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SUMMARY

Research suggests contact sports affect neurological health. This study used per-
mutation-basedmediation statistics to integratemeasures of metabolomics, neu-
roinflammatory miRNAs, and virtual reality (VR)-based motor control to investi-
gate multi-scale relationships across a season of collegiate American football.
Fourteen significant mediations (six pre-season, eight across-season) were
observed where metabolites always mediated the statistical relationship be-
tween miRNAs and VR-based motor control (pperm

Sobel % 0.05; total effect > 50%),
suggesting a hypothesis that metabolites sit in the statistical pathway between
transcriptome and behavior. Three results further supported a model of chronic
neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediatingme-
tabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic
acid cycle metabolites decreased across-season, and (3) accumulated head accel-
eration events statistically moderated pre-season metabolite levels to direction-
ally model post-season metabolite levels. These preliminary findings implicate
potential mitochondrial dysfunction and highlight probable peripheral blood bio-
markers underlying repetitive head impacts in otherwise healthy collegiate foot-
ball athletes.

INTRODUCTION

Repetitive head acceleration events (HAEs) have been shown to induce neurophysiological and biochem-

ical abnormalities without triggering clinically observable symptoms (Kawata et al., 2017; Mainwaring et al.,

2018; Nauman et al., 2020). The biological effects of these ‘‘subconcussive injuries’’ can mirror changes

observed following concussion, a condition diagnosed in approximately 1.6–3.8 million people in the US

annually (Langlois et al., 2006). Extensive research has begun uncovering the molecular mechanisms of

concussion/HAEs; however, their relationship to other functional change, such as neurobehavioral impair-

ment, appears complex (Nauman et al., 2020). This complexity, in the face of minimal clinical symptoms,

means many tests are inconsistent or insensitive to subtle behavioral change (Dessy et al., 2017; Martini

and Broglio, 2018). Among the more consistent findings are those related to motor control, including dis-

turbances in balance accuracy (accuracy correcting balance), sensory motor reactivity (speed correcting

balance), and spatial navigation, together referred to as ‘‘motor control’’ henceforth. These three behav-

ioral features were identified by Alexander Luria (Luria, 1973) as being commonly affected by a broad range

of head injury severity. Thesemotor control features have been quantifiedmore recently using virtual reality

(VR) as a means to assess behavioral dysfunction potentially missed in standard clinical examinations (Slo-

bounov et al., 2006).

The emergence of concussion-related motor control dysfunction can be interpreted, in part, by the neuro-

inflammatory model of brain injury, which is supported by transcriptomic (miRNA) (Di Pietro et al., 2021;

Papa et al., 2019) and neuroimaging studies in humans (Jang et al., 2019; I K Koerte et al., 2015). The refer-

enced miRNA studies were noteworthy for identifying abnormalities across a panel of biomarkers in colle-

giate American football athletes (Bhomia et al., 2016; Papa et al., 2019). These miRNAs were not only

elevated at the end of the football season, but also prior to the season (Pre), and a subset of these miRNAs
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were associated with regional cerebral blood (rCBF) flow and postural control at Pre suggesting a chronic

neuroinflammatory syndrome (Chen et al., 2020; Papa et al., 2019). These miRNAs increase following TBI

(Bhomia et al., 2016; Papa et al., 2019; Sharma et al., 2014) and have established roles in inflammation

(Jee et al., 2012b; Paraskevi et al., 2012; Reddycherla et al., 2015; Wu et al., 2011; Zheng et al., 2015), neuro-

degeneration (Basak et al., 2016; Denk et al., 2015; Khoo et al., 2012; Liu et al., 2017), apoptosis (Li et al.,

2016; Lv et al., 2018), and oncogenesis (Che et al., 2019; Kobayashi et al., 2012; Kohram et al., 2018; Li

et al., 2011; Ling et al., 2019; Tommasi et al., 2016). Multiple concussion studies support the neuroinflam-

matory model (Alosco et al., 2020; Aungst et al., 2014; Bailes et al., 2013; Inga K Koerte et al., 2015; McAteer

et al., 2016; Shultz et al., 2011; Tagge et al., 2018; Xu et al., 2016), and others suggest that mitochondrial

dysfunction may underlie the inflammatory response (Harland et al., 2020; Hernández-Aguilera et al.,

2013; Kumar Sahel et al., 2019; Yoo et al., 2020).

Mitochondrial dysfunction has been consistently observed across animal studies, and raised as a hypoth-

esis for human studies, of concussion and HAEs (González-Domı́nguez, 2016; Hiebert et al., 2015; Vagnozzi

et al., 1999; Xiong et al., 1997). Dubbed the powerhouse of the cell, mitochondria are critically important for

energy production and cellular respiration (Siekevitz, 1957). Damage to these organelles can result in

serious cellular, and potentially systems-level, dysfunction. One major mitochondrial role involves the

oxidation of fatty acids (FAs) into functional metabolites that fuel the TCA cycle and downstream energy

production (Daley et al., 2016; Schulz, 1991). Preclinical research suggests that metabolites connected to

mitochondrial energy metabolism and oxidative stress (Bhat et al., 2015; Bhatti et al., 2017; Je�zek et al.,

2018) have been linked to neuroinflammation and may be altered in organisms with head injury (Signoretti

et al., 2010; Verweij et al., 1997, 2000).

In this study, we sought to determine whether metabolomic measures were altered across a collegiate

football season and hypothesized that altered metabolites would be related to changes in neuroinflam-

matory miRNAs and VR-based motor control in a consistent manner. This hypothesis specifically focused

on the relationship of changes in these three types of measures, as well as their baseline relationships

prior to the season. We further hypothesized that molecular measures would be statistically related to

HAEs and tested, in a post-hoc fashion, if HAEs across a season would mediate/moderate the relation-

ship of Pre-season to Post-season measures. The same subjects were studied at Pre and postseason

(Post) given they were under the same nutritional, workout, and lifestyle management program, thus

serving as an adequate comparison group (see Methods). For integration of multiple omic measures

(i.e., multi-omics (Chu et al., 2019)) with computational behavior (i.e., mathematical psychology and the

advanced technology like VR used to study behavior), we focused on a set of 40 metabolites with roles

in energetics, inflammation, or exogenous consumption, a candidate panel of nine miRNAs (miR-20a,

miR-505, miR-92a, miR-195, miR-93p, miR-30d, miR-486, miR-3623p, and miR-151-5p) connected to neuro-

inflammation and concussion (Bhomia et al., 2016; Papa et al., 2019; Sharma et al., 2014), and four VR-

based metrics of motor control. Twenty metabolites were chosen based on the highest mean decrease

accuracy (MDA) (q-value; after correction) from a random forest analysis (see Methods for details) and

the other 20 were chosen based on literature survey for hypothesized involvement in neuroinflamma-

tory-related injury (Abdul-Muneer et al., 2015; Lozano et al., 2015; Rodriguez-Rodriguez et al., 2014).

Our hypotheses constrained VR performance to be the dependent variable (Y), and we used mediation

to move past simple association (Lockhart et al., 2011; Mackinnon, 2008). We hypothesized that metab-

olomic measures (mediator, M) would consistently carry the relationship between neuroinflammatory miR-

NAs (independent variable, X) and VR-based motor control (Y). A secondary hypothesis would be used to

confirm that miRNAs (M) would not carry the relationship between metabolomic measures (X) and VR-

based motor control (Y). If both hypotheses were true, and if a consistent set of relationships were

observed across analyses, this would support a statistical model framing the relationship of transcrip-

tome, metabolome, and behavior in athletes sustaining repetitive HAEs. We based our hypothesis on

(1) previous work which found miRNAs to be elevated prior to and following the football season (Papa

et al., 2019), (2) previous work which showed the same panel of miRNAs consistently acting as the IV,

with rCBF as the mediator (Chen et al., 2020), and (3) the assumption that metabolite levels change

dynamically (like rCBF) and thus may carry miRNA-behavior relationships. Others have argued that medi-

ation analysis which includes (a) precedence information (i.e., applying theory to select X, M, and Y) and

(b) controls to rule out non-spuriousness (i.e., the secondary hypotheses) allow better understanding of

potential mechanisms (Cohen et al., 2003; Shrout and Bolger, 2002). When conditions for (a) and (b)

are met, mediation is argued to be statistically mechanistic (Shrout and Bolger, 2002) as opposed to
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simply correlative (Spencer et al., 2005), and the mediator variable lies statistically in the causal pathway

between the two other variables (MacKinnon et al., 2007).

Given the large number of two-way relationships tested prior to mediation analysis and our limited human

sample with its potential for skewed distributions and outliers, we applied outlier analysis (Cook’s distance)

and permutation-based mediation methods (Fisher, 1935). Permutation, unlike standard statistics, pro-

duces a true distribution, thus increasing the overall power of the analysis (see Methods for further elabo-

ration). Given the benefits argued for permutation and/or bootstrapping approaches with limited-sized da-

tasets, we implemented a permutation-based mediation (PMe) approach, using the data itself as a

framework for addressing the issues of central limit theorem violation and small-to-moderate sample

size (Fritz and MacKinnon, 2007; Kroehl et al., 2020).

This preliminary study utilized PMe to determine if any metabolic pathway, and its compounds, was consis-

tently observed in the majority of mediation relationships with neuroinflammatory miRNAs and VR-based

motor control, thus pointing to a potential unifying construct for HAE/concussion research and providing

probable blood biomarkers of subconcussive injury (Chu et al., 2019). The statistical framework used for

these analyses could be applied broadly to integrate diverse molecular biology measures with human

behavior and could provide a translational construct for animal studies.
RESULTS

The presented results integrated three variables (miRNA, metabolites, and VR scores of motor control)

collected in a cohort of collegiate American football athletes at two time points: 1) prior to the season

(Pre) and 2) immediately following the season (Post). Nine miRNAs previously implicated in HAE-related

inflammation (Papa et al., 2019) and four VR-based performance metrics sensitive to subtle concussion-

related behavioral deficits (Luria, 1973) were included. Metabolites were selected if (1) they were reported

in the top 20 of the random forest analysis, and (2) they were involved in biochemical pathways related to

energetics, inflammation, or exogenous consumption and they significantly changed from Pre to Post (Wil-

coxon signed-rank p-value < 0.05). This led to the selection of 40 metabolites. Permutation-based media-

tion was used to assess relationships betweenmiRNAs, metabolites, and VRmetrics at both Pre and across-

season (D = Post–Pre). MiRNAs, metabolites, and VR metrics observed to have significant mediation/

moderation relationships were further regressed against HAEs to test for linear relationships. HAEs impli-

cated in these linear relationships were lastly investigated for mediating or moderating effects with metab-

olites, miRNAs, or VR measures across-season.
Random forest analysis revealed biochemically important metabolites

Of the 1300+ metabolites analyzed, 20 had the highest mean decrease accuracy (MDA) when distinguish-

ing Pre from Post (Figure S1). Of thesemetabolites 11/20 (55%) were lipids, 3/20 (15%) were nucleic acids, 3/

20 (15%) were xenobiotics, 2/20 (10%) were carbohydrates, and 1/20 (5%) was an amino acid. The metab-

olite with the highest MDA was 2-hydroxyglutarate (2-HG), followed by three other lipids. All 20 metabo-

lites from the random forest plot were included in subsequent analyses.
Wilcoxon signed-rank analyses revealed across-season metabolite changes

Wilcoxon signed-rank tests were conducted to determine which miRNA, metabolites, and VR scores fluc-

tuated between Pre and Post. There were no significant changes in miRNA levels and VR scores between

Pre and Post (p-value > 0.05). Of the measured metabolites, 259 significantly increased or decreased (p-

value % 0.05) between Pre and Post and 161 survived an FDR correction (q-value % 0.05). Of those 161

metabolites, 40 were selected, including those from the random forest analysis, based on the criteria

described in MiRNA quantification and Metabolite quantification (Figure S1 and Table 1). Of the 40 me-

tabolites, 26 increased (negative z-score) and 14 decreased (positive z-score) (Table 1). 48% of the me-

tabolites were lipids and 52% fell in another category (12.5% energy-related, 25% xanthine, 7.5% amino

acid, 5% carbohydrate, and 2.5% nucleic acid). Of the lipids, 74% were FAs and 26% were other lipid

types. Overall, 35% of the metabolites were FAs and 65% fell in another category. Of the FAs, 79% signif-

icantly increased from Pre and Post. Additionally, all TCA-related metabolites (a-ketoglutarate, citrate,

aconitate, and fumarate) decreased from Pre to Post and all xanthine metabolites (e.g., paraxanthine)

increased.
iScience 25, 103483, January 21, 2022 3



Table 1. Metabolite changes across-season

Metabolite Super pathway Sub pathway p-value q-value Z score

corticosteronea Lipid corticosteroid 0.0002 0.0028 �3.74

cortisola Lipid corticosteroid 0.0001 0.0016 �3.98

Cortisone Lipid corticosteroid 0.0447 0.0447 �2.01

Cortoloneglucuronide (cg) Lipid corticosteroid 0.0040 0.0194 2.88

Stearidonate Lipid long chain polyunsaturated fatty acid 0.0035 0.0194 �2.92

linoleate3n6 Lipid long chain polyunsaturated fatty acid 0.0013 0.0091 �3.22

sebacatea Lipid fatty acid, dicarboxylate 0.0001 0.0016 �3.95

linoleate2n6 Lipid long chain polyunsaturated fatty acid 0.0097 0.0194 �2.59

Dodecadienoate Lipid fatty acid, dicarboxylate 0.0068 0.0194 �2.71

azelatea Lipid fatty acid, dicarboxylate 0.0003 0.0036 �3.62

suberatea Lipid fatty acid, dicarboxylate 0.0002 0.0028 �3.77

7-hydroxyoctanate Lipid fatty acid, monohydroxy 0.0074 0.0194 �2.68

8-hydroxyoctanatea Lipid fatty acid, monohydroxy 0.0001 0.0016 �3.86

undecanedioatea Lipid fatty acid, dicarboxylate 0.0004 0.0040 �3.53

caproatea Lipid medium chain fatty acid 0.0004 0.0040 3.53

heptanoate (7:0)a Lipid medium chain fatty acid 0.0008 0.0072 3.35

tridecenedioatea Lipid fatty acid, dicarboxylate 0.0003 0.0036 3.65

2-hydroxyglutaratea Lipid fatty acid, dicarboxylate 0.0000 0.0000 �4.14

N-palmitoylserine Lipid endocannabinoid 0.0009 0.0072 3.34

Alpha-ketoglutarate Energy TCA cycle 0.0386 0.0386 2.07

Citrate Energy TCA cycle 0.0192 0.0384 2.34

Aconitate Energy TCA cycle 0.0068 0.0272 2.71

Fumarate Energy TCA cycle 0.0177 0.0384 2.37

Phosphate Energy oxidative phosphorylation 0.0051 0.0255 �2.80

Paraxanthine Xenobiotic xanthine 0.0220 0.0440 �2.29

1-methylurate Xenobiotic xanthine 0.0034 0.0272 �2.93

1,3-dimethylurate Xenobiotic xanthine 0.0081 0.0440 �2.65

1,7-dimethylurate Xenobiotic xanthine 0.0120 0.0440 �2.51

1-methylxanthine Xenobiotic xanthine 0.0009 0.0081 �3.32

5-acetylamino-6-amino-3-

methyluracil (aam)

Xenobiotic xanthine 0.0184 0.0440 �2.36

5-acetylamino-6-formylamino-

3-methyluracil (afm)

Xenobiotic xanthine 0.0123 0.0440 �2.50

O-sulfo-L-tyrosinea Xenobiotic chemical 0.0001 0.0011 �3.98

2-isopropylmalatea Xenobiotic food component/plant 0.0089 0.0440 2.62

1,2,3-benzenetriol sulfate (2)a Xenobiotic chemical 0.0005 0.0050 �3.50

1-carboxyethylphenylalaninea Amino acid phenylalanine metabolism 0.0002 0.0002 3.74

prolyl-hydroxy-prolinea Amino acid urea cycle; arginine and proline metabolism 0.0000 0.0000 �4.17

1-carboxyethylvalinea Amino acid leucine, isoleucine and valine metabolism 0.0002 0.0002 3.74

fructosea Carbohydrate fructose, mannose and galactose metabolism 0.0001 0.0001 3.86

mannosea Carbohydrate fructose, mannose and galactose metabolism 0.0001 0.0001 �3.95

adenosinea Nucleotide polyamine metabolism 0.0333 0.0333 2.13

Metabolite levels between Pre and Postwere assessed using theWilcoxon signed-rank test. Metabolites with significant q-values (<0.05) were reported. Negative

z-scores indicate an increase from Pre to Post and positive z-scores indicate a decrease from Pre to Post.
aIndicates metabolites that also appeared in the random forest plot. See also Figure S1.
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There were significant relationships between miRNAs, metabolites, and VR scores

Linear regressions assessed relations between four VR scores (Balance (Bal), sensory-motor reactivity or Re-

action Time (RT), spatial navigation or Spatial Memory (SM), and Comprehensive (Comp, the combination

of Bal, RT, and SM)), ninemiRNAs (miR-20a, miR-505, miR-3623p, miR-30d, miR-92a, miR-486, miR-195, miR-

93p, and miR-151-5p), and 40 metabolites (Table 1). Years of playing experience (YoE) and history of

concussion (HoC) were initially considered as covariates but none were significantly correlated with the var-

iables considered for mediation. At Pre, there were nine significant relationships between VR scores and

miRNAs, 15 between VR scores and metabolites, and 36 between miRNAs and metabolites (p % 0.05

following Cook’s outlier removal) (Figure S2). Across-season (D = Post� Pre), there were 12 relationships

between DVR scores and DmiRNAs, 20 between DVR scores and Dmetabolites, and 31 between DmiRNAs

and Dmetabolites (p% 0.05 following Cook’s outlier removal) (Figure S3). In general, both Pre and across-

season analyses revealed negative relationships between VR scores and miRNAs, and positive relation-

ships between VR scores and metabolite levels (exceptions: cortoloneglucuronide, corticosterone, aden-

osine, and tridecenedioate). Linear correlations between miRNAs and metabolites varied directionally,

with the majority being negative (79%).

MiRNAs, metabolites, and VR scores formed three-way relationships

As a prerequisite for mediation analysis, only regressions which formed three-way relationships were

considered (e.g., relationships with p < 0.05 between miRNAs / metabolites, metabolites / VR scores,

and miRNAs / VR scores; see below).
Of the 9, 15, and 36 significant Pre relationships, there were 18 instances where relationships formed a trian-

gular path; of the 12, 20, and 31 across-season relationships, there were 32 triangular paths. In total, there

were 50 potential three-way relationships (18 at Pre and 32 across-season). Most three-way relationships

included Comp behavior (70%) and 88% included a FA metabolomic measure. Following Cook’s outlier

removal, 11 of 18 Pre three-way relationships met significance (p-value < 0.05) for all triangular paths.

Across-season, 14 of 32 relationships met this same requirement. Of these 25 significant three-way relation-

ships (Pre + across-season), 92% included a FA metabolomic measure and 88% included Comp. It should

be noted that in no case was the SM variable involved in any three-way relationship. In total, there were six

miRNAs involved in Pre and across-season three-way relationships: miR-20a, miR-505, miR-92a, miR-151-

5p, miR-195, and miR-30d (five at Pre and five across-season). All 25 three-way relationships were tested

for mediation.

Mediation analyses revealed significant effects at Pre and across-season

Primary mediation analyses were performed to assess if metabolites (mediator, M) carried the relationship

between miRNAs (independent variable, X) and VR scores of motor control (dependent variable, Y). Addi-

tionally, secondary mediation analyses were conducted to confirm that miRNAs did not act as mediating

variables (all secondary mediation results are presented in the Supplemental Material).

Mediation analysis revealed six significant Pre mediations, out of the 11 tested (pperm
Sobel< 0.05, TeffR 50%;

Table 2, bolded and italicized rows). Each significant mediation, including the directionality and signifi-

cance of each linear regression relationship, is depicted in Figure 1. The plots illustrate the slopes of linear

models 1 (X/ Y) versus 2 (X + M/ Y). In each case, the slope of model 1 was larger than that of model 2,

indicating that themetabolite (M) significantly altered the relationship between themiRNA (X) and VR score

(Y). The directionality of the linear regression relationships was common across all Pre mediations – nega-

tive between miRNA and metabolite, negative between miRNA and VR score, and positive between

metabolite and VR score. No secondary mediation analyses met both a significant p-value and a Teff greater

than 50% when metabolite was the X, miRNA was the M, and VR score was the Y (i.e., pperm
Sobel > 0.05, Teff%

30%) (Table S1).
iScience 25, 103483, January 21, 2022 5



Table 2. Permutation-based Pre-season mediation results

Preprimary mediations

Step 1: X

predicting Y

Step 2: X

predicting M

Step 3: X

(with M)

predicting Y

Step 3: M

(with X)

predicting Y Teff p
perm
Sobel N

VR score (Y) X M c pc a pa c’ pc’ b pb %

Comprehensive miR-20a 2-hydroxyglutarate �0.531 0.023 �0.529 0.024 �0.256 0.263 0.520 0.032 52 0.002 18

Comprehensive miR-20a sebacate �0.567 0.014 �0.489 0.039 �0.400 0.099 0.343 0.152 30 0.054 18

Comprehensive miR-20a 8-hydroxyoctanoate �0.544 0.020 �0.631 0.005 �0.224 0.378 0.506 0.058 59 0.005 18

Comprehensive miR-20a undecanedionate �0.575 0.013 �0.630 0.005 �0.304 0.239 0.287 0.290 32 0.113 18

Comprehensive miR-505 2-hydroxyglutarate �0.513 0.021 �0.657 0.002 �0.050 0.819 0.704 0.005 90 0.000 20

Comprehensive miR-505 8-hydroxyoctanoate �0.515 0.020 �0.475 0.034 �0.273 0.193 0.509 0.022 47 0.007 20

Comprehensive miR-92a 8-hydroxyoctanoate �0.447 0.048 �0.551 0.012 �0.098 0.648 0.634 0.008 78 0.001 20

Comprehensive miR-151-5p 2-hydroxyglutrate �0.612 0.005 �0.533 0.019 �0.320 0.110 0.547 0.011 48 0.000 19

Comprehensive miR-151-5p 8-hydroxyoctanoate �0.595 0.007 �0.572 0.010 �0.298 0.171 0.547 0.011 50 0.004 18

Balance miR-151-5p undecanedionate �0.578 0.015 �0.575 0.016 �0.213 0.317 0.635 0.008 63 0.001 17

Reaction time miR-195 8-hydroxyoctanoate �0.472 0.031 �0.458 0.037 �0.277 0.205 0.426 0.059 41 0.014 21

Cook’s outliers from regressions X/ Y, X/M, and M/ Y were removed to obtain a common set of participants for mediation testing. X = independent var-

iable; M = mediator; Y = dependent variable; Std b= standardized beta coefficients for each regression; px = p-value for each regression (a, b, c, and c’) at sig-

nificance level 0.01; permutation-based Sobel p-values = pperm
Sobel at significance level = 0.05; effect mediated (Teff) is expressed as %; sample size = N. Significant

mediations are bolded and italicized. See also Figure 1 and Table S1.
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Across-season mediation analysis revealed eight mediations, out of the 14 tested, meeting our thresholds

(pperm
Sobel< 0.05; Teff > 50%; Table 3, bolded and italicized rows). Figures 2A–2H visualizes each across-season

mediation, including the directionality of each regression between X and M, M and Y, and X and Y. The

plots depict the slopes of linear models 1 (X / Y) versus 2 (X + M / Y). In each case, the slope of model

1 was larger than that of model 2. Mediations depicted in Figures 2A–2C and 2F–2H share the same direc-

tionality across regressions: negative between miRNA and metabolite, positive between metabolite and

VR score, and negative between miRNA and VR score. In 2D-E, the relations between miRNA (miR-30d)

and metabolite (adenosine), as well as metabolite and VR score (Comp), were opposite of those depicted

in Figures 2A–2C and 2F–2H. Only one secondary mediation met threshold when metabolite was the X,

miRNA was the M, and VR score was the Y (pperm
Sobel= 0.011, Teff = 68%; Table S2); in this case, the primary

mediation analysis also had a significant permutation-based Sobel p-value (pperm
Sobel = 0.047), suggesting a

more complex relationship.

In total, from Pre- and across-season mediation analysis, there were 14 significant mediations (pperm
Sobel< 0.05,

Teff > 50%) comprised of seven metabolites (2-HG, 8-hydroxyoctanoate (8-HOA), undecanedioate (UND),

sebacate, suberate, heptanoate, adenosine), six miRNAs (miR-20a, miR-505, miR-92a, miR-151-5p, miR-

195, and miR-30d), and three VR scores (Comp, Bal, and RT). Of the seven metabolites, six were FAs.

Five of the six FAs (2-HG, 8-HOA, UND, sebacate, and suberate) increased from Pre to Post, while hepta-

noate, a FA, and adenosine, a nucleoside, decreased (Figure S4). Interestingly, five variables–Comp,

8-HOA, miR-505, miR-92a, and miR-151-5p–were observed in both Pre and across-season mediations.
HAEs showed relationships with miRNA and metabolite levels and moderated metabolite

change

Three methods were used to assess HAE relationships: (1) extrapolation of athlete-specific Post HAE met-

rics to model Pre VR scores, miRNA levels, and metabolite levels; this analysis is purely exploratory and

should only be considered for setting up future hypotheses; (2) assessment of how Post HAE metrics affect

across-season changes in VR scores, miRNA levels, and metabolite levels; this analysis was not exploratory

as it tested expected relationships with HAEs; and (3) mediation and moderation analyses to model direc-

tional relationships across variables.

In this exploratory framework, analysis of HAEs against Pre measures revealed six significant relationships

between HAEs and miRNAs (5/6 related to HAEs above 80G) and two relationships between HAEs and
6 iScience 25, 103483, January 21, 2022



Figure 1. Significant Pre-season mediation results

In all analyses, miRNA was X, metabolite was M, and VR score was Y. VR terms were reported as standardized values and adjusted R2 (R2
adj:), p-values

(significance level = 0.05), and b terms were reported from linear regression analyses (i.e., without common outlier removal that preceded the mediation

analyses presented in Table 2). Teff and pperm
Sobel were reported from each permutation-based mediation analysis.

(A) There was a negative relation between miR-20a and 2-hydroxyglutarate (2-HG), a positive relation between 2-HG and VR composite score (Comp), and a

negative relation between miR-20a and Comp. When 2-HG was added to the regression model, the relationship between miR-20a and Comp no longer

existed (p-value > 0.05); therefore, 2-HG statistically mediated the relationship (pperm
Sobel = 0.002, Teff = 52%). The graph depicts the change in slope between

model 1 (X / Y), which plots the slope term for the interaction between miR-20a and Comp, and model 2 (X + M / Y), which plots the slope term for the

relationship between miR-20a and Comp when 2-HG was included in the regression model.

(B–F) mimic what has been described in (A).
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metabolites (2/2 related to HAEs above 25G) (Table S3). In testing non-exploratory hypotheses of HAE re-

lationships with across-season molecular measures, we found six significant relationships between HAEs

and omic measures (5/6 related to HAEs above 25G). All relationships were positive (+b) indicating that

as HAEs increasedmiRNA andmetabolite levels were increasingly higher at Post as compared to Pre (Table

S3, Figure S5). Relationships with miRNAs were related to normalized or averaged HAEs (i.e., aHAE25G and

aHAE80G) while relationships with metabolites (sebacate and suberate) were specifically related to HAEs

exceeding 25G (cHAE25G and aHAE25G). Significant HAE regressions are plotted in Figure S5 and their

regression terms with across-season mediations are depicted in Figures 2A–2I.

For the third analysis involving mediation and moderation, mediation showed no significant effects.

Moderation was conducted on metabolites implicated in across-season mediation to assess whether the

interaction of HAEs and Pre metabolite levels could directionally model Post metabolite levels. In total,
iScience 25, 103483, January 21, 2022 7



Table 3. Permutation-based across-season mediation results

Across-season primary mediations

Step 1: X

predicting Y

Step 2: X

predicting M

Step 3: X

(with M)

predicting Y

Step 3: M

(with X)

predicting Y Teff p
perm
Sobel N

VR score (DV) IV M c pc a pa c’ pc’ b pb %

Comprehensive miR-505 sebacate �0.579 0.015 �0.605 0.010 �0.289 0.252 0.481 0.066 50 0.008 17

Comprehensive miR-505 azelate �0.579 0.015 �0.643 0.005 �0.302 0.265 0.432 0.118 48 0.017 17

Comprehensive miR-505 suberate �0.579 0.015 �0.638 0.006 �0.341 0.219 0.375 0.178 41 0.035 17

Comprehensive miR-505 8-hydroxyoctanoate �0.524 0.037 �0.526 0.037 �0.217 0.353 0.584 0.023 59 0.007 17

Comprehensive miR-30d sebacate �0.586 0.008 �0.595 0.007 �0.298 0.196 0.485 0.043 49 0.003 19

Comprehensive miR-30d suberate �0.551 0.022 �0.518 0.033 �0.309 0.199 0.467 0.061 44 0.009 17

Comprehensive miR-30d heptanoate �0.586 0.008 �0.618 0.005 �0.328 0.183 0.416 0.097 44 0.009 19

Comprehensive miR-30d adenosine �0.474 0.047 0.550 0.018 �0.191 0.434 �0.515 0.047 60 0.001 18

Comprehensive miR-92a suberate �0.505 0.039 �0.622 0.008 �0.161 0.537 0.553 0.048 68 0.004 17

Comprehensive miR-92a heptanoate �0.479 0.033 �0.523 0.018 �0.240 0.299 0.456 0.058 50 0.006 20

Comprehensive miR-195 heptanoate �0.491 0.033 �0.667 0.002 �0.247 0.386 0.366 0.206 50 0.029 19

Comprehensive miR-151-5p 8-hydroxyoctanoate �0.616 0.011 �0.653 0.006 �0.279 0.286 0.516 0.060 55 0.007 17

Comprehensive miR-151-5p heptanoate �0.569 0.017 �0.585 0.014 �0.371 0.169 0.338 0.207 35 0.047 17

Reaction time miR-30d adenosine �0.473 0.055 0.529 0.029 �0.200 0.420 �0.516 0.050 58 0.001 17

Cook’s outliers from regressions X/ Y, X/M, and M/ Y were removed to obtain a common set of participants for mediation testing. X = independent var-

iable; M = mediator; Y = dependent variable; Std b= standardized beta coefficients for each regression; px = p-value for each regression (a, b, and c) at signif-

icance level 0.1; permutation-based Sobel p-values =pperm
Sobel at significance level = 0.05; effect mediated (Teff) is expressed as %; sample size = N. Significant me-

diations are bolded and italicized. See also Figure 2 and Table S2.
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there were five significant moderations (pF% 0.05; pb3% 0.05); 4/5 (80%) implicated HAEs at, or exceeding

25G and 1/5 implicated sessions (Table S4). 3/5 moderation findings included the metabolite suberate, a

dicarboxylic FA. Following a Bonferroni correction, 3/5 of the moderations remained statistically significant

(pF% 0.01). It is important to note that moderation moves past simple association, indicating that the inter-

action between the X and moderator (Mo) predict, or directionally model, the Y.
Post-hoc miRNA-gene network analysis

To improve the interpretability of our findings, network analyses were performed to establish relationships

between the nine miRNAs and genes involved in mitochondrial functions (i.e., fatty acid b oxidation, the

TCA cycle, the electron transport chain (ETC), oxidative phosphorylation, general aerobic respiration)

and neuroinflammation. When brain tissue was selected, 43 genes involved with mitochondrial processes

appeared in the nodal network with miRNAs. It should be noted that only three (miR-20a, miR-9-3p, miR-

30d) of the nine miRNAs of interest existed in the miRNet database for human brain tissue. This could, in

part, be due to insufficient research of these miRNAs in human brain tissue. Of the 43 genes, 33 had direct

nodal relationships with a given miRNA (Table S5, Figure S6). When tissue was not specified, there were 87

genes in the miRNA-gene network. Of the 87, 61 had direct nodal relationships with a given miRNA (Table

S6, Figure S7).

Out of the 37 neuroinflammatory-related genes investigated, 11 showed a nodal relationship with one or

more of the three miRNAs when human brain tissue was selected as the target tissue (Table S7, Figure S8).

For the described network analyses, it should be noted that although not every gene had a direct, one-

nodal, relationship with a given miRNA, the miRNAs still existed in the overall miRNA-gene network.
DISCUSSION

This preliminary study tested the hypothesis that collegiate American football athletes, exposed to repet-

itive HAEs, would exhibit significant PMe effects between neuroinflammatory-related miRNAs, energy-

related metabolites, and VR-based motor control metrics, where one measure was consistently the medi-

ator (M) and carried the relationship between the independent variable (X) and dependent variable (Y). This
8 iScience 25, 103483, January 21, 2022
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Figure 2. Significant across-season mediation results

In all analyses, DmiRNA was X, Dmetabolite was M, and DVR score was Y. DVR terms were reported as standardized values and adjusted R2 (R2
adj: ), p-values

(significance level = 0.05), and b terms were reported from linear regression analyses (i.e., without common outlier removal that preceded the mediation

analyses presented in Table 3). Teff and pperm
Sobel were reported from each permutation-based mediation analysis.

(A) There was a negative relation betweenDmiR-505 and Dsebacate, a positive interaction between Dsebacate and DComp, and a negative relation between

DmiR-505 and DComp. When Dsebacate was added to the regression model, the relationship between DmiR-505 and DComp no longer existed; therefore,

sebacate statistically mediated the relationship (pperm
Sobel= 0.008, Teff = 50%). The graph depicts the change in slope between model 1 (X/ Y), which plots the

slope term for the interaction between DmiR-505 and DComp, and model 2 (X + M / Y), which plots the slope term for the relationship between DmiR-505

and DComp when Dsebacate was included in the regression model.

(B–H) mimic what has been described in (A).
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hypothesis was confirmedwith five general findings. (1) Metabolomic analysis identified 40 compounds that

significantly changed across-season. (2) There were 14 significant mediations where miRNA was X, metab-

olite wasM, and VR score was Y (i.e., metabolites always sat in the statistically causal pathway between tran-

scriptome and behavior). (3) Three miRNAs (miR-505, miR-92a, and miR-151-5p) and one metabolite (8-

HOA) appeared in both Pre and across-season mediations. (4) All seven metabolomic compounds impli-

cated in mediation relationships are involved with some aspect of energy metabolism. Specifically, five

of the seven are involved in FA oxidation, a sixth compound is involved with diminishing mitochondrial

respiration and respiration-coupled ATP production in cancer cells (i.e., 2-HG), and a seventh is a core

structural unit of ATP (i.e., adenosine). (5) miRNAs and metabolite levels were related to accumulated

HAEs, and the interaction between HAEs and Pre metabolite levels predicted, or directionally modeled,

Post metabolite levels. Altogether, these findings point to a shift in mitochondrial metabolism, away

from mitochondrial function, and consistent with known mitochondrial disorders (Longo et al., 2016; Waj-

ner and Amaral, 2016).

Metabolite changes indicative of mitochondrial dysfunction and altered metabolism

Metabolites of the TCA cycle consistently decreased across-season while monohydroxy (7-HOA, 8-HOA) and

dicarboxylic (sebacate, suberate, UND) FAs increased and were consistently implicated in PMe analyses. This

observation suggests a dysfunction in energy metabolism, specifically related to FA oxidation. Typically,

long- and medium-chain FAs are processed in peroxisomes, small organelles that oxidize FAs via a-, u-,

and b-oxidation (Lodhi and Semenkovich, 2014). u-oxidation replaces the methyl terminus with a hydroxy

group (producing a monohydroxy FA) which is then further oxidized into a carboxy group (dicarboxylic FA).

Once in dicarboxylic form, the FA can be further processed via b-oxidation in both the peroxisome and mito-

chondria (Bartlett and Eaton, 2004). Depending on FA length and oxidation location(s), different sets of en-

zymesmetabolize it into a smaller, functionalmetabolite, namely acetyl-CoA. Acetyl-CoA enters the TCA cycle

to produce energy (GTP) and energy-storing (NADH and FADH2) metabolites (Fernie et al., 2004). NADH and

FADH2 are used in the electron transport chain to produce ATP – the most fundamental energy source. Here,

increased levels of medium-chain monohydroxy and dicarboxylic FAs, and decreased levels of TCA metabo-

lites, suggest that these FAs cannot be further oxidized into acetyl-CoA for normal TCA cycle respiration (Fig-

ure 3). This is relevant in that increased serum levels of 7-HOA, 8-HOA, suberate, and sebacate are observed in

patients withmedium-chain acyl-CoAdehydrogenase deficiency (MCADD) – a geneticmitochondrial disorder

(Bodman et al., 2001; Lee et al., 2005; Merritt and Chang, 1993). Similar to our findings, another feature of this

disorder is increased serum levels of acyl-carnitine derivatives with 6, 8, and 10 carbons. These metabolites

were increased in our cohort, however with FDR-corrected q-values > 0.05, so a larger cohort is needed to

determine the validity of this observation (data not shown). Lastly, heptanoate, a monohydroxy FA, was

observed to decrease, rather than increase, across-season. Increased heptanoate, via metabolism of trihepta-

noin, has been reported as beneficial in the treatment of b-oxidation related metabolic disorders (Marin-Va-

lencia et al., 2013), suggesting that the observed decrease in heptanoate could be detrimental.

Taken together, the observed increase in medium-chain monohydroxy and dicarboxylic FAs, decrease in

heptanoate, and concurrent decrease in TCA metabolites suggest an impairment in b-oxidation, poten-

tially stemming from HAE-induced mitochondrial dysfunction, which has been reported in several TBI-

related studies (Fischer et al., 2016; González-Domı́nguez, 2016; Hiebert et al., 2015; Signoretti et al.,

2010; Vagnozzi et al., 1999).

Other across-season metabolic changes suggest energy-related dysfunction

2-Hydroxyglutarate (2-HG) increased from Pre to Post. 2-HG is dicarboxylic FA generated from a-ketoglu-

tarate (i.e., oxoglutaric acid), a component of the TCA cycle, via the mutated IDH gene (Ye et al., 2018).
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Figure 3. Summary of the observed metabolic disturbances

There were significant increases in medium-chain monohydroxy and dicarboxylic fatty acids (FAs) (suberate, sebacate,

UND, and 8-HOA) from Pre to Post. Increases in these FAs are associated with genetic disorders related to impaired

b-oxidation, which can result in an accumulation of medium-chain FAs that cannot be further oxidized into smaller,

functional, metabolites, such as acetyl-CoA. Acetyl-CoA is a critical input for the TCA cycle – a major source of energy-rich

molecules that are fed into further energy-producing processes (e.g., electron chain transport system). Here, TCA-related

metabolites (citrate, aconitate,a-KG, fumarate, and malate) all decreased, suggesting a problem with the initial step of

the cycle (i.e., lack of acetyl-CoA). Additionally, there were alterations in energy-rich molecules such as adenine,

adenosine, nicotinamide, and phosphate, suggesting a state of energy imbalance. Lastly, 2-HG increased. Regardless of

its role as a known oncometabolite, its increase suggests a state of oxidative stress. Together, it is suggested that there

are dysfunctional b-oxidative mitochondrial processes in this cohort of collegiate football athletes leading to subsequent

issues with energy production.
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2-HG has been implicated in tumor suppressor inactivation and oncogenic activation (Dang et al., 2009;

Intlekofer et al., 2015), and has been associated with oxidative stress and poorer outcomes following brain

injury (Latini et al., 2003; Magalhães et al., 2019). L-2-HG structurally resembles glutamate and thus may

affect neurotransmission (Farias et al., 2012). The observed increase in 2-HG is likely linked to oxidative

stress resulting from repetitive HAEs and may even alter neurotransmission and subsequent network con-

nectivity (Manning et al., 2017; Zhu et al., 2015).

A decrease in adenosine was also observed at Post. Adenosine is a potent vasodilator that increases rCBF,

thereby decreasing energy demands. It is also implicated as a robust neuroprotector and has been re-

ported to suppress ATP release (Laketa et al., 2015). Adenosine dysregulation has been reported following

TBI and is linked with numerous TBI-related pathologies and comorbidities (Lusardi, 2009). In particular,

severe TBI is associated with increased adenosine levels, which is hypothesized to play a neuroprotective

role in humans (Headrick et al., 1994) but is associated with a loss of neuroprotection in rats (Cui et al., 2013).

These and other findings suggest an interplay between protective effects of adenosine receptors, A1 and

A2A, and further research is required to elucidate time course effects of adenosine across the full spectrum

of TBI. Although we observed an overall decrease in adenosine when using nonparametric statistical tests

(i.e., median comparison), adenosine did increase overall when parametric tests were applied (e.g., t-test

which compares mean). This point can be observed in Figure S3 which depicts high levels of adenosine at

Post. This observation emphasizes the need for a larger sample size to truly understand how adenosine

levels are affected in these athletes.
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Another energy-related metabolite, phosphate, increased and may be associated with reduced ATP syn-

thesis, ATP depletion, and/or ATP hydrolysis. In cases of ischemia, mitochondria hydrolyzed ATP more

frequently (Classen et al., 1989) and ATP synthesis was impaired in animal models of brain injury (Pandya

et al., 2019). Impaired ATP synthesis may be related to depleted energy stores and a subsequent lack of

energy sources. Contrary to these observations, serum phosphate levels decreased in patients with severe

TBI (Porter et al., 2017), yet football athletes often experience repetitive subconcussive HAEs. More

research is required to elucidate the role of phosphate in the full TBI spectrum.

Lastly, all xanthine metabolites increased at Post suggesting either (a) an increase in caffeine consumption (Bo-

nati et al., 1982), (b) activationof xanthineoxidases (Solaroglu et al., 2005), or (c) a combinationof both (Signoretti

et al., 2010). Caffeine has various anti-inflammatory and neuroprotective effects in both animals and humans,

especially in relation to neurodegenerative disease and TBI (Kolahdouzan and Hamadeh, 2017). The timing of

caffeine administration may be critical; however, as was seen in a study where caffeine administered prior to

TBI was beneficial while caffeine administered after TBI was detrimental (Boison and Lusardi, 2012). Increased

caffeine consumption in this cohort could be the result of school-related stress and lack of sleep and/or compen-

sation for HAE-induced brain damage and metabolic dysfunction. Given the current data, it is not possible to

identify the exact reason(s) for the increased levels of xanthines and further research is required. However, it

should be noted that previous studies have reported caffeine consumption in contact athletes with the main

motive being regaining energy lost during exercise (Badaam, 2013).
Metabolites statistically mediate the relationship between neuroinflammatory miRNAs and

behavior

This study used what some call an ‘‘exact inference’’ framework (Ernst, 2004), based on integration of per-

mutation statistics with mediation analyses (PMe), allowing for amoderately sized cohort to be studied (N <

25). Using PMe, it was found that metabolomic measures were a required variable for the effect of miRNA

on behavior in all significant cases. This analysis confirmed the absence of confounds, such as miRNA levels

mediating the relationship between metabolite and behavior; in such contexts, others have argued that

mediation is statistically mechanistic (Shrout and Bolger, 2002) as opposed to purely associative (Spencer

et al., 2005). Per MacKinnon (MacKinnon et al., 2007), ‘‘mediating variables.transmit the effect of one var-

iable to another variable’’, indicating that the mediator lies in a statistically causal pathway between two

other variables (i.e., miRNA/metabolite/ behavior). The 14mediation effects observed were all greater

than 50%, indicating that metabolomicmeasures filled an important role carrying the effect of miRNA levels

to motor control. It is likely relevant that this relationship of neuroinflammatory miRNAs and behavioral per-

formance was carried by a set of metabolites involved in some aspect of energy metabolism, in particular

FA metabolism.

Previous studies have reported increased levels of neuroinflammatory miRNAs prior to contact play with

minimal change in miRNA levels across season (Chen et al., 2020; Papa et al., 2019). MiRNAs in this panel

have known roles in cancer progression (Che et al., 2019; Hsu et al., 2016; Huang et al., 2018; Kobayashi

et al., 2012; Kohram et al., 2018; Li et al., 2011, 2016; Ling et al., 2019; Lv et al., 2018; Mogilyansky and Rig-

outsos, 2013), inflammation and inflammatory diseases (Paraskevi et al., 2012; Reddycherla et al., 2015; Wu

et al., 2011; Zheng et al., 2015), and neurodegeneration (Basak et al., 2016; Denk et al., 2015; Jee et al.,

2012b; Khoo et al., 2012; Liu et al., 2017). These miRNAs have also been shown to target genes that

have neuroinflammatory functions and roles in diseases with neuroinflammatory pathophysiology (Cao

et al., 2017; Lisha Chang et al., 2020; Gao et al., 2019; Gayen et al., 2020; Hu et al., 2019; Jee et al.,

2012a; Jiang et al., 2018; Ma et al., 2014; Mao et al., 2019; Martinez and Peplow, 2017; Naqvi et al., 2016;

Navaderi et al., 2019; Peng and Ying, 2014; Shi et al., 2018; Sinha et al., 2012; Sujith et al., 2018; Thangaraj

et al., 2021; Wang et al., 2021; Xie et al., 2020; Yang et al., 2018; Yao et al., 2014; Zhao et al., 2017; Zhong

et al., 2021; Zhou et al., 2021). Post-hocmiRNA-gene network analyses further solidified the involvement of

these nine miRNAs in mitochondrial processes and neuroinflammation (see Tables S6–S8, Figures S6–S8).

It should also be noted that three of the miRNAs identified herein (miR-20a, miR-92a, and miR-30d) were

involved in mediation relationships with regional brain perfusion changes in the basal ganglia of the

same subjects, grounding the current findings in clear neurophysiological abnormalities in brain regions

that are important for motor control and spatial behavior (Chen et al., 2020). Behavioral changes alone

are rarely observed and difficult to replicate in studies of contact athletes without diagnosed concussion

(Bailes et al., 2013; Nauman et al., 2020).
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Figure 4. Shift in metabolism and its relationship to neuroinflammatory miRNAs and complex behavior

We observed changes indicative of mitochondrial distress as evidenced from both the accumulation of medium-chain

FAs and decreases in TCA-related metabolites. Mitochondrial dysfunction can lead to numerous physiological

disturbances, some of which were observed in the present study: 1) oxidative stress (i.e., increased levels of 2-HG), 2)

impairment in beta-oxidative processes (i.e., increased levels of medium-chain FAs), and 3) increasedmetabolic demands

(i.e., decreased TCA and energy-related metabolites). Together, these processes may be related to the observed

elevation in neuroinflammatory-related miRNA molecules (specifically miR-20a, miR-505, miR-151-5p, miR-30d, miR-92a,

and miR-195). In fact, these miRNAs were significantly correlated with the metabolites shown in Figure 3. In addition, the

metabolites were shown to mediate the relationship between elevated miRNA levels and VR-based motor control. This

complex relationship may explain why obvious behavioral changes in subconcussed athletes are not routinely observed,

but how repetitive, long-term exposure to HAEs, chronic elevation of neuroinflammatory miRNAs, and acute, but

deleterious changes in energy metabolites could result in behavioral disturbances later in life.
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At Pre, there were six significant mediations where metabolites (2-HG, 8-HOA, and UND) statistically medi-

ated the relationship between chronically elevated miRNAs and behavior. The fact that FAs consistently

mediated miRNA-motor control relationships suggests that dysfunctional b-oxidation may underlie subtle

alterations in behavior. Moreover, the fact that these relationships were observed prior to contact practice

suggests chronic metabolic dysregulation and neuroinflammation that may persist long after season

commencement (Figure 4).

Across-season, there were eight significant mediations. Again, the majority (6/8) of mediating metabolites

were FAs which have been implicated in dysfunctional mitochondrial b-oxidation by others (González-

Domı́nguez, 2016; Merritt et al., 2018; Wajner and Amaral, 2016; Wanders et al., 2011). Additionally, aden-

osine was observed in two mediation relationships. The observation of significant mediations using across-

season (D) measures indicated that small alterations in miRNAs, from an elevated Pre-season level (Papa

et al., 2019), affect motor control in a negative fashion via changes in metabolite levels.

The consistency of (1) metabolomic measures being mediators between miRNA and behavior and (2) the

observed metabolites relating to altered FA oxidation, suggests this pathway may be important for ex-

plaining how HAEs may diminish motor control, an indicator of neurological function. It should be noted

that the majority of mediations involved the Comp score; this is likely because Comp is the aggerated

form of the other three scores (Bal, RT, and SM), thereby increasing its reliability as compared to Bal,

RT, or SM alone. The metabolites identified in this study, and their relative changes, support the hypoth-

esis of metabolic dysregulation in these athletes, potentially related to dysfunctional mitochondria and

subsequent dysfunction in cellular respiration (i.e., TCA cycle and downstream energy-producing

processes). It should be noted that this type of multi-omic approach might generally work well in trans-

lational human and animal studies, particularly as there is no face validity issue of the studied human clin-

ical model.
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HAEs were related to changes in metabolites and miRNA

Two sets of findings were observed: (1) using standard linear regression, miRNAs, metabolites, and VR-

based motor control measures were related to accumulated HAE exposures over the football season

and (2) moderation analyses revealed that the interaction between HAEs and Pre-season metabolite levels

successfully (pF< 0.05, pb3<0:05) modeled Post-season metabolite levels; this may indicate that HAEs

played a critical role in metabolite change across-season. Results from standard regression analyses re-

vealed that all across-season relationships were positive, indicating that increased HAE exposure was

related to larger increases in neuroinflammatory miRNA levels and increased metabolite measures. Pre re-

sults indicate an opposite trend where higher extrapolated HAEs were related to relatively lower levels of

miRNA, raising the possibility that lower levels of neuroinflammatory-related miRNAs may be related to

more HAE exposures from the previous season of play. However, these results are purely explorative

because HAEs from the prior season were not recorded, and should only be considered for future hypoth-

esis testing (however, see (Alosco et al., 2017) for a study that extrapolates preseason measures to other

measures taken during the season).

Previous research, specifically in the neuroimaging field, has demonstrated the role head impacts play in

neurophysiological changes, such as altered connectivity (rs-fMRI and fMRI), decreased brain volumes

(T1-and T2-weighted MRI), neurochemical alterations (MRS), altered CBF (perfusion imaging), and axonal

injury (DTI) (Bernick et al., 2020; Chen et al., 2020; Nauman et al., 2020; Vagnozzi et al., 2010; Wang

et al., 2008). In this study, multi-omic blood biomarkers (metabolites and miRNAs) corresponded with

HAE exposure. Interestingly, no computational behavior (i.e., VR measures) was related to HAEs. This

absence of relationships may be due to inherent limitations of the sensors, the moderate sample size,

and/or the fact that HAEs were not recorded during competition – an unavoidable limitation as to not

disturb game preparations.
Limitations of the study

There are several limitations to this study, one being the absence of intermediate sample collection time

points between Pre and Post. Blood collections and VR tests were only conducted twice – once prior to con-

tact practice (Pre) and once directly following the end of the regular competitive season (Post). To observe

more transient changes in these metrics, or more complex dynamics in the structure of change, it would be

beneficial to collect data at more time points during and after the season. This study also lacked age-

matched, non-contact athlete controls with similar nutritional plans, body types, athletic regimens, and life-

style management programs to the studied cohort. However, individual baseline measures taken at Pre

served as appropriate comparison group for Post measures given these players were under strict nutri-

tional, workout, and lifestyle management programs at each collection time point. Given that participants

follow a strict dietary regimen before and during the season, data surrounding diet and energy demands

were not collected. However, this is an important domain for future research as past studies on athlete diets

have noted changes in fat composition, energy availability, and metabolic profiles (e.g. (Al-Khelaifi et al.,

2018; Binkley et al., 2015; Cole et al., 2005; Hinton et al., 2004; Kelly et al., 2020; Logue et al., 2017)), making

it important to tease apart metabolomic changes in response to diet, exercise, and head injury. A signifi-

cant caveat to this work is that it only involved male participants; future studies need to also incorporate

females and include more sophisticated metrics of sex steroid cycles.

The moderate sample size (N = 23) was also a considerable limitation, owing to the preliminary nature of these

findings. We did, however, applymultiplemethods to account for this, i.e., multiple comparisons correction and

permutation. Although we applied a multiple comparisons correction, there is always a possibility that Type I

error still exists given our moderate sample size. Future work with larger datasets is necessary. Further, we incor-

porated a rigorous permutation-based statistical approach to avoid the required assumptions regarding data

distributions in smaller samples. Permutation, unlike standard statistics, produces a true distribution, thus

increasing the overall power of the analysis. Permutation statistics only require one assumption as opposed

to the many that are required for standard parametric and non-parametric statistics; the violation of any of these

assumptions leads to higher false positives. Collection of many types of detailed data in humans can lead to

smaller samples, which is less likely to violate the central limit theorem if inference testing follows a permutation

framework, specifically of the data itself (Fisher, 1935). Permutation-based statistics, that permute the actual data

used inmediation, produce ameaningful distribution for exact inference (Ernst, 2004). The small sample size and

nonparametric natureof this data can also impact our observations–namely, that therewas anoverall decrease in
14 iScience 25, 103483, January 21, 2022
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adenosine when comparing median–but given a larger dataset, it is probable that a larger number of subjects

would exhibit high levels of adenosine at Post.

For this study, and others using mediation, it is important to acknowledge that there is a divergence in the

literature about using cross-sectional data, change measures, and temporal data with mediation (Cole and

Maxwell, 2003; Gollob and Reichardt, 1987; Kraemer et al., 2002), and both viewpoints have been published

extensively in peer-reviewed neuroscience and physiology journals. We followed a Pearl-MacKinnon view-

point (Lockhart et al., 2011; Mackinnon, 2008; MacKinnon et al., 2007, 2012; Pearl, 2009, 2012, 2014),

although the MacArthur viewpoint (Cole and Maxwell, 2003; Gollob and Reichardt, 1987; Kraemer et al.,

2002, 2008; Maxwell and Cole, 2007) is also important, and future work will incorporate the latter. Lastly,

this study used peripheral blood for metabolomic and miRNA quantification, and it could be argued

that they are not direct brain measures. This is a recognized limitation; however, many studies have shown

breakdown of the blood-brain-barrier in cases of repetitive mild TBI which could lead to leakage of larger

metabolites (namely, lipids) into peripheral circulation (Marchi et al., 2013; Sulhan et al., 2020; Weissberg

et al., 2014). Further work is needed to translate these findings with animal models where metabolites/

miRNA can be collected from specific tissues.
Conclusions

This preliminary study describes significant relationships between energy-related metabolites, neuroin-

flammatory miRNAs, and VR-based motor control in collegiate athletes Pre and across-season. The major-

ity of mediation findings involved fatty acids (2-HG, 8-HOA, UND, sebacate, suberate, and heptanoate),

which increased across-season. In parallel, TCA metabolites significantly decreased across-season and

HAEs showed both correlative relationships with metabolite and miRNA levels across-season, as well as

moderating relationships where the interaction between HAEs and Pre metabolite levels directionally

modeled Post metabolite levels – indicating HAEs were critical in the observed relationships. Given the

context of elevated neuroinflammatory miRNAs and mitochondrial dysfunction, these findings suggest a

state of chronic HAE-induced neuroinflammation. The consistent mediation findings suggest a model

where metabolites sit in the statistically causal pathway between transcriptome and behavior. Integrative

permutation-based mediation approaches used in this study can be applied to other integrative studies of

human disease and compliments translational in vitro and in vivo research (Nestler and Hyman, 2010).

Together, these findings (1) suggest that metabolic (e.g., 2-HG) and miRNA (e.g., miR-30d, miR-505,

miR-151-5p, etc.) disturbances discovered in cancer studies could be a primary focus for head injury

research, (2) highlight potential biomarkers for longitudinal assessment of head injury, or biomarkers

that implicate head injury in the absence of clinically diagnosable symptoms, and (3) point to mitochondrial

dysfunction as a central organizing principle for repetitive head injury in humans.
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KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human venous blood Peripheral human blood obtained by

Slobounov and maintained by Papa

N/A

Critical commercial assays

TurboVap Zymark N/A

ACUITY UPLC Waters N/A

Q-Exactive high-resolution/accurate mass spectrometer Thermo Scientific N/A

Electrospray ionization (HESI-II) source Thermo Scientific N/A

Orbitrap mass analyzer Thermo Scientific N/A

C18 column; UPLC BEH C18-2.1 3 100mm, 1.7 mm Waters N/A

HILIC column, UPLX BEH Amide 2.1 3 100m, 1.7 mm Waters N/A

Serum/plasma isolation kit Qiagen Inc. N/A

Droplet digital PCR (ddPCR) Bio-Rad Inc. N/A

Small RNA assay

miRNA TaqMan assay Thermo Scientific N/A

Droplet generator Bio-Rad Inc. N/A

Droplet reader Bio-Rad Inc. N/A

Bioanalyzer assay

BodiTrak sensor system The Head Health Network N/A

MicroLab STAR system Hamilton Company N/A

3D system, head-mounted accelerometer Head Rehab LLC N/A

GenoGrinder2000 Glen Mills N/A

Deposited data

Vike_iScience_multiomics_dataset Mendeley Data Mendeley Data: https://doi.org/10.17632/5tygm8sn24.1

Software and algorithms

Permutation-based mediation analysis code Available as Supplemental Material N/A

STATA StataCorp https://download.stata.com/download/

R R Core Team https://www.R-project.org/

VR software HeadRehab LLC N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Hans Breiter (h-breiter@northwestern.edu).

Materials availability

� This study did not generate new unique reagents.

Data and code availability

d De-identified human data used in statistical analyses have been deposited at Mendeley Data and are

publicly available as of the date of publication. DOIs are listed in the key resources table.
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d All original code is available in the paper’s supplemental information.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human

Twenty-three male collegiate American football athletes (mean age = 21 G 2 years) participated in this

study. The selected athletes were all seasoned starters who experience, and have experienced, a high fre-

quency of HAEs throughout the athletic season (i.e., 16/23 athletes were non-speed linemen who sustain a

high volume of impacts during practices and games) (Lee et al., 2020; Lehman, 2013). Written informed con-

sent was obtained from each participant in accordance with the Pennsylvania State University Institutional

Review Board and in alignment with the Declaration of Helsinki. Athletes were excluded if they had any

known neurological disorder, any lower body injury that affected balance, or if they were unable to partic-

ipate in the football season.
METHOD DETAILS

Data collection

All data were collected between July 2015 and December 2015 at Pennsylvania State University. Demo-

graphic information was obtained from each participant and confirmed by a team physician (Table S4).

Blood samples were taken prior to any contact practices (Pre) and within one week of the last regular season

game (Post). Our scientific construct specifically used the same participants before and after a season of

play who were under the same nutritional program, workout program, and lifestyle management program

at both experimental time points; selecting matched controls was infeasible given players’ strict regimens.

Pre measures thus served as an appropriate comparison group for Post measurements. None of the ath-

letes had a diagnosed concussion in the nine months preceding Pre data collection. Only one participant

was taken out of seasonal play due to a significant peripheral injury that occurred early on in the season;

they were retained in the study cohort. Blood samples were prepared and sent out for metabolite and

miRNA quantification. Concurrent with blood collection timepoints, athletes also completed virtual reality

(VR) testing.
Virtual reality (VR) testing of motor control

VR testing was first described and validated by (Slobounov et al., 2006) and Teel et al. (2016), Teel and Slo-

bounov, (2015). The software used to display the virtual reality animations was developed and provided by

HeadRehab, LLC (Chicago, IL). The HeadRehab Performance Test Software allows for the use of a range of

interactive devices and depending on the system used, a variety of options are viable. These different sys-

tems have all been validated against one another. Overall, the subject will interact with the HeadRehab

SideLine Performance Test Software modules via interactive devices or motion tracking devices. This tech-

nology was used to create ‘‘moving room’’ experiments with two conditions: (1) the virtual room couldmove

as a whole structure or (2) separate components of the room couldmove in isolation (e.g., only the front wall

moves).

In this study, a 3DTV system was used. A laptop was connected to the TV with an HDMI cord and the Side-

line v8.1 test TV program was used. Display resolution was set at 1920 x 1080 (high definition, 1080p) with a

16:9 aspect ratio for use with the 3DTV system. Graphics without Stereo Effect were also used. A VCube

head-tracking device and MoBar interactive device (in this case an Xbox controller) were used for interac-

tion with the 3DTV. The VCube uses acceleration and translation to track the subject’s headmovement. The

MoBar allows the subject to navigate and interact with the software. The program has a subprogram built in

(Start Device Manager) that is required to be run to ensure that the devices are connected and functioning

properly.

Once the athlete was properly set up, they underwent three virtual reality tasks: 1) balance (Bal), 2) reaction

time (RT), and 3) spatial memory (SM). The scores from each test were normalized and combined to pro-

duce a comprehensive score (Comp). These tests were based off initial findings from Dr. Alexander Luria

and have been validated to detect functional abnormalities following mild traumatic brain injury (Luria,

1973; Slobounov et al., 2006).
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The Bal module tested an athlete’s ability to maintain posture with a changing virtual environment (re-

ported and validated by Teel and Slobounov, (2015)). Each visual scene was 30 s in duration and athletes

were instructed to hold a tandem Romberg position for each trial (Romberg, 1853). For the first baseline

trial, athletes were instructed to remain as still as possible while there were no changes to the visual field.

The next six trials consisted of changes to the virtual environment in one of three directions (yaw, pitch, or

roll) via twomethods: (1) whole-room forward-backward oscillations with 18 cm displacement at 0.3 Hz or (2)

whole-room lateral rolls at 10–30 degrees and 0.3 Hz. Deviances from baseline in the yaw, pitch, and roll

directions, were recorded and interpolated (scale 0–10) such that a higher score indicated better task per-

formance (10 being the best).

The RT module tested the time it took for each athlete to adjust their posture in the direction of an altered

virtual environment. Athletes stood shoulder-width apart with their hands on their hips and were instructed

to move their body with the direction of the changing virtual environment (along the anterior-posterior axis

at 0.2 Hz). Randomly, the room would shift to shifts in the medial-lateral axis. When this occurred, athletes

were asked to bend at the waist in the same direction as the virtual environment (i.e., bend left or right).

Both the time and direction of the room shifts were randomized. Response times, in milliseconds, to the

abrupt changes in the virtual environment were retrieved using accelerometers and results were reported

as latency to shift the body. Five total trials were completed, with the first trial being a practice trial and the

remaining four trials being used in the score calculation. The measured RT and errors in anticipation were

calculated, interpolated, and concerted into a whole-body RT score ranging from 0 to 10. Higher scores

were indicative of better performance.

The SM (virtual corridor) module tested an athlete’s ability to recall a virtual pathway. Athletes were shown a

randomized virtual pathway (to avoid practice effect, which in fact was documented and published in Slo-

bounov & Sebastianelli (Slobounov et al., 2014) with multiple turns leading to a door, followed by a return

trip. Then, athletes were asked to repeat the pathway from memory using the remote. It should be noted

that athletes were allowed to practice using the remote prior to any trials. If the athlete navigated the path

correctly, testing was finished. If the athlete navigated the path incorrectly, the computer would replay the

desired route and the athlete was given three total chances to correctly navigate. Outcomes were reported

as (1) the average time of task completion and (2) the number of errors made. A score between 0 and 10 (10

being the best) was calculated based on the average time a participant stayed on the correct path. For each

error made, a 3.33-point reduction was applied. If the athlete was unsuccessful after three attempts, their

score was zero.

The Comp score was calculated by combining the three module scores (Bal, RT, and SM) into a ten-point

scale (0 = worst, 10 = best).

Serum extraction

Five mL of venous blood were collected from each athlete at Pre and Post. Samples were placed in a serum

separator tube, allowed to clot at room temperature, and then centrifuged. Serumwas extracted from each

tube and pipetted into bar-coded aliquot tubes. Serum samples were stored at �70�C until they were

transported to 1) a central laboratory for blindedmiRNA batch analysis (Papa et al., 2019) and 2) Metabolon

(Morrisville, NC, USA) for blinded metabolite quantification.

Metabolite quantification

Serum was sent to Metabolon (Morrisville, NC, USA) for metabolite quantification, following well-validated

and established procedures. Upon arrival, samples were assigned a unique identifier via an automated lab-

oratory system and stored at �80�C. Samples were prepared for subsequent analyses using an automated

MicroLab STAR� system (Hamilton Company, Reno, NV, USA). Proteins were precipitated out of each sam-

ple using methanol and a shaker (Glen Mills GenoGrinder2000), and centrifuged. The resulting extract was

then divided into five fractions for various analyses: 1) Two fractions for analysis by two separate reverse

phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), 2) one for analysis

by RP/UPLC-MS/MS with negative ion mode ESI, 3) one for analysis by HILIC/UPLC-MS/MS with negative

ion mode ESI, and 4) one reserved for backup. To remove organic solvent, samples were briefly placed on a

TurboVap� (Zymark); samples were then stored under nitrogen prior to analyses. Serum metabolites

were quantified using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy

(UPLC-MS/MS). All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive high
24 iScience 25, 103483, January 21, 2022
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resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source

and Orbitrap mass analyzer operated at 35,000 mass resolution. The sample extract was dried and recon-

stituted in solvents compatible to each of the listed analyses. Each reconstitution solvent contained a series

of standards at fixed concentrations to ensure injection and chromatographic consistency. One aliquot was

analyzed using acidic positive ion conditions, chromatographically optimized for more hydrophilic com-

pounds. In this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1 3 100 mm, 1.7 mm) using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and

0.1% formic acid (FA). Another aliquot was also analyzed using acidic positive ion conditions; however, it

was chromatographically optimized for more hydrophobic compounds. In this method, the extract was

gradient eluted from the same afore mentioned C18 column using methanol, acetonitrile, water, 0.05%

PFPA and 0.01% FA and was operated at an overall higher organic content. Another aliquot was analyzed

using basic negative ion optimized conditions using a separate dedicated C18 column. The basic extracts

were gradient eluted from the column using methanol and water, however with 6.5mM Ammonium Bicar-

bonate at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a HILIC col-

umn (Waters UPLC BEH Amide 2.1 3 150 mm, 1.7 mm) using a gradient consisting of water and acetonitrile

with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-dependent

MSn scans using dynamic exclusion. The scan range varied slighted between methods but covered 70–

1000 m/z.

Peak analysis was conducted using a bioinformatics system which consisted of four major components: 1)

the Laboratory Information Management System (LIMS - a system used to automate sample accession and

preparation, instrumental analysis and reporting, and data analysis), 2) the data extraction and peak-iden-

tification software, 3) data processing tools for quality control and compound identification, and 4) a collec-

tion of information interpretation and visualization tools.

Raw data were extracted, peak-identified, and QC processed using Metabolon’s hardware and software.

Compounds were identified by comparison to library entries of purified standards. Biochemical identifi-

cations were based on three criteria: 1) retention index (RI) within a narrow RI window of the proposed

identification, 2) accurate mass match to the library (G10 ppm), and 3) the MS/MS forward and reverse

scores between the experimental data and authentic standards. The MS/MS scores were based on a com-

parison of the ions present in the experimental spectrum to the ions present in the library spectrum.

While there may have be similarities between these molecules based on one of these factors, the use

of all three data points was utilized to distinguish and differentiate more than 3,300 registered

biochemicals.

Peaks were quantified using area-under-the-curve. A data normalization step was performed to correct

variation resulting from instrument inter-day tuning differences (i.e., variation between pre and postseason

analyses). Specifically, each compound was corrected in run-day blocks by registering themedians to equal

one (1.00) and normalizing each data point proportionately. Data were then log-transformed.

Metabolites were included in statistical analyses if 1) they significantly changed from Pre to Post following

an FDR correction (q% 0.05), 2) they are involved in energetics, inflammation, or exogenous consumption

(see Introduction) (Abdul-Muneer et al., 2015; Lozano et al., 2015; Rodriguez-Rodriguez et al., 2014), and 3)

they appeared in the random forest importance plot (as described below in Random forest analysis).
MiRNA quantification

Serum was sent out for miRNA quantification. Nine miRNAs were selected based on previous findings by

Papa and colleagues: miR-20a, miR-505, miR-195, miR-30d, miR-92a, miR-93p, miR-3623p, miR-486, and

miR-151-5p (Papa et al., 2019). The miRNA data described in this study were first analyzed by Papa et al.

(2019) (Papa et al., 2019). Serum samples collected at Pre and Post were used to isolate and quantify levels

of RNA. All samples were given a unique identifier and experimenters were blinded to the conditions (Pre

vs. Post). 100 mL of serum was aliquoted, and RNA was isolated using a serum/plasma isolation kit (Qiagen

Inc., Venlo, Netherlands) as per the manufacturer’s protocol. RNA was eluted in 20 mL of DNAse/RNAse-

free water and stored at �80
�
C until further use.

Droplet digital PCR (ddPCR; Bio-Rad Inc., Hercules, CA, USA) was then used to quantify absolute levels of

the ninemiRNA (Papa et al., 2019). Prior to ddPCR analysis, RNAwas checked for quality using a bioanalyzer
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assay with a small RNA assay. After quality confirmation, 10 ng of RNA was reverse transcribed using spe-

cific miRNA TaqMan assays as per themanufacturer’s protocol (Thermo Fisher Scientific Inc., Waltham, MA,

USA) in a 15 mL total reaction volume; 5 mL of reverse transcribed product was used to set up the real-time

PCR reaction using TaqMan assays, and 20 mL of the final real-time PCR reaction was mixed with 70 mL of

droplet oil in a droplet generator (Bio-Rad Inc., Hercules, CA, USA). After droplet formation, the PCR reac-

tion was performed as per the recommended thermal cycling conditions. The final PCR product was

analyzed using a droplet reader (Bio-Rad Inc., Hercules, CA, USA). Total positive and negative droplets

were quantified, and from this, the concentration of miRNA/mL of the PCR reaction was reported. All reac-

tions were performed in duplicate.

Head acceleration event (HAE) monitoring

HAEs weremonitored at all contact practice sessions (max = 53) using the BodiTrak sensor system from The

Head Health Network (Slobounov et al., 2017). Sensors were individually mounted on the inner surface, be-

tween the shell and padding, of each active player’s helmet prior to contact practice beginning. To avoid

game disruption, no games were monitored; however, previous studies have revealed that most HAEs

accumulate from practice sessions, not games (Lee et al., 2020). Sensors were monitored throughout the

season for integrity and functionality and outputs included peak translational acceleration (PTA; G-units)

and impact location. HAEs were quantified as 1) cumulative hits >25G to <80G (25G) and >80G (80G)

(cHAE25G and cHAE80G; Equations 1 and 2) cumulative hits exceeding 25G and 80G normalized to the total

number of sessions per player (aHAE25G and aHAE80G; Equation 2). The G-unit thresholds (Th) were

selected based on previous reports of impacts related to brain health and injury (McCuen et al., 2015).

cHAETh;i =
XN
k = 1

uðPTAk;i �ThÞ (Equation 1)

�

where uðxÞ = 1 if x>0

0 if x %0

cHAE

aHAETh;i =

Th;i

sessionsi
(Equation 2)

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in STATA (StataCorp, 2021) apart from the random forest analysis

which was performed by Metabolon (Durham, NC, USA) and the permutation-based mediation analyses

and moderation analyses which were performed in R (R Core Team, 2021). Analyses were performed

with data from all 23 collegiate football athletes. The sample size was based on 1) the limited availability

of participants and 2) a power analysis using expected mean metabolite values at Pre and Post which

yielded a power of 86% (significance level = 0.05, sample size = 23). For analyses involving miRNA, some

of the serum samples did not have a sufficient quantity for miRNA quantification, thus decreasing the num-

ber of samples from 23 to between 20 and 22 for Pre analyses and 18–20 for across-season analyses, de-

pending on the serum availability of a given miRNA. For Pre-season analyses: n = 20 for miR-20a; n = 21

for miR-505; n = 23 for miR-363-3p, miR-30d, miR-92a, miR-486, miR-195, miR-9-3p, miR-151-5p. For

across-season analyses: n = 19 for miR-20a; n = 20 for miR-505; n = 20 for miR-363-3p, miR-30d, miR-92a,

miR-486, miR-195, miR-9-3p, miR-151-5p. There were no other missing data.

Random forest analysis

Random forest was used to assess the importance ranking of biochemicals (i.e., howwell a givenmetabolite

can distinguish Pre from Post) (Breiman, 2001). For a given decision tree, a random subset of the data, with

identifying true class information, was selected to build the tree (‘‘bootstrap sample’’ or ‘‘training set’’). The

remaining data, the ‘‘out-of-bag’’ (OOB) variables, were then passed down the tree to obtain a class pre-

diction for each sample. This process was repeated thousands of times to produce the forest. The final clas-

sification of each sample was determined by computing the class prediction frequency for the OOB vari-

ables over the whole forest. When the full forest was grown, the class predictions were compared to the

true classes, generating the ‘‘OOB error rate’’ as a measure of prediction accuracy. Thus, the prediction

accuracy was an unbiased estimate of how well a sample class was predicted in a new dataset. To deter-

mine which metabolites made the largest contribution to the classification, a variable importance measure,

Mean Decrease Accuracy (MDA), was computed. MDA was determined by randomly permuting a variable,

running the observed values through the trees, and then reassessing the prediction accuracy. If a variable

was not important, the procedure produced little change in the accuracy of the class prediction (permuting
26 iScience 25, 103483, January 21, 2022
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random noise gave random noise). By contrast, if a variable was important to the classification, the predic-

tion accuracy dropped; this was recorded as the MDA. The top 20 metabolites were reported.
Wilcoxon signed-rank tests

Data were first tested for normality and equal variances using the Shapiro-Wilks test (Shapiro and Wilks,

1965) and Bartlett’s test (Bartlett, 1937), respectively. Because (1) data were not normally distributed (Sha-

piro-Wilks test; pR 0.05) and/or data did not have equal variances (Bartlett’s test; pR 0.05) and (2) data

were paired by athlete across-season, a Wilcoxon signed-rank test (Wilcoxon, 1945) was utilized to assess

across-season changes. Changes were analyzed at a significance level of 0.05. In total, there were four VR

scores, nine miRNA, and 1300+ metabolites. Metabolites were further selected based on previously

described criteria (seeMetabolite quantification). If p-value < 0.05, metabolites were then grouped based

on super pathway and FDR-corrected using the Benjamini-Hochberg (Benjamini and Hochberg, 1995)

method for multiple comparisons (Table 1). Changes were considered significant if q-value % 0.05.
Linear regression analysis

Linear regressions were conducted to assess significant relations between VR scores and miRNAs, miRNAs

and metabolites, and VR scores and metabolites, where VR score (i.e., motor control) was always the

dependent variable. When regressing miRNA and metabolite, metabolite was designated as the depen-

dent variable; this decision was based on previous findings wheremiRNA levels were elevated in this cohort

at Pre when compared to controls (Papa et al., 2019). After each initial regression analysis, Cook’s distance

was calculated to reveal outliers which drastically influenced the regression (i.e., large shift in b) (Cook,

1977). Outliers were removed if Cook’s distance >4/N and regressions were re-run (Altman and Krzywinski,

2016). For Cook’s distance assessments, the decision of which variable was dependent variable and which

one was independent variable was critical, as this would influence the resultant outliers; we thus list the

sample size (N) for each mediation (see following section) and the number of outliers removed in the sup-

plemental tables. Regressions were run for both Pre and across-season (D=Post-Pre) measures and were

considered significant if p-value< 0.05, and standardized beta coefficients (Std. b) and adjusted R2 values

(R2
adj:) were also reported.
Permutation-based mediation analysis

Based on results from the linear regression analyses, data were prepared for mediation analysis by first as-

sessing three-way relationships. To be included in mediation analysis, all individual paths must have met

significance (p-value< 0.05) to form a three-way relationship. Paths were as follows: A) miRNA / metab-

olite, B) metabolite / VR score, and C) miRNA / VR score. It should be noted that subjects had been

in a static regimen for workouts, absence of impact, and diet for the three months before Pre-season

data collection. We thus considered the assumption of stationarity to be plausible for Pre-season media-

tion testing (i.e., the causal structure among variables is not changing over time), and we followed the guid-

ance of MacKinnon (2008) when using difference measures (Mackinnon, 2008). Cook’s outliers were

removed across all regressions to achieve the same set of athletes, and regressions were re-run with com-

mon athletes. Mediation was utilized to clarify the causal relationship between the independent variable (X)

and dependent variable (Y) with the inclusion of a third mediator variable (M). The mediation model pro-

poses that instead of a direct causal relationship between X and Y, the X influencesM, which then influences

Y. Beta coefficients and their standard error (s) terms from the following linear regression equations,

following the four step process of Baron and Kenny (1986) (Baron and Kenny, 1986; Kenny, 2021), were

used to calculate Sobel p-values and mediation effect percentages (Teff):

Step 1 : Y = g1 + cðXÞ+ ε1

Step 2 : M = g + aðXÞ+ ε
2 2
0
Step 3 : Y = g3 + c ðXÞ+ bðMÞ+ ε3

Step 4: Sobel’s test was then used to test if c0 was significantly lower than c using the following equation:

Sobel z� score=
c � c 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2s2b + a2s2a

q =
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2s2b + a2s2a

q (Equation 3)

Using a standard 2-tail z-score table, the Sobel p-value was determined from the Sobel z-score and the

mediation effect percentage (Teff) was calculated using the following equation:
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Teff = 100 �
h
1� c 0

c

i
(Equation 4)

Directedmediation analysis was performed with the VR score always acting as the dependent variable (Y); this

a priori hypothesis has been observed in previous studies (Chen et al., 2020). Secondly, for the primary medi-

ation analyses, miRNA was always the independent variable (X) and metabolite was always the mediator (M):

VR score = g1 + cðmiRNAÞ+ ε1 (Equation 5)

VR score = g + c0ðmiRNAÞ+ bðmetaboliteÞ+ ε (Equation 6)
3 3

The selection for X was, in part, based off work by Papa and colleagues where miRNA levels were observed

to be elevated in collegiate football athletes, compared to controls, at both Pre and Post (Papa et al., 2019).

Therefore, metabolites, which can fluctuate dynamically and are synthesized downstream of miRNA pro-

cesses, were hypothesized to mediate the relationship between elevated miRNAs and VR performance.

For the secondary mediation analyses, VR score was Y, miRNA was M, and metabolite was X:

VR score = g1 + cðmetaboliteÞ+ ε1 (Equation 7)

VR score = g + c0ðmetaboliteÞ+ bðmiRNAÞ+ ε (Equation 8)
3 3

The measurement matrices Xt ; Yt ; Mt defined below schematize the variables used: miRNAs, VR scores,

and metabolites respectively.

Xt =

2
4 xt;1;1
«
xt;1;N

.
xt;P;1
«
xt;P;N

3
5; Yt =

2
4 yt;1;1
«
yt;1;N

.
yt;Q;1

«
yt;Q;N

3
5; Mt =

2
4mt;1;1

«
mt;1;N

.
mt;R;1

«
mt;R;N

3
5 (Equation 9)

where P is the total number of variables in matrix Xt (i.e., the total number of miRNAs) and Q and R are the

total number of variables for matrices Yt ði.e., the total number of VR scores) and Mt i.e., (the total number

of metabolites) respectively. N denotes the number of participants and matrices were measured at two

time points with t = 1 representing Pre and t = 2 representing Post measurements.

Across-season measures for miRNAs, VR scores, and metabolites were calculated as

DX = X2 � X1 (Equation 10)

DY = Y � Y (Equation 11)
2 1

DM = M �M (Equation 12)
2 1

Permutation approaches do not require (i) random selection of samples, (ii) sample independence, (iii)

Gaussian distributions, (iv) sample sizes large enough for the central limit theorem to work, or (v) similar

variance in samples being compared. Permutation methods only require the assumption that the two sam-

ples being compared are interchangeable when setting up the null hypothesis (Fisher, 1935). Permutation

tests re-sample observations from the original data multiple times to build empirical estimates of the null

distribution for the test statistic being studied (Camargo et al., 2008). Permutation-based tests are espe-

cially well-suited for studies with small-to-moderate sample sizes as they estimate the statistical signifi-

cance directly from the data being analyzed rather than making assumptions about the underlying distri-

bution. First, the test statistic was obtained from the original dataset, then the data were randomly

permuted multiple (S) times and the test statistic was computed on each permutated dataset. The statis-

tical significance was computed by counting the number of times the statistic value obtained in the original

dataset was more extreme than the statistic value obtained from the permuted datasets (K), and then

dividing that value by the number of random permutations (K/S) (Camargo et al., 2008).

For this study, permutation-based mediation analysis was performed for only variables that formed three-

way relationships following the steps listed below:

1. The non-permuted data variables Dxi ;Dyj ;Dmk were assigned as independent, dependent, and

mediator variables, respectively. Linear regressions Dxi/Dyj , Dxi/Dmk , and Dmk/Dyj were run

to obtain Cook’s outliers from each regression. All outliers indicated by the three regressions

were removed to obtain a common set of participants.

2. A four-step process for mediation analysis (Baron and Kenny, 1986; Kenny, 2021) was run on non-per-

mutated data variables with all outliers removed to obtain the reference Sobel z-score (z0Þ. (For Pre
analysis, x1;i ; y1;j ;m1;k were used to obtain the reference Sobel z-score (z0)).
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3. Data permutation: values were randomly sampled without replacement from x1;i and x2;i to assign to

x01;i and x02;i . (For Pre analysis, values from x1;i were shuffled to get x01;i .)

4. Across-season measures were computed from the permuted dataset Dx0i = x02;i � x01;i . (Note that for

Pre analysis, the difference was not computed.)

5. Similarly, Dy 0j and Dm0
k were computed. (For Pre analysis, y 01;j ,m

0
1;k were computed by randomly shuf-

fling values in y1;j ;m1;k .)

6. Mediation analysis following steps 1 through 2, as above, was performed on the permuted dataset

Dx0i , Dy
0
j , Dm

0
k and the test statistic (z0s) was obtained. (For Pre analysis, mediation was performed on

the permuted dataset x01;i , y
0
1;j , m

0
1;k and z0s was obtained.)

7. The counter variable K was incremented by one if the absolute value of z0 was greater than the ab-

solute value of z0s:

8. Steps 2–6 were repeated: s= 1; 2; /;S times. Here, S = 100; 000.

9. Permutation-based Sobel p-value (pperm
Sobel) was calculated as the proportion of z0s values that were as

extreme or more extreme than z0 ði.e., K=S Þ:

Primary mediation results were considered significant if p-values associated with terms a, b, and c (terms

derived from unpermuted data) were <0.1; and pperm
Sobel< 0.05, Teff was >50%, and Teff for the secondary medi-

ation was <30%.

Mediation was also utilized to assess if HAEs carried/mediated the relationship between Pre and Post

metabolite levels.

The codes used to conduct permutation-based mediation is available as a text file in Data S1.
Moderation analysis for metabolites and HAE

Statistical moderation was used to assess whether HAEs were and important factor to address the signif-

icant change in metabolite level across-season. Moderation proposes that the strength and direction of the

relationship between X and Y is controlled by the moderator variable (Mo). Moderation is characterized by

the interaction term between X and Mo using a linear regression equation:

Y = b0 + b1X + b2Mo+ b3ðX �MoÞ+ ε (Equation 13)

Moderation is significant if pb3%0:05 and pF%0:05, where pb3%0:05 indicates whether b3 is significantly

different than zero using a t-test and pF is the p-value associated with the overall F-test for the regression

equation and indicates a significant linear relationship. pb3%0:05 indicates a significant interaction be-

tween X and Mo and pF%0:05 indicates that the interaction term of X*Mo directionally models Y. Here,

metabolite level at Pre was X, HAE was the Mo, and metabolite level at Post was Y. A Bonferroni correction

was applied by dividing 0.05 (a) by five (the number of HAEmeasures tested); this correction was applied to

pF to protect for the overall effect.
Post-hoc miRNA-gene network analysis

To enhance the interpretability of the results, post-hocmiRNA-gene network analyses were conducted, us-

ing miRNet (Le Chang et al., 2020), to investigate relationships between the miRNAs of interest and genes

implicated in mitochondrial processes (fatty acid b oxidation, the TCA cycle, the electron transport chain

(ETC), oxidative phosphorylation, general aerobic respiration) and neuroinflammation (Alston et al.,

2017; Bult et al., 2019; Houten et al., 2016; Stelzer et al., 2016; Wanders et al., 2010). Genes of interest

were selected using the Mouse Genome Database (Bult et al., 2019). Analyses were conducted selecting

H. Sapiens as the species of interest and selecting either brain tissue as the tissue of interest, or by not spec-

ifying a tissue of interest. Network analyses were conducted separately for genes involved in mitochondrial

processes and those involved in neuroinflammation.
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