P<0.001), suggesting that dioscin may play a role in the 
treatment of AIT by inhibiting the TLR4/NF-κB signaling pathway.

mTOR is widely involved in the regulation of cell growth, proliferation, autophagy, and apoptosis of cells, and has 
been defined as a “central regulator” of cellular activity.31 The mTOR signaling pathway may regulate autophagy and cell 
proliferation in the thyroiditis model.32 Compared with the AIT-model group, mTOR mRNA (Unpaired t test, P=0.029) 
and the relative IOD/Area (Kruskal–Wallis test, P<0.001) were down-regulated in the dioscin group. Dioscin may inhibit 
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mTOR expression, inhibit cell proliferation, and induce autophagy to some extent. The downregulation of AMPK 
expression assessed by RT-PCR suggested that mTOR was not activated by AMPK. In the KEGG enrichment analysis, 
the PI3K-Akt signaling pathway was upregulated, suggesting that mTOR might not be downregulated by inhibition of the 
PI3K-Akt pathway. How dioscin affects the regulation of mTOR deserves further study. In addition, mTOR regulates the 
pro-inflammatory immune response by regulating transcription factors including NF-κB.33 It has been suggested that 
dioscin may attenuate the inflammatory immune response not only by inhibiting the TLR4/NF-κB signaling pathway, but 
also by inhibiting the mTOR/NF-κB pathway.

Apoptosis is the main mechanism of thyroid cell death.34 In Graves’ disease, there are three thyroid stimulating 
hormone receptor antibodies with different functions (stimulating, blocking, and cleaving). The stimulating antibody can 
induce the survival and proliferation of thyroid cells through the cAMP/PKA/CREB pathway, while the cleavage 
antibody can induce cell death through mitochondrial ROS (mROS), and the generation of cAMP/PKA can also prevent 
apoptosis by inhibiting mROS formation.35 In the KEGG enrichment analysis, the cAMP signaling pathway was up- 
regulated, and the relative expression of CREB mRNA increased. Therefore, whether dioscin can induce the survival and 
proliferation of thyroid cells by upregulating the cAMP/PKA/CREB signaling pathway deserves further study. 
Furthermore, it remains to be explored whether dioscin can balance the survival and proliferation of thyroid cells 
induced by the cAMP/PKA/CREB pathway with the simultaneous inhibition of cell proliferation and autophagy induced 
by mTOR.

Conclusion
In conclusion, this study suggests that dioscin can improve the expression of T3, T4, FT3, FT4, and TSH hormones in 
AIT model rats and can down-regulate the levels of TGAb, TPOAb and TRAb and thereby alleviating the pathological 
processes and inflammatory response involving the thyroid gland, activities that may be attributed to the inhibition of 
mTOR and TLR4/NF-κB signaling pathways.
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thyroid stimulating hormone; TgAb, thyroglobulin antibody; TPOAb, thyroid peroxidase antibody; TRAb, thyrotropin 
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