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Abstract: Redox electrolytes can provide significant enhancement of capacitance for supercapacitors.
However, more important promotion comes from the synergetic effect and matching between
the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of
a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ) redox
electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when
the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy
density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance
retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability.
These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in
redox polyanilline-based electrolyte and the redox hydroquinone electrode.

Keywords: supercapacitor; redox electrolyte; polyanilline; multi-wall carbon nanotube;
synergistic effect

1. Introduction

The growth in hybrid electric vehicles, uninterruptible power, and mobile electronic devices
markets promotes development of electrochemical energy storage systems. Supercapacitors (SC) can
provide higher power density and have a longer cyclic life than ion batteries, although they suffer from
relatively low energy density [1–3]. In order to reduce the gap of the energy density between SC and
ion batteries, significant research on SC has been focused on the enhancement of specific capacitance
and working voltage, since these properties have positive correlation with the energy density [4,5].
The preparation of novel electrode materials with new structures and components is an effective way
to archive higher capacitance [1,6], and utilizing organic or ionic liquid electrolytes and asymmetric
electrode configurations or hybrid integration can extend the working voltage window of the SC [7–10].

Recently, some special electrolytes containing redox compound have been employed as active
electrolytes, and combined with carbonaceous electrodes for improving the performance of SC [11–14].
These redox compounds not only are directly involved in the electron transfer redox reaction on
the electrode-electrolyte interface, but can also synchronously improve the ionic conductivity of the
electrolyte. Li et al. have used FeSO4 and CuSO4 as redox additives to ameliorate performance of
SC, and a higher specific capacity of 223 mAh/g has been obtained [15]. Frackowiak’s group has
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reported that SC based on an electrochemical combination of a carbon electrode and a KI-H2SO4

electrolyte provided 1840 F/g of maximum capacitance [14]. Ji et al. have prepared a SC with a cell
voltage window of 1.6 V and energy density of 7.1 Wh/kg by uniting KI-KOH redox electrolyte
and a carbon-based electrode [16]. Mai et al. have obtained 4700 F/g of capacitance from the
cyclic voltammogram measurement in a three-electrode configuration consisting of CuCl2-HNO3

redox electrolyte and a porous carbon microsphere electrode [17]. Additionally, the redox reaction
between hydroquinone (HQ) and quinine (Q) can yield a pseudocapacitive effect, thus the addition
of HQ to an H2SO4 electrolyte caused a significant increase in the capacitance values for all of the
carbon materials tested, and the maximum specific capacitance in a three-electrode system reached
5017 F/g [18,19]. In the mentioned reports, most of the electrochemical systems consist of carbon-based
electrodes and redox electrolyte, whose capacitance is benefits from the low electric double-layer
capacitance and high pseudocapacitance redox electrolyte. Theoretically, an optimal electrochemical
system should be a combination of a redox material electrode and a redox electrolyte, which should
be able to provide a double synergistic effect for SC performance than the reported combination of
carbonaceous electrode–redox electrolyte. Unfortunately, until now, there are few reports about this
kind of electrochemical combination.

Polyaniline generally possesses an excellent pseudocapacitance property as the electrode of
supercapacitors. However, due to the single pseudocapacitance effect, the supercapacitors could not
obtain a sufficient specific capacitance and energy density for some special applications. In our previous
studies, we have firstly reported a significant interaction that existed among polyaniline and iodide ions
in various electrochemical systems [20–22], including mesoporous manganese oxide/polyaniline-KI
and mesoporous silica/polyaniline electrode-KI. However, because of insufficiency in electric
conductivity and matching between the electrode and electrolyte, a synergetic redox effect was not
fully developed, and the maximum specific capacity was limited to under 1800 F/g.

Inspired by these works, in this paper, we prepared a redox composite electrode of polyaniline
and carbon nanotubes by in situ polymerization of aniline on the surface of the carbon nanotube, and
then we deeply investigated the synergetic redox interaction between polyaniline-carbon nanotube
and HQ in acidic aqueous electrolyte. By virtue of this extraordinary interaction, the electrochemical
properties of the supercapacitor were greatly improved. Notably, the specific capacitance is 1.58 times
of the highest value of redox electrolyte systems in past reports.

2. Experimental Section

2.1. Materials

Multi-walled carbon nanotubes (MWCNTs) were obtained from CNano Technology Co., Ltd.,
Beijing, China. Aniline (AN), ammoniumpersulfate (APS), and hydroquinone (HQ) were purchased
from Aladdin Co., Ltd., Shanghai, China.

2.2. Modification of MWCNTs

MWCNTs were treated by a H2SO4/HNO3 mixture as reported in [23]. In a typical procedure,
0.2 g MWCNTs were added into a mixture of 75% sulfuric acid (3 mol/L) and 25% nitric acid (3 mol/L),
and then sonicated for 30 min, followed by refluxing at 120 ◦C for 12 h. The resulting sample was
filtrated and diluted by de-ionized water until neutral. Then, the sample was dried at 60 ◦C under
vacuum for 24 h. The functional modified MWCNT was abbreviated to F-MWCNT.

2.3. Preparation of PANI/F-MWCNTs

The PANI/F-MWCNTs was prepared as the following method [23]: a mixture consisted of 0.25 g
AN, 0.03 g F-MWCNTs, and 80 mL HCl aqueous solution (1.5 mol/L) was sonicated for 30 min,
and then was stirred at 4 ◦C for another 30 min. After that, 20 mL APS aqueous solution (0.12 mol/L)
was put into the fore-mentioned mixture and stirred at 4 ◦C for another 12 h. The resulting sample
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was filtered and washed with de-ionized water for several times until neutral. Lastly the sample was
dried at 60 ◦C under vacuum for 24 h.

3. Characterization

3.1. Structure and Composition Characterization

Scanning electron microscopy (SEM) measurement was carried out in a COXEM-20 microscope
(COXEM, Daejeon, Korea) at 20 kV. X-ray diffraction (XRD) patterns were obtained with a Bruker
D8 diffractometer (BRUKER AXS, Berlin, Germany) in reflection mode using Cu Kα = 0.154 nm with
a voltage of 40 kV. Infrared spectroscopy (IR) analyses were accomplished on a Thermal Nicolet
infrared spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

3.2. Electrochemical Characterization

The electrochemical measurements were tested mainly by a standard three-electrode cell;
synchronously, the two-electrode symmetric electrochemical system was tested for a deeper exploration
of the PANI/F-WMCNTs and HQ system. In details, the working electrode was composed of
PANI/F-WMCNTs (80 wt. %), polyvinylidenefluoride PVDF (10 wt. %) and acetylene black (10 wt. %).
The electrolytes were composed of 1 mol/L H2SO4 with different concentrations of HQ aqueous
solution (1, 2, 3, and 4 mol/L). A saturated calomel electrode (SCE) and a Pt foil electrode were
used as the reference electrode and counter electrode, respectively. The cyclic voltammetry (CV)
tests were performed from −0.6 V to 0.8 V (vs. SCE) with different scan rates (1, 2, 5, and 10 mV/s).
The galvanostatic charge/discharge (GCD) analyses were performed in a potential range of −0.4 to
0.7 V in the standard three-electrode cell and it is set to −0.8 to 1.2 V for the two-electrode symmetric
electrochemical system (vs. SCE) at different current density (0.2, 0.5, 1, 2, and 5 A/g). Electrochemical
impedance spectroscopy (EIS) measurements were carried out under open circuit conditions over
a frequency region from 0.01 Hz–100 kHz by applying an AC signal of 5 mV in amplitude throughout
the test. The CV, GCD, and EIS tests were all tested on a CHI660D electrochemical workstation
(Chenhua Co., Shanghai, China).

The specific capacitance (C, F/g), equivalent series resistance (ESR), energy density (E, Wh/kg)
and power density (P, W/kg), were calculated according to the following equations [17]:

Cs =
2im

∫
∆Vdt

∆V2 (1)

ESR =
iRdrop

2I
(2)

E =
1000 · Cs · ∆V2

3600 × 2
(3)

P =
3600E

t
(4)

where Cs is the specific capacitance (F/g), ∆t is the discharge time (s), I is the current loaded (A), ∆V is
the potential window during the discharge process, m is the mass of electrochemical active material in
electrode (g), and iRdrop is the potential drop.

4. Results and Discussion

Figure 1 shows the morphology of the MWCNTs and PANI/F-MWCNTs. The MWCNTs is of
cylindrical morphology and it has a smooth surface (Figure 1a). However, the PANI/F-MWCNTs were
very rough on the surface, and this apparent difference was ascribed to the F-MWCNTs was covered by
PANI. Furthermore, some part of the F-MWCNTs without cladding by the PANI was observed, and the
PANI/F-MWCNTs had formed a 3D conductive network by overlapping each other (Figure 1b).
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Figure 1. SEM of MWCNTs (a) and PANI/F-MWCNTs (b).

The structure of PANI/F-MWCNTs was investigated by XRD analysis. As can be seen in Figure 2,
the four diffraction peaks of MWCNTs at 25.6◦, 43.2◦, 52.8◦, and 78.5◦ could be indexed as (002),
(101), (004), and (006) reflection, respectively [24,25]. The same diffraction peaks also emerged in the
PANI/F-MWCNTs, suggesting that the crystalline structure of MWCNTs was not destroyed after the
compositing process. Furthermore, the reappearance of all the diffraction peaks of PANI in the pattern
of PANI/F-MWCNTs confirmed the existence of PANI in the composite electrode.
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Figure 2. XRD patterns of PANI/F-MWCNTs, PANI, and F-MWCNTs.

The chemical composition of PANI/F-MWCNTs was confirmed by FTIR measurements. As shown
in Figure 3, compared to the spectrogram of the untreated MWCNTs with 3600 cm−1 peak to –OH
groups, the adsorption peaks at 1043 cm−1 correspond to the C–O bond, as well as 1208 cm−1,
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and 1723 cm−1 peak corresponds to the C=O bond of F-MWCNTs was observed, suggesting that the
F-MWCNTs had been modified by the –COOH group effectively [5]. The peak at 1340 cm−1 could be
assigned to the C–N stretching vibration of the benzenoid ring, and the peak at 1180 cm−1 is attributed
to the aromatic C–H in-plane bending. The peaks centered at 1520 cm−1 and 1620 cm−1 are due
to the C=C and C=N stretching of the benzenoid and quinoid rings, respectively [26,27]. All of the
mentioned typical absorption peaks appear in the spectrogram of the PANI/F-MWCNTs confirm the
existence of the F-MWCNTs and the PANI, manifesting that the F-MWCNTs had been composited
with PANI effectively.
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Figure 4a shows the CV curves of PANI/F-MWCNTs, PANI, and F-MWCNTs at a scan rate of
5 mV/s in the mixture of 1 mol/L H2SO4 and 2 mol/L HQ. The potential range was from −0.6 V to
0.8 V. In terms of the electrochemical performance, among three electrode materials, the F-MWCNTs
present the lower end of the scale because the performance of F-MWCNTs is attributed to the electronic
double-layer capacitance and the redox of HQ, while the PANI’s electrochemical performance is better
than that of the F-MWCNTs, which mainly came from the redox of HQ and pseudocapacitance of bulk
polyanilline. Distinctly, pseudocapacitance of bulk polyanilline is larger than that of the electronic
double-layer capacitance of the F-MWCNTs, but is still limited by shortages in the specific surface area
and active situation of the bulk polyanilline. Unlike CV curves of the F-MWCNTs and bulk polyaniline,
the PANI/F-MWCNTs show two pair of redox peaks, the peaks at −0.08 V and 0.26 V are the redox
pair of PANI and the peaks cantered at 0.28 V and 0.7 V are due to the redox transformation of the HQ.
This is why the electrochemical performance of the PANI/F-MWCNTs is situated on the upper of the
scale. Furthermore, predominance of the PANI/F-MWCNTs on structure promotes the enhancement
of performance of SC. The PANI/F-MWCNTs connected together randomly to build a consecutive
3D conductivity network. The transfer of electric charge and the remove of solvated ions through
the 3D conductivity network become more efficiently, consequently, redox in both PANI/F-MWCNTs
electrode and HQ acid aqueous electrolyte are developed fully.

Figure 4b shows the galvanostatic discharge curves of PANI/F-MWCNTs, PANI, and F-MWCNTs
in the mixture of 1 mol/L H2SO4 and 2 mol/L HQ at a current density of 1 A/g. the PANI/F-MWCNTs
exhibit the best discharge property among these three materials, similar to the result from the CV curves.
Owing to nonlinear discharge curves, the galvanostatic capacitances are calculated with Equation (1)
using the integral current area of the discharge curve. The specific capacity of PANI/F-MWCNTs
is 4002 F/g, which is almost three times larger than that of the pure PANI (1419 F/g) and five
times larger than that of the F-MWCNTs (774 F/g). As a comparison, the specific capacitances
of the PANI/F-MWCNTs in the HQ-H2SO4 electrolyte system in this paper and that of the other
electrochemical systems reported in the past are listed in Table 1.
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Table 1. Comparison of specific capacitance between the system of our present works and the
reported values.

Materials Electrolytes Test Condition Specific
Capacitance (F/g) References

KSC/NCNTs/PANI 2 M H2SO4 0.1 A/g 1090 [28]
Px-MWCNT 1 M H2SO4 20 mA/cm2 118 [29]

PANI/MWCNT 1 M NaNO3 0.5 A/g 176.5 [30]
PANI/CNTf 1 M H2SO4 2 A/g 1744 [31]

PANI/SWCNT 1 M H2SO4 5 mA/cm2 485 [32]
PANI/MWCNTs/rGO 1 M H2SO4 0.5 A/g 987 [33]

PANI/MWNT 1 M H2SO4 5 mV/s 139 [34]
PANI/MWNTs 1 M NaNO3 5 mA/cm2 328 [35]
MWCNT/PANI 0.5 M H2SO4 5 mA/cm2 500 [36]
PANI/MWCNT 0.1 M H2SO4 5 mV/s 560 [37]

Ag-PANI/MWCNTs 1 M KCl 1 A/g 528 [38]
PANI-g-TCNF 1 M H2SO4 0.3 A/g 550 [39]

PANI/sMWCNT 1 M H2SO4 1 A/g 431.3 [40]
Activated Charcoal/HQ 1 M H2SO4 5 mV/s 207 [41]

Activated carbon C6H4Br2O2-2 M KOH 5 mV/s 314 [42]

Activated carbon PVA-H2SO4-HQ/
PVA-H2SO4-MB 0.5 A/g 563.7 [43]

PANI/SnO2 0.4 M HQ-1 M H2SO4 0.5 A/g 857 [44]
PANI 0.4 M HQ-1 M H2SO4 0.5 A/g 584 [45]

PANI/F-MWCNTs 1 M H2SO4-2 M HQ

5 A/g 1620

Present
work

2 A/g 2596
1 A/g 4002

0.5 A/g 5375
0.2 A/g 7926

Figure 4c,d are respectively the Nyquist plots of the electrochemical impedance spectroscopy (EIS)
analysis and equivalent circuit. The semicircle in the high frequency shows the difficulty of the ionic’s
exchange during the Faradic process which is generated at the interface of the electrode and electrolyte.
The solution resistances of the three systems could be read from the first point of intersection between
the semicircle and the x-axis. The values of the PANI/F-MWCNT, PANI, and F-MWCNT are 1.04, 1.15,
and 1.08 Ω·cm2 respectively. They are almost the same, as they were tested in the same electrolyte
solution environment. The charge-transfer resistance of PANI/F-MWCNTs, PANI and F-MWCNT from
the diameter of the semicircle is 2.66, 6.04, and 0.474 Ω·cm2, respectively. The lower charge-transfer
resistance means the higher efficiency of the electrode. The introduction of the F-MWCNT effectively
reduces the charge-transfer resistance of the PANI-based electrode. Furthermore, the potential drop
(iRdrop) at the beginning of the discharge process (Figure 4b) is the total resistance of the electrochemical
system, including the internal resistance of the electrode, the electrical connection resistance, the bulk
solution resistance, and the resistance of ion migration in the electrode material. According to the
potential drop, the equivalent series resistance (ESR) of the system could be calculated by Equation (2).
The ESR of PANI/F-MWCNTs, PANI, and F-MWCNTs are 26, 33, and 29 Ω·cm2, respectively. The ESR
of PANI/F-MWCNTs is the lowest among three electrodes in this present study, suggesting an excellent
electrochemical performance. Reasonably, the electrochemical performance depends not only on the
synergistic effect between the PANI and the HQ solution, but also the 3D conductive network with
good electrical conductivity and short route of ionic removal.

The cycling stability of PANI/F-MWCNTs was tested under a current density of 10 A/g
in a HQ (2 mol/L)-H2SO4 (1 mol/L) electrolyte, as shown in Figure 4e. The discharge specific
capacitance of the PANI/F-MWCNTs still keeps 948 F/g after charge-discharge 1000 cycles, and the
retention of capacitance is 96%. Furthermore, the charge-transfer resistance of PANI/F-MWCNTs had
almost not changed during the charge-discharge process. After the charge-discharge of 1000 cycles,
the charge-transfer resistance was only 1.005 Ω·cm2 larger than pristine.
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Figure 4. Electrochemical test results of PANI/A-MWCNTs, PANI, and A-MWCNTs in 2 M HQ-1 M
H2SO4 electrolytes. (a) CV results at a scan rate of 5 mV/s; (b) GCD results at a current density of
0.5 A/g; (c) EIS results; (d) equivalent circuit; and (e) cycling stability of PANI/A-MWCNTs at a current
density of 10 A/g; Inset: Nyquist plot of PANI/A-MWCNTs before and after cycling stability test.
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The rate capacity of PANI/F-MWCNTs was tested with different current densities (0.2, 0.5, 1, 2,
and 5 A/g) in 2 M HQ-1 M H2SO4 electrolytes. As can be seen in the Figure 5a, the specific capacitance
of PANI/F-MWCNTs increases with the declining of the current density. The maximum specific
capacitance could get to 7926 F/g when the current density is 0.2 A/g. At the various current density,
the electrochemical system exhibits a serious high specific capacitance: 7926 F/g (0.2 A/g), 5375 F/g
(0.5 A/g), 4002 F/g (1.0 A/g), 2596 F/g (2.0 A/g), as well as 1620 F/g (5.0 A/g). The specific capacitance
declines about five times when the current density is 25 times larger than before, which suggests
an excellent high-rate discharge ability of the PANI/F-MWCNTs. Figure 5b shows the electrochemical
process between PANI/F-MWCNTs and HQ (2 mol/L) in 1 mol/L H2SO4 by a CV curves with various
scan rates (1, 2, 5, and 10 mV/s). In detail, with the increase of the scan rate, the peak current is
enhanced and the separation of the peak potentials is enlarged slightly. Significantly, in this CV curve
at a high scan rate, the phenomenon of two-pair redox peaks concomitance with the largest CV area
indicate that the coexistence of the redox of both of HQ and polyaniline in an electrochemical process
can greatly promote the development of the synergistic effect.
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The effect of concentration of HQ on the specific capacitance is presented by CV curves (5 mV/s) in
the Figure 6a. The optimal concentration of HQ in which the largest peak current and CV area visualize
is 2 mol/L HQ, larger or smaller than this concentration, the area of CV curves and current peak value
will decrease. Obviously, low concentration of the HQ lead to the decline of the ionic conductivity,
and thus the deficient number of ion to meet the number of redox sites of the PANI/F-MWCNTs,
as a result, the oxidation-reduction reaction both in electrolyte and electrode could not fully accomplish.
Otherwise, a high concentration of HQ is not conducive to the enhancement of specific capacitance due
to the separating out of HQ crystals from the solution and their impeditive effect on ionic or electric
transfer during the electrochemical process. As shown in Figure 6b, the above-mentioned results of CV
measurement agree well with the EIS analysis of the PANI/F-MWCNTs in various concentrations of
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HQ. Typically, when the concentration of HQ is 2 mol/L, the PANI/F-MWCNTs possess the smallest
solution resistances and the lowest charge-transfer resistance. Similarly, in the Figure 6c, the highest
capacitance from the discharge process also is achieved at this optimal HQ concentration. The effect of
concentration of HQ on performances, such as specific capacitances, and values of Rs and Rct [46],
have been listed in Table 2.
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In order to fully explore the performance of our supercapacitor, the present work investigated
the electrochemical performance with a two-electrode symmetric electrochemical system. Figure 7
shows the charging–discharging curves of PANI/F-MWCNTs at different current density (1, 2, 3,
and 5 A/g), and the EIS analysis (Figure 7a, inset) in 1 mol/L H2SO4–2 mol/L HQ. The charge-transfer
resistance of 0.54 Ω·cm2 suggests good electric conductivity and efficient charge transfer of this system.
The discharge specific capacitances at various current densities are 205 F/g (1 A/g) and 119 F/g
(5 A/g), respectively. The energy density and the power density are 114 Wh/kg and 805 W/kg,
respectively, in this symmetrical electrode system at 1 A/g. It is important to note that the mass which
is used to calculate the energy density and the power density is the total mass of electrode, including
PANI/F-MWCNTs composites (80 wt. %), PVDF (10 wt. %), and acetylene black (10 wt. %).
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5. Conclusions

In a summary, the structure of PANI/F-MWCNTs composites is characterized by SEM, XRD, and
FTIR, The F-MWCNTs covered by the PANI build 3D conductive networks to increase the synergetic
redox effect in both the composite electrode and the HQ electrolyte of the SC. The concentration
of the HQ effect on performance of the SC is investigated, and the optimal concentration of the
HQ for the enhancement of performance is determined by a serious electrochemical measurement.
The highest specific capacitance from the GCD measurement is 7926 F/g at 0.2 A/g, a new record in
the performance of SC. The maximum energy density reaches 114 Wh/kg in a two-electrode symmetric
electrochemical system at 1 A/g in 2 M HQ-1 M H2SO4 solution. In addition, the specific capacitance
retention is 96% after 1000 galvanostatic charge/discharge cycles, indicating an excellent cyclic stability.
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