
Bachimanchi et al. eLife 2022;11:e79760. DOI: https:// doi. org/ 10. 7554/ eLife. 79760  1 of 17

Microplankton life histories revealed 
by holographic microscopy and 
deep learning
Harshith Bachimanchi1, Benjamin Midtvedt1, Daniel Midtvedt1, Erik Selander2, 
Giovanni Volpe1*

1Department of Physics, University of Gothenburg, Gothenburg, Sweden; 
2Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden

Abstract The marine microbial food web plays a central role in the global carbon cycle. However, 
our mechanistic understanding of the ocean is biased toward its larger constituents, while rates 
and biomass fluxes in the microbial food web are mainly inferred from indirect measurements 
and ensemble averages. Yet, resolution at the level of the individual microplankton is required to 
advance our understanding of the microbial food web. Here, we demonstrate that, by combining 
holographic microscopy with deep learning, we can follow microplanktons throughout their lifespan, 
continuously measuring their three- dimensional position and dry mass. The deep- learning algorithms 
circumvent the computationally intensive processing of holographic data and allow rapid measure-
ments over extended time periods. This permits us to reliably estimate growth rates, both in terms 
of dry mass increase and cell divisions, as well as to measure trophic interactions between species 
such as predation events. The individual resolution provides information about selectivity, individual 
feeding rates, and handling times for individual microplanktons. The method is particularly useful to 
detail the rates and routes of organic matter transfer in micro- zooplankton, the most important and 
least known group of primary consumers in the oceans. Studying individual interactions in idealized 
small systems provides insights that help us understand microbial food webs and ultimately larger- 
scale processes. We exemplify this by detailed descriptions of micro- zooplankton feeding events, 
cell divisions, and long- term monitoring of single cells from division to division.

Editor's evaluation
This paper presents a valuable new method combining holographic microscopy and deep learning 
to track the behavior and growth of individual plankton. The paper illustrates the method with 
compelling data from two applications, zooplankton feeding behavior and diatom cell division. 
This paper will be of interest to plankton ecologists and ocean ecosystem modelers. The results 
obtained from this method will provide new insights into the trophic strategies of ocean plankton 
and important constraints for global ocean models.

Introduction
The role of herbivores in structuring plant communities is well established in terrestrial ecology. 
Already Darwin, in his foundations on evolutionary biology (Darwin, 2004), noted how excluding 
herbivores from a heath land transformed it into a forest of pine trees with an altogether different 
species composition. Single- celled micro- zooplankton take on the role of herbivores in the ocean, 
consuming approximately two thirds (40 Petagrams (Pg) carbon) of the primary production (Calbet and 
Landry, 2004). In oceanic ecology, the primary production is dominated by unicellular phytoplankton, 
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which produce around 50 Pg of carbon annually, quantitatively slightly exceeding the production of 
terrestrial plants (Behrenfeld and Falkowski, 1997; Field et al., 1998). Selective grazing shapes the 
plankton community and drives large- scale processes such as harmful algal bloom formation and 
carbon export (Irigoien et al., 2005; Selander et al., 2019).

Despite its importance, our understanding of the role of micro- zooplankton in shaping oceanic 
communities is still much less developed than that of macro- organisms, which can more readily be 
observed at the individual level (Glibert and Mitra, 2022). In fact, rates and fluxes in the oceanic 
microbial food web are still mainly inferred from indirect measurements or ensemble averages, leaving 
us with a limited mechanistic understanding. Quantitative estimates of primary production are mostly 
inferred from satellite images of ocean color (chlorophyll) using moderate resolution spectroradiom-
eters calibrated against in situ isotope incorporation experiments (Hu et al., 2012). Ensemble- level 
biomass transitions during grazing events by microscopic zooplankton are calculated from dilution 
experiments (Landry and Hassett, 1982), where the grazer density is manipulated by dilution, and 
the corresponding net increase in primary production is approximated. While these methods provide 
good estimates of the magnitude of biomass fluxes, they do not resolve the small- scale individual 
interactions that drive the large- scale processes. Moreover, indirect measurements of processes such 
as micro- zooplankton grazing rest on assumptions that are not always fulfilled. For example, feeding 
rates and growth rates of both predators and prey need to be unaffected by dilution, which is often 
not true (Dolan et al., 2000). In addition, the dilution technique is based on chlorophyll measurements 
and does not account for consumption of non- chlorophyll- bearing particles, which leads to underesti-
mation of carbon transfer (Stoecker et al., 2017).

Currently, the biomass of individuals is often inferred from volume- to- carbon relationships devel-
oped over time for different trophic groups of planktons (Strathmann, 1967; Menden- Deuer and 
Lessard, 2000), which require cell counting and sizing followed by elemental analysis, but do not 
allow continuous measurements of the same individual. However, these regression relations are not 
very precise: the average deviation of individual data points to the regressed expression exceeds 50% 
(Menden- Deuer and Lessard, 2000). In addition, single cells of the same volume can differ by a factor 
two in dry mass, which is not possible to detect by volume- to- carbon relationships. To go beyond the 
current level of detail in marine microbial food webs, we need complementary techniques that can 
follow individual microplanktons over extended periods, while continuously monitoring their growth 
rate and predation events.

eLife digest Picture a glass of seawater. It looks clear and empty, but in reality, it contains one 
hundred million bacteria, about one hundred thousand other single- celled organisms, and a few 
microscopic animals. In fact, the majority of life in the ocean is microscopic and we know relatively 
little about it. Nevertheless, these microbes have a major impact on our lives. Microscopic algae 
known as phytoplankton, for example, produce half of the oxygen we breathe.

For animals, birds and other large organisms in the ocean, we have a good understanding of 
who eats who and where the material ends up. However, for phytoplankton and other microbes, we 
depend on bulk measurements and averages of large groups. Bachimanchi et al. developed a method 
to follow individual microbes living in seawater and to observe how they move, grow, consume each 
other and reproduce.

The team combined holographic microscopy with artificial intelligence to follow multiple plank-
tons, diatoms and other microbes throughout their life span and continuously measured their three- 
dimensional location and mass. This made it possible to estimate how fast the organisms were 
growing and moving, and to observe what they ate. The experiments revealed new insights into how 
micro- zooplankton, diatoms and other microbes in the ocean interact with each other.

This new method may be useful for researchers who would like to track the movements and where-
abouts of microscopic planktons, bacteria or other microbes for extended periods of time. It is also 
a rapid method for counting, sizing, and weighing cells in suspension. The hardware used in this 
method is relatively cheap, and Bachimanchi et al. have shared all the computer code with examples 
and demonstrations in a public database to enable other researchers to use it.

https://doi.org/10.7554/eLife.79760
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Continuous measurements can be realized using microscopy techniques. For example, holo-
graphic microscopy can record holograms of cells under investigation in the form of interference 
patterns containing phase and amplitude information. The information in the holograms can be used 
to extract the three- dimensional position of microplanktons as well as their mass (Zangle and Teitell, 
2014). Holographic imaging has already found applications in microbial studies, especially for in situ 
measurements of particle size distributions and their identity (Nayak et al., 2021). However, its full 
potential has not yet been exploited, namely for the quantitative investigation of the growth and 
feeding patterns of individual planktons over prolonged times. Arguably, this is because the data 
acquisition and processing pipelines are very computationally expensive.

Here, we solve this problem by employing a technique that combines holography with deep 
learning. The deep- learning algorithms circumvent the long computational times and, once trained, 
allow rapid determination of three- dimensional position and dry mass of individual microplanktons 
over extended time periods. We evaluate this method on nine plankton species belonging to different 
trophic levels and representing the major classes of microplankton. We highlight that unlike other 
methods, our approach makes it possible to follow and weigh single cells throughout their lifetime, 
being especially useful to detail micro- zooplankton and mixotrophic life histories as feeding events 
can be quantitatively measured. Furthermore, the estimated dry mass can be tagged to single plank-
tons detected in the experiments. We can track and identify both prey and predator cells and closely 
follow the transfer of mass from cell to cell. Finally, we observe the growth and cell divisions in diatoms 
by their long- term monitoring over more than one cell cycle.

Results
Experimental setup and deep-learning data analysis
Figure 1 shows an overview of the holographic microscopy experimental setup and the deep- learning 
data analysis pipeline to estimate the position and dry mass of the planktons. We use an inline holo-
graphic microscope in a lens- less configuration (see details in Methods, ‘Holographic imaging’). A 
monochromatic LED light source illuminates the sample suspension that contains the planktons under 
investigation. As the light passes through the sample, it acquires a complex amplitude that depends 
on the optical properties of the materials it traverses, generating inline holograms (Figure 1—figure 
supplement 1), which encode the three- dimensional position of the planktons as well as their size and 
refractive index. A CMOS camera located on the opposite side of the sample acquires the holograms 
for further analysis with a frame rate of  10 fps , and an exposure time of  8 ms .

In order to measure the position and dry mass of the planktons, the recorded holograms are 
analyzed by a regression U- Net (RU- Net, Figure 1b and Figure 1—figure supplement 2, see details 
in Methods, ‘RU- Net architecture and training’). The RU- Net is a deep- learning architecture based 
on a modified U- Net, with two parallel arms in the upsampling path. The output of the RU- Net is a 
five- channel image where each channel corresponds to a heat map containing: a segmentation of the 
planktons from the background used to obtain a rough estimate of their  xy  (in- plane) position; their 
estimated  z  (axial) position; the plankton estimated dry mass  m ; and the distances  ∆x  and  ∆y  from the 
closest plankton for each pixel (used to improve the in- plane localization). This RU- Net is implemented 
and trained on simulated input–output image pairs (4000 samples) using the Python software package 
DeepTrack 2.0 (Midtvedt et  al., 2021a). The output heat maps are finally processed to obtain a 
prediction of the plankton three- dimensional position and their dry mass, as shown in Figure 1c.

In order to increase the accuracy of the dry mass estimations, we extract time sequences of holo-
graphic images cropped around an individual plankton (Figure  1d and Figure  1—figure supple-
ment 3) and further analyze them with a second deep- learning network. This is a weighted- average 
convolutional neural network (WAC- Net, Midtvedt et al., 2021b), Figure 1e and Figure 1—figure 
supplement 3, see details in Methods, ‘WAC- Net architecture and training’. The WAC- Net deter-
mines a single estimated value of the equivalent spherical radius, as well as a more accurate value of 
the dry mass of the plankton in the sequence, through a weighted average of the latent representa-
tion of various holograms with learnable weights. The number of frames in the sequence is limited to 
15 frames for training the WAC- Net. For inference, the length of the sequence is dependent on the 
application. For example, when analyzing feeding events we aim to capture dry mass dynamics on 
short time scales, and the sequence length is therefore restricted to a single frame. For the division 

https://doi.org/10.7554/eLife.79760
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events, the sequence length is 15 frames, as they occur over longer times ranging from hours to days 
with more recorded frames. Also the WAC- Net is implemented and trained with simulated data (4000 
15- frame sequences of  64 px × 64 px  images) using DeepTrack 2.0 (Midtvedt et al., 2021a). Figure 1f 
shows an example of the dry mass output of the WAC- Net in picograms (pg)when applied on a sliding 
window over a sequence of holograms corresponding to a micro- zooplankton (Oxyrrhis marina) and a 
phytoplankton (Dunaliella tertiolecta).

Dry mass estimates
The combination of RU- Net and WAC- Net permits us to measure the dry mass of each plankton at any 
point in time. For example, Figure 2a shows a portion of an inline hologram of the micro- zooplankton 
species, O. marina, tracked by the RU- Net (circles). Individual O. marina cells are then traced for 30 
frames and their holograms are further processed with WAC- Net to obtain an estimation of the dry 
mass for each cell. The orange histogram in Figure 2b shows the dry mass distribution estimated by 
WAC- Net.
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Figure 1. Experimental setup and deep- learning data analysis. (a) Holographic microscope: Planktons suspended in a miniature sample well are 
imaged with an inline holographic microscope. The (cropped) example holographic image features two different plankton species: Oxyrrhis marina 
and Dunaliella tertiolecta (full image in Figure 1—figure supplement 1). (b) Deep- learning network 1: A regression U- Net (RU- Net, see details in 
Figure 1—figure supplement 2), trained on simulated holograms, uses individual holograms to predict output maps containing the segmentation of 
the planktons, their  z - position, their dry mass  m , and the distances  ∆x  and  ∆y  from the closest plankton for each pixel (to be used for the accurate 
localization of planktons). (c) Plankton 3D position and dry mass: The information obtained by the RU- Net permits us to reconstruct the 3D position of 
the planktons along with their dry mass (color bar). (d) Plankton sequences: Using the plankton positions obtained by the RU- Net, we extract sequences 
of  64 × 64 - pixel holograms centered on an individual plankton. (e) Deep- learning network 2: The sequences are then used by a weighted- average 
convolutional neural network (WAC- Net, see details in Figure 1—figure supplement 3), trained on simulated data, to refine the estimations of  m  and 
 z . (f) Dry mass time series: Example of a refined dry mass prediction in picograms (pg) for a micro- zooplankton (Oxyrrhis marina, orange line) and a 
phytoplankton (Dunaliella tertiolecta, blue line) obtained by the WAC- Net.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Holographic microscope and full- scale view of an experimental holographic image.

Figure supplement 2. Simulated holographic images and RU- Net architecture.

Figure supplement 3. Simulated plankton sequence and weighted- average convolutional neural network (WAC- Net) architecture.

https://doi.org/10.7554/eLife.79760


 Research article      Ecology

Bachimanchi et al. eLife 2022;11:e79760. DOI: https:// doi. org/ 10. 7554/ eLife. 79760  5 of 17

To benchmark the dry mass measurements, we used the volume- to- carbon relationships from 
Menden- Deuer and Lessard, 2000 followed by an extrapolation of elemental composition using 
extended Redfield ratios (Anderson, 1995 see Methods, ‘Dry mass estimation by volume- to- carbon 
relationships’). The gray histogram in Figure 2b shows the results for the case of O. marina. The dry 
mass predicted by the volume- to- carbon relationships (394 ± 123 pg, the uncertainty represents the 
standard deviations of the distribution) agrees well with the dry mass estimated by our technique (338 
± 126 pg, orange histogram). Importantly, in contrast to the volume- to- carbon relation method, the 
dry mass estimated by our approach can be tagged to individual cells in the image. This additional 
feature can be used to study the dry mass evolution of single cells (e.g., in the following sections, we 
will exploit this possibility in two exemplary studies of feeding and cell division events).

We repeated this analysis for nine species of planktons belonging to different taxonomic groups 
and trophic levels in the marine ecosystem (see Methods, ‘Plankton cultures’): phytoplankton 
species (Isochrysis galbana, Rhodomonas salina, Dunaliella tertiolecta); micro- zooplankton species 
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Figure 2. Dry mass estimates. (a) Phytoplankton species Oxyrrhis marina as detected by RU- Net on a portion of experimental hologram (see Figure 1—
figure supplement 1 for the complete hologram). (b) Dry mass distributions for O. marina (illustrated in the inset) obtained by applying weighted- 
average convolutional neural network (WAC- Net) to the experimental holograms (orange) and by volume- to- carbon relationships (gray, Menden- 
Deuer and Lessard, 2000). The red line is the value of the average mass estimate obtained from elemental analysis. (c) Comparison of the dry mass 
estimations obtained by WAC- Net and by the volume- to- carbon method for nine different species of diatoms (Thalassiosira pseudonana, Thalassiosira 
weissflogii), phytoplantons (Isochrysis galbana, Rhodomonas salina, Dunaliella tertiolecta), and micro- zooplanktons (Oxyrrhis marina, Kryptoperidinium 
triquetrum, Alexandrium minutum, Scrippsiella acuminata). The two measurements have a correlation coefficient of  ρ = 0.988 . The dashed line 
represents the best fit and the error bars show the standard deviations of the distributions. The insets illustrate each species.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Dry mass and equivalent spherical radius (ESR) estimates for different species of planktons.

https://doi.org/10.7554/eLife.79760
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(Kryptoperidinium triquetrum, Alexandrium minutum, Scrippsiella acuminata, along with Oxyrrhis 
marina which is used in the above discussion); and diatomic species (Thalassiosira weissflogii, Thalas-
siosira pseudonana). These results are summarized in Figure 2c. The data points and error bars repre-
sent the means and standard deviations of the dry mass distributions estimated by our method and the 
volume- to- carbon method. The two estimates correlate very well (correlation coefficient  ρ = 0.988 ). A 
detailed dry mass distribution comparison (along with equivalent spherical radius distribution compar-
ison) for different species can be seen in Figure 2—figure supplement 1.

As a further independent test, we also estimated the dry mass from the elemental analysis of 
carbon and nitrogen content in O. marina (extrapolated to the other fundamental elements hydrogen, 
oxygen, and phosphorous through Redfield ratios, Anderson, 1995, see Methods, ‘Dry mass esti-
mation by elemental analysis’). The resulting 
dry mass (453 pg, indicated with a red line in 
Figure 2) also confirms that our method arrives at 
realistic numbers. The average value indicated by 
the red line in Figure 2b lies within the distribu-
tions predicted by holographic estimate.

Feeding events
We use the phytoplankton species D. tertiolecta 
and the micro- zooplankton species O. marina as 
the prey and predator, respectively. Figure 3a–c 
shows the 3D traces of prey (blue) and predator 
(orange) during a feeding event (see 3D movie of 
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Figure 3. Feeding events. 3D recording of a feeding event where (a) a predator micro- zooplankton (Oxyrrhis marina, orange traces) approaches a prey 
phytoplankton (Dunaliella tertiolecta, blue traces), (b) feeds on it, and (c) finally moves away (see Video 1 and Figure 3—figure supplement 2). The 2D 
projection of traces is superimposed on the holographic images in the bottom (see also Figure 3—figure supplement 1). (d) Dry mass time series of 
predator (orange trace) and prey (blue trace) estimated by weighted- average convolutional neural network (WAC- Net) in the three different phases. (e) 
The pre- feeding dry mass distributions of the predator Oxyrrhis marina (O. m) and the prey Dunaliella tertiolecta (D. t), and the post- feeding dry mass 
distribution of predator are represented in the box plots. The dry mass increase between pre- and post- feeding phases of the predator is indicated in 
the plot. The post- feeding dry mass increment of the predator (O. m) matches the dry mass of the prey (D. t). (f) There is a high correlation ( ρ = 0.794 ) 
between dry mass increments of predators and dry mass of prey for 26 feeding events. The dashed line represents the best fit.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. 2D projection of traces in a feeding event.

Figure supplement 2. Feeding event main.

Figure supplement 3. Feeding event additional.

Video 1. Feeding event 1.

https://elifesciences.org/articles/79760/figures#video1

https://doi.org/10.7554/eLife.79760
https://elifesciences.org/articles/79760/figures#video1
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the feeding event in Video 1). In the pre- feeding 
phase Figure  3a, corresponding to about  10 s  
or  100 frames  (see also Figure  3d), the predator 
explores the sample volume in a random fashion. 
It passes the prey cell closely on a couple of 
occasions before it makes contact (see Videos 1 
and 2 and , Figure  3—figure supplement 2, 
and Figure  3—figure supplement 3). In the 
feeding phase (Figure 3b, lasting for about  20 s  
or  200 frames ), the predator makes contact with 
the prey and performs a localized swirling motion 
about a fixed location for  16 s  while handling the 
prey. In the post- feeding phase (Figure  3c, last 
 10 s  or  100 frames , see also Figure 3d), the pred-
ator returns back to its normal swimming behavior 

and carries on its search for new prey.
Figure 3d shows the dry mass time series of prey and predator during the feeding event. As the 

feeding events happen on a short time scale compared to the frame rate of the camera, we use WAC- 
Net with a sliding window of only one frame, maximizing the available temporal resolution of the dry 
mass estimation. The dry mass distributions of the prey and predator in pre- and post- feeding phases 
are shown by the box plots (Figure 3e) to the right hand side. In the pre- feeding phase: the prey dry 
mass is measured to be 26 ± 1 pg (blue box plot) and the predator 204 ± 5 pg (orange box plot). The 
uncertainties represent the standard error of the mean. The post- feeding dry mass distribution of the 
predator is 234 ± 5 pg. The difference in predator dry mass post- and pre- feeding closely matches the 
prey dry mass (Figure 3e). This indicates that the predator has fully consumed its prey, thus providing 
a direct measurement of the amount of the dry mass consumed during each individual feeding event.

In Figure 3f, we report the results of the dry mass increase in 26 feeding events. The increase in the 
predator dry mass in the post- feeding phase correlates well with the pre- feeding dry mass of the prey 
(correlation coefficient  ρ = 0.794 ). The slope of the best fit line (with slope,  α = 0.97 ) also indicates that 
on average 97% of prey is consumed by the predator in a feeding event. Thus, it is possible to quantify 
individual feeding rates and, if predator cells are followed over time, also gross growth efficiency, that 
is, how much of the consumed biomass is converted into predator biomass.

Life history of a plankton
The technique we have developed can follow the entire life histories of planktons, over time scales 
from hours to days. To demonstrate this, we use a diatom species, T. weissflogii, which is autotrophic 
and nonmotile. Over a preriod of 8 hr (Figure 4), we image a T. weissflogii and two generations of 
its daughter cells, continuously assessing the changes in their dry mass using the WAC- Net, which 
we already used to estimate the dry mass of T. weissflogii in Figure 2c (see Methods, ‘Holographic 
imaging’). We place a low- density ( 1000 cells ml−1 ) culture of diatoms in the sample well, which we 
illuminate with a white light source ( 5 W ,  60 Hz  warm light source bulb, aligned not to affect the holo-
graphic imaging sensor) to aid the cell growth.

Figure 4a–e shows the growth and division of a diatom imaged over a small portion of the sample. 
The parent cell (highlighted in Figure  4a) initially divides into two daughter cells, approximately 
0.14 hr into the experiment (Figure 4b). Note that the biomass does not divide equally between 
the daughter cells. Asymmetric division in terms of cell size had already been shown in both bacteria 
and diatoms; our experiments now show that the daughter cells receive unequal proportions of the 
biomass from the mother cell. Then, the two daughter cells move slightly apart (Figure 4c) and the 
cell with the largest biomass of the two divides again at 4.86 hr (Figure 4d, e).

Figure 4f shows the dry mass of the parent and daughter cells as the experiment proceeds. We 
remark that, while the dry mass of these cells is continuously monitored, the WAC- Net estimates 
the most reliable values when the cells are isolated. Therefore, we consider the reference dry mass 
measurements as those when the cells have at least 3.6 μm ( 40 px ) of empty space around them before 
or after each division; these times are indicated by the gray dashed lines in Figure 4f. The initial parent 
cell dry mass (measured at 1.1 hr) is estimated at 433 ± 2 pg. The dry mass of its two daughter cells 

Video 2. Feeding event 2.

https://elifesciences.org/articles/79760/figures#video2

https://doi.org/10.7554/eLife.79760
https://elifesciences.org/articles/79760/figures#video2
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(measured at 2.7 hr, as soon as the two daughter cells move sufficiently apart) is 326 ± 1 pg and 110 
± 1 pg, whose sum is close to the dry mass of the parent cell. As the experiment proceeds, one of 
the daughter cells divides again producing a second generation of daughter cells (Figure 4d), whose 
dry masses are 225 ± 3 pg and 93 ± 1 pg (at 5.48 hr, Figure 4e). Again, their sum is close to the mass 
of their parent cell. The uncertainty in the dry mass value represents the standard error of the mean 
computed for ±5 frames around the measurement point (gray dashed lines in Figure 4).

We have repeated this experiment with various cell densities with independently cultured samples, 
collecting multiple division events. Figure  4g 
shows the high correlation ( ρ = 0.857 ) between 
the parent cell dry mass and the sum of the 
daughter cells’ dry masses for 11 cell divisions. It 
is interesting to note that the division events of 
T. weissflogii occur when the parent cell weighs 
between 310 pg and  436 pg, with a mean value 
of ≈ 378 pg. This kind of a tip- off value predic-
tion in dry mass for a division event is achieved 
for the first time thanks to this method and is 
another example of the type of information that 
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Figure 4. Growth and cell division of a diatom. Different life stages of a diatom (Thallasiosira weissflogii) and its daughter cells: (a) the parent cell 
(blue), (b) divides into two daughter cells (orange); (c) the daughter cells continue to grow, (d, e) until another cell division occurs (green). (f) Dry mass 
time series through generations estimated by weighted- average convolutional neural network (WAC- Net) (see also Video 3 and Figure 4—figure 
supplement 1). Each cell dry mass is estimated when it has at least 3.6 μm ( 40 px ) of empty space around it to ensure optimal performance of the 
WAC- Net; the corresponding times are indicated by the gray dashed lines. A drop in the dry mass values can be noticed with the daughter cells in 
subsequent divisions. (g) Correlation plot showing the relation between the sum of the dry masses of the daughter cells and the dry mass of the parent 
cell for 11 different division events ( ρ = 0.857 ). The dashed line represents the best fit.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Division event.

Video 3. Division event.

https://elifesciences.org/articles/79760/figures#video3

https://doi.org/10.7554/eLife.79760
https://elifesciences.org/articles/79760/figures#video3
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can be acquired by employing a nonintrusive technique that can continuously measure single cells 
throughout the cell cycle.

Discussion
The main advantage of combining holographic microscopy with deep- learning algorithms lies in the 
ability to monitor position and dry mass of individual plankton cells over extended time periods. The 
method is nondestructive and minimally invasive, and allows quantitative assessment of trophic inter-
actions such as feeding and biomass increase throughout the cell cycle, providing unprecedented 
detail to the life histories of marine microorganisms.

The standard methods to determine the biomass of cells entail either performing elemental anal-
ysis on cells harvested from single species cultures or estimating the biomass from volume- to- carbon 
relationships drawn from multiple elemental analyses of similar plankton organisms of different sizes 
(Strathmann, 1967; Menden- Deuer and Lessard, 2000). Elemental analysis has the advantage of 
providing detailed measurements of individual elements, typically carbon, nitrogen, and hydrogen; 
however, it is destructive and cannot provide individual cell resolution. Volume- to- carbon relation-
ships can provide biomass estimates of individual living cells as long as the volume of the cells can be 
measured accurately (Menden- Deuer and Lessard, 2000); yet, the variability around the relationship 
is substantial (e.g., the estimated value for O. marina used in Menden- Deuer and Lessard, 2000 is 
30% higher than that measured by elemental analysis). Moreover, the volume- to- carbon relationships 
do not account for the nutritional status of the cell (e.g., as discussed in Results, ‘Dry mass estimates’, 
similarly sized cells of the same species can indeed differ by more than a factor of two in the estimated 
dry mass by the volume- to- carbon method).

Figure 4f reveals asymmetric cleavage in T. weissflogii, where sister cells receive unequal propor-
tions of the mother cell biomass. Asymmetric division is well established in centric diatoms that have 
a rigid silica shell called the frustule consisting of two halves. Both halves have the shape of a cylinder 
with one open end; the smaller one (known as hypotheca) fits inside the larger one. Upon division, 
both daughter cells grow a new hypotheca fitting inside the half that is inherited from the mother 
cell so that one of the daughter cells will be slightly smaller (while the other maintains the size of the 
mother cell). When the cells reach a critically small size, the size is reinstalled through sexual reproduc-
tion (Macdonald, 1869; Pfitzer, 1869). Experimentally, asymmetric cleavage beyond the reductive 
cell cycle has also been shown in the diatom Ditulum breightwelli (Laney et al., 2012) where daughter 
cells are of different volume. Similar to our study, the sister cells show unequal times to the subse-
quent division (Figure 4a–e) which may lead to faster population growth (Laney et al., 2012). Physio-
logical asymmetry is also found in bacteria (e.g., E. coli) where old damaged cell content is distributed 
differently leading to the development of age structure in prokaryote populations (Proenca et al., 
2018). The differences in biomass of sister cells observed here are larger than expected from the 
volume alone which suggest that unequal division of biomass may be more common in protozoans 
than previously perceived.

Three- dimensional tracking of microorganisms is not easily achieved by alternative methods. In 
many instances, two- dimensional traces are obtained and three- dimensional swimming behavior is 
inferred by assuming isotropic swimming (Selander et al., 2011). Moreover, traditional tracking tech-
niques often lose track of cells when they intersect other cells or swim out of focus. Holographic 
microscopy which records the holograms of objects overcomes the limitations due to the shallow 
depth of field in conventional light microscopy, and the three- dimensional positioning together 
with the biomass estimates facilitates linking of cell positions into coherent trajectories. The RU- Net 
approach (Figure 1—figure supplement 2c) that we describe can be a useful candidate to track inter-
esecting cells from a recorded holographic image. Three- dimensional positioning of both prey and 
predator cells also allows detailed observations of cell–cell interactions such as reaction distances and 
rejection events. Finally, holographic microscopy does not require manipulation such as dilution and is 
not sensitive to the same assumptions as the dilution technique. On the other hand, the volume that 
can be monitored by holographic microscopy is limited by the coherence length of the light source. 
Here, we use an LED light source with a relatively short coherence length (approximately 200μm with 
1- nm line filter). The depth of the observational chamber can, however, be increased by use of laser 
light sources with longer coherence length. With simple modifications to the setup design, the lens-
less approach used here can be adopted for smaller organisms such as bacteria and heterotrophic 
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nanoflagellates, or larger organisms such as rotifers and small crustaceans. It could also be merged 
with rotating stages that keep cells in suspension (Krishnamurthy et al., 2020), or microfluidic chan-
nels to facilitate experiments with large number of cells in flow. The method is particularly suitable to 
study micro- zooplankton grazing behaviors.

A large and growing proportion of micro- phytoplanktons previously considered fully autotrophic 
have been reclassified as mixotrophic, that is, supporting their energy demand by a combination of 
photosynthesis and uptake of dissolved or particulate organic matter (Stoecker et al., 2017). This 
discovery is of more than academic interest as allowing mixotrophy in food web modeling results 
in up to a threefold increase in average organism size and enhanced transfer of biomass to higher 
trophic levels, thus increasing the sinking flux of carbon, ‘the biological pump’, by an estimated 35% 
(Ward and Follows, 2016). The discovery has led to something of a paradigm shift in marine micro-
bial ecology and highlighted the need for new methods to accurately account for mixotrophy in 
biogeochemical models (Flynn et al., 2019). Mixotrophy is a plastic trait that changes with conditions. 
Among the more extreme cases, there is the dinoflagellate Karlodinium armiger, which is an auto-
troph at low cell concentrations, but switches to heterotrophy at high densities and even revert the 
food web by killing their copepod predators and extracting their content through peduncle feeding 
(Berge et al., 2012). The combination of holographic microscopy and deep- learning algorithms can 
be used to quantify uptake of both particulate (Figure 3) and dissolved matter. Uptake of dissolved 
organic matter will result in increased dry mass, and the slope of such increase will provide cell- specific 
uptake rates. Furthermore, it will allow us to explore the level of mixotrophy in different conditions 
and organisms by monitoring dry mass in factorial combinations of, for example, light and organic 
substrates. For instance, primary production can be assessed as dry mass increase in the presence 
of light but the absence of organic food sources (Figure 4). In the scenarios where both photosyn-
thesis and uptake of organic food sources are possible, the level of heterotrophy can be estimated by 
subtracting photosynthesis from total production.

Individual- level observations have been key to further the development of ecological theory, 
not only in larger organisms, but also in smaller organisms such as millimeter- sized copepods, the 
most common multicellular organisms in the ocean. As an example, copepods have been shown to 
feed selectively and reject well- defended cells. Consequently, well- defended cells are favored and 
enriched by copepod grazing, which contributes to harmful algal bloom formation (Ryderheim et al., 
2021). Moreover, individual- level observations have revealed the sensory capabilities of copepods 
involved in prey and threat detection as well as the fundamental strategies involved in foraging and 
reproduction (Kiørboe et al., 1999; Kiørboe et al., 2009). Likewise, Individual- level observations of 
protozoans have the potential to catalyze experiments and gain insights in microbial food–web inter-
actions in a similar way.

We conclude that the marriage between holographic microscopy and deep learning provides a 
strong complementary tool in microbial ecology. It allows the nondestructive and minimally invasive 
determination of the three- dimensional position and dry mass of individual microorganisms. It outper-
forms traditional methods in terms of speed and individual resolution and rivals the precision and 
accuracy of current methods. While holographic microscopy has already been employed in marine 
sciences, the combination with deep- learning algorithms makes it more versatile and many orders of 
magnitude faster, which is key to follow and characterize individuals throughout their lifespan.

Methods
Holographic imaging
During the measurements, the planktons are placed under the holographic microscope (Figure 1a) 
in two different configurations depending on the application. For the short- time- scale experiments, 
such as the dry mass estimates in Figure 2 and the feeding- event experiments in Figure 3, a sample 
of volume ≈40 μl is directly placed on a glass slide without any sample well to enclose the plank-
tons. For the long- time- scale experiments, such as the division- event experiments in Figure 4, the 
diatoms are kept in enclosed circular wells (diameter  3 mm , depth  1 mm , volume ≈10 μl). As shown 
in Figure 1—figure supplement 1a, the planktons are imaged using a lensless holographic imaging 
technique (Daloglu et al., 2018), where the sample is illuminated by a narrow- band LED light source 
(Thorlabs M625L3, center wavelength  632 nm , bandwidth  18 nm  with a 1- nm bandwidth line filter, 
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Thorlabs FL632.8- 1, centered at  632.8 nm ) and the sensor (Thorlabs DCC1645C, CMOS sensor area 
 4.608 mm × 3.686 mm ,  1024 px × 1280 px ) is placed immediately below the bottom of the well (the 
distance from the bottom of the well to the sensor is  ≈ 1.5 mm ). In this way, the entire well is imaged 
within a single field of view (Figure 1—figure supplement 1b), ensuring that all planktons are contin-
uously visible for the whole duration of the experiment. The resulting images of the planktons are 
diffraction patterns formed by the interference of the unscattered light and the light scattered by 
the planktons. These diffraction patterns (holograms) act as a unique fingerprint of the size, refrac-
tive index, dry mass, as well as the lateral and axial position of the planktons, which has been used 
previously to characterize micron- scale objects (Altman and Grier, 2020). Physically, the dry mass 
can be defined as the difference between the mass of the object (here, the plankton) and the mass 
of an equal volume of medium (here, the watery solution). Thus, writing the mass concentration of 
biomolecules inside the object as cobject, and the medium as cmed, the dry mass of an object is given by 

 mdry = V(cobject − cmed) , where  V   is the volume of the object. On the other hand, the light scattering at 
small angles is also proportional to the product  V(cobject − cmed) , making it possible to extract the dry 
mass of the objects from their holograms (see Equation 5, Appendix 1, ‘Relation between dry mass 
and scattering cross- section’).

RU-Net architecture and training
Prior to the analysis by RU- Net and WAC- Net (explained in the next section), the diffraction patterns 
are normalized with respect to the intensity of the unscattered light. To obtain the plankton positions, 
we use a modified U- Net (Ronneberger et al., 2015), which we name Regression U- Net (RU- Net) 
implemented using DeepTrack 2.0 (Midtvedt et al., 2021a). Its architecture is shown in Figure 1—
figure supplement 2c. The downsampling part of the RU- Net consists of a series of convolutional 
blocks, where each convolutional block contains a series of convolutional layers followed by a max- 
pooling layer and an ReLU activation. For an input image of size  128 px × 128 px  (about one- tenths 
the size of the acquired experimental image, Figure 1—figure supplement 2a), we use a sequence 
of six convolutional blocks containing 8, 16, 32, 64, 32, and 32 convolutional layers, respectively. In 
the upsampling part, the RU- Net is divided into two different paths that function as two indepen-
dent regular U- Nets. Each upsampling path contains a series of four upsampling blocks with each 
containing a deconvolutional layer followed by a series of 128, 64, 32, and 16 convolutional layers. 
Features obtained from each convolutional block in the downsampling path are appended to the 
features of the upsampling path at each upsampling block. One of the upsampling paths is used for 
the segmentation of planktons for which a sigmoid activation is applied on the output of the final 
upsampling block. The other upsampling path is used to obtain the heat maps of dry mass, axial 
 z - distance, and lateral  x - and  y - positions (to refine the lateral localization accuracy) for which a ReLU 
activation is applied. Finally, the outputs of both paths are concatenated to obtain a five- channel 
output tensor of size  128 × 128 × 5  (Figure 1—figure supplement 2b).

To train the RU- Net, we simulate holographic images of size  128 px × 128 px  using DeepTrack 2.0 
(Midtvedt et  al., 2021a). Each image contains planktons of different sizes and refractive indices 
(Figure 1—figure supplement 2a). Planktons are simulated in a wide dry mass range from 1 pg to 
995 pg, with their corresponding equivalent spherical diameters ranging from 1.5 μm to 10 μm. The 
RU- Net is trained using the AMSgrad optimizer (Reddi et al., 2019), with a learning rate of 0.0001. 
The model is trained on 4000 simulated holographic images in mini- batches of 16 images for 300 
epochs, with a custom loss function. The images are generated with the continuous generator of 
DeepTrack 2.0 (Midtvedt et al., 2021a) starting with 2000 images generated before the training and 
the remaining images generated as the training proceeds. The training process (including the data 
generation) takes about 1.5 hr on a Kaggle server (Tesla P100 graphics processor unit and Intel(R) 
Xeon(R) CPU @ 2.00 GHz).

WAC-Net architecture and training
To obtain a refined dry mass value, we use a WAC- Net (Midtvedt et al., 2021b) implemented using 
DeepTrack 2.0 (Midtvedt et al., 2021a). Its architecture is shown in Figure 1—figure supplement 
3b. The downsampling part of WAC- Net contains a time- distributed block that consists of a series of 
convolutional blocks. Each convolutional block contains a convolutional layer followed by a ReLU acti-
vation and a max- pooling layer. For an input image sequence consisting of frames of size  64 px × 64 px , 

https://doi.org/10.7554/eLife.79760


 Research article      Ecology

Bachimanchi et al. eLife 2022;11:e79760. DOI: https:// doi. org/ 10. 7554/ eLife. 79760  12 of 17

we use a series of four convolutional blocks containing 32, 64, 128, and 256 convolutional filters, 
respectively. The features are then flattened and analyzed by a series of 2 dense layers with 128 nodes 
each to obtain the latent representations for the images in the sequence. We use two convolutional 
layers with 128 and 1 filters, respectively, on each of the output latent vectors to obtain single- value 
representations of the weights. These weights are further normalized with a softmax layer. We average 
the latent vectors with the normalized weights to obtain a weighted representation of the latent 
vectors. Finally, we use a series of dense layers with 32, 32, and 2 nodes on the output representa-
tions to generate the output values of dry mass and radius. The dry mass predicted by the WAC- Net 
is converted to natural mass units by using a specific refractive index increment value,  

dn
dc = 0.21 ml g−1

  
accounting for the average planktonic solute composition (Aas, 1996) (See Appendix 1, ‘Relation 
between dry mass and scattering cross- section’).

To train the WAC- Net, we simulate 15- frame sequences of  64 px × 64 px  images that contain a main 
plankton (whose dry mass and radius the WAC- Net will estimate, Figure 1—figure supplement 3a) 
near the center of the image, which randomly moves by ±3.6 μm (± 1 px) in the  xy - plane and ±100 
μm in the  z - direction (since the frame is laterally centered on the plankton, the  xy - plane movement 
is smaller than the  z - movement). In order to make the network robust to the existence of multiple 
planktons within a frame, other planktons are occasionally added to the frames. These additional 
planktons are given a directed in- plane motion randomly chosen between 3.6 μm ( 1 px ) and 25.2 μm 
( 7 px ) per frame. In the  z - direction, the motion is also randomized at  ±100 μm per frame. The WAC- 
Net is trained using the AMSgrad optimizer (Reddi et al., 2019), with a learning rate of 0.0001. The 
model is trained on 4000 images in mini- batches of 32 images for 200 epochs, with a mean absolute 
error (MAE) loss function. The images are generated with the continuous generator of DeepTrack 2.0 
(Midtvedt et al., 2021a), starting with 2000 images generated before the training and with remaining 
images being generated as the training proceeds. The training process (including the data genera-
tion) takes about 45 min on a Kaggle server (Tesla P100 graphics processor unit and Intel(R) Xeon(R) 
CPU @ 2.00 GHz).

Plankton cultures
We used a representative subset of plankton organisms covering larger primary producers such as 
diatoms (T. weissflogii, T. pseudonana) and dinoflagellates (A. minutum, K. triquetrum, S. acuminata) 
as well as smaller flagellates (I. galbana, D. tertiolecta). We also included the heterotrophic dinofla-
gellate O. marina to explore predator–prey interactions and feeding events (see Table 1, ‘Planktons 
used in the experiments’). Plankton cultures were reared in L medium at 26 PSU salinity in a light and 
temperature controlled incubator (16 ºC, 12 hr:12 hr light:dark cycles,  100 fmol m2s−1 ). The O. marina 

Table 1. Planktons used in the experiments.
Strain identifier denotes strain code in Gothenburg University Marine Algae Culture Collection (GUMACC) and synonym strain 
identifier in parenthesis. The Oxyrrhis marina culture was kindly provided by Denmark Technical University (DTU- Aqua) and does not 
have a strain ID. Equivalent Spherical Diameter (ESD) denotes the spherical diameter based on Coulter counts (Beckman multisizer III) 
of pure cultures.

Scientific name Strain identifier Class ESD (mean ± SD)

Alexandrium minutum GUMACC83 (CCMP113) Dinophyceae 18.3 ± 2.5 μm

Dunaliella tertiolecta GUMACC5 Cholorphceae 6.7 ± 0.9 μm

Isochrysis galbana GUMACC108 (CCMP1323) Prymnesiophyceae 4.0 ± 0.7 μm

Kryptoperidinium triquetrum GUMACC71 (LAC20, KA86) Dinophyceae 14.9 ± 1.2 μm

Oxyrrhis marina DTU- Aqua Dinophyceae 14.5 ± 1.5 μm

Rhodomonas salina GUMACC126 (CCAP978/27) Cryptophyceae 7.4 ± 1.0 μm

Scripsiella acuminata GUMACC110 (CCMP1331) Dinophyceae 17.7 ± 4.9 μm

Thallassiosira pseudonana GUMACC132 (CCAP1085/12) Cosconodiscophyceae 4.8 ± 0.9 μm

Thallassiosira (Conticribra) weissflogii GUMACC162 (CCAP1085/18) Cosconodiscophyceae 12.9 ± 1.4 μm
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cultures were fed with I. galbana or D. tertiolecta weekly, but starved until prey cells became rare 
before experiments to avoid unintentional addition of prey cells to experiments.

Dry mass estimation by volume-to-carbon relationships
We compare the dry mass estimates from the holographic microscopy against the standard method 
based on volume- to- carbon relationships by measuring the volume of the cells on a Coulter counter 
(Beckaman, Multisizer III). The Coulter counter is equipped with a 100 μm orifice tube. Its accuracy is 
confirmed with latex beads. Volume estimates are subsequently used to estimate the carbon content 
of the cells using the equations given in Menden- Deuer and Lessard, 2000.

Dry mass estimation by elemental analysis
A precise algal culture volume of known cell concentration is filtered onto pre- combusted (450°C) 
25 mm glass fiber filters (Whatman GF/F). The filters are dried overnight at 60°C. Carbonates are 
removed by incubation in an exicator together with fuming hydrochloric acid. The filters are enclosed 
in tin capsules and analysed on an elemental analyzer (ANCASL, SerCon, UK) coupled to an isotope 
ratio mass spectrometer (20–20, SerCon, UK).

Data and code availability
All the relevant source code and the data are made publicly available at the Quantitative- Microplankton- 
Tracker repository (Bachimanchi et al., 2022).
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Appendix 1
Relation between dry mass and scattering cross-section
The amount of light scattered in any given direction from an object is a function of the shape and 
the refractive index of the object. The scattering amplitude  S(θ)  quantifies the amount of light that is 
deflected an angle  θ  from the direction of the illuminating light. For objects significantly larger than 
the illuminating wavelength ( 2πR/λ ≫ 1 , where  R  is the radius of the object and  λ  is the wavelength 
of the light) and small refractive index difference ( |nobject/nmed − 1| ≪ 1 , where nobject is the refractive 
index of the object and nmed is that of the medium), the scattering amplitude in the far field region 
can be estimated within the anomalous diffraction approximation as (Streekstra et al., 1993),

 
S(β, γ) =

(
k2/2π

) ˆ ˆ [
1 − exp(−iϕ(ϵ, ν))

]
× exp(ik(ϵβ + νγ))dϵdν,

  
(1)

where  k  is the light wave number,  ϵ, ν  are the in- plane spatial coordinates at the axial plane 
of the object (the plankton), while  β, γ  are the coordinates at the axial plane of the sensor, 
scaled by the distance  r  between plankton and sensor position,  β = x/r  and  γ = y/r  with 

 r = (x2 + y2 + z2)1/2
 . Parametrizing the scattering coordinates in spherical coordinates, one has that 

 β = sin θ cosφ ,  γ = sin θ sinφ . Averaging the scattering amplitude over the angle  φ  one obtains,

 
S(θ) = k2

ˆ ˆ [
1 − exp(−iϕ(ρ,χ))

]
× J0(kρ sin θ)ρdρdχ,

  
(2)

with  ρ =
√
ϵ2 + ν2   and  sinχ = ϵ/ρ , while  J0  is the bessel function of the first kind of order 0. Since 

the planktons in our setup are measured in transmission, the signal relates primarily to small angle 
scattering. To lowest order in the scattering angle one obtains,

 S(θ) ≈ S(0) ≈ k2A
(
1 − cos⟨ϕ⟩ − i sin⟨ϕ⟩

)
,  (3)

where the spatial distribution of the phase shift over the particle is replaced by its average value, 
denoted by  ⟨·⟩ , and  A  is the cross- sectional area of the object. The average value of the phase shift 
can be can be directly related to the dry mass of the particle by noting that the local phase shift, 

 ϕ(ϵ, ν) , due to a weakly scattering object with refractive index  n  is given by,

 ϕ(ϵ, ν) = Z(ϵ, ν)(n − nmed),   (4)

where  Z(ϵ, ν)  is the local thickness of the object and nmed is the refractive index of the solution.
Dry mass can also be defined as the difference between the mass of the object and the mass of an 

equal volume of the medium. Thus, writing the mass concentration of biomolecules inside the object 
as cobject and that inside the medium as cmed, the dry mass of an object is given by  mdry = V(cobject − cmed) , 
where  V   is the volume of the object. Empirically, the mass concentration of a solution of biomolecules 
and the refractive index of the solute are linearly related as  c = ( dn

dc )−1(n − nmed) , where  n  is the 
refractive index of the solution, and nmed is the refractive index of the medium in the absence of 
biomolecules (Zangle and Teitell, 2014).

As a consequence, one has that.

 ⟨ϕ⟩ = ⟨kZ⟩ · (n − nmed) = kV/A · c dn
dc = km/A · dn

dc ,  (5)

where  m  is the mass of the biomolecules within the object,  ⟨Z⟩  is the average thickness of the 
object,  V   is the volume of the object, and  A  is the cross- sectional area of the object. Thus, the 
scattering amplitude depends explicitly on the mass of biological objects.

In order to relate the scattering amplitude to the measured intensity of the scattering pattern, we 
note that the intensity is given by,

 
I = |E0|2

∣∣∣1 − i S
kr exp(i k(r − z))

∣∣∣ ,
  (6)

where E0 is the amplitude of the incoming light.
From this expression, the change in light intensity in the middle of the scattering pattern compared 

to the unscattered light, normalized by the intensity of the incoming light, is given by,

https://doi.org/10.7554/eLife.79760
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 ∆I(0) = I
|E0|2 − 1 =

(
2/kz

)
ℑS =

(
2kA/z

)
sin

[
km/A

(
dn/dc

)]
.  (7)

To lowest order in the phase shift  ϕ , the scattering intensity at 0 degree scattering angle is 
therefore directly proportional to the mass of a biological object.

This formalism also provides a direct means to assess the influence of absorption on the 
estimated mass. Light absorption is quantified by the imaginary part of the refractive index. Adding 
an imaginary part to the refractive index in Equation 5, such that  n = n0 + iη , the light intensity in 
the forward direction becomes,

 ∆I(0) =
(
2kA/z

)
sin

[
km/A

(
dn/dc

)]
exp

(
−kη⟨Z⟩

)
.  (8)

Using  η = 0.002  as a typical value for phytoplankton (Qi et al., 2016), and an average thickness of 
5 μm, the correction due to absorption would amount to about 10%.

https://doi.org/10.7554/eLife.79760
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