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Abstract

5-Fluorouracil (5-FU) is a commonly used drug for the treatment of malignant cancers. However, approximately 80% of
patients undergoing 5-FU treatment suffer from gastrointestinal mucositis. The aim of this report was to identify the drug
target for the 5-FU-induced intestinal mucositis. 5-FU-induced intestinal mucositis was established by intraperitoneally
administering mice with 100 mg/kg 5-FU. Network analysis of gene expression profile and bioluminescent imaging were
applied to identify the critical molecule associated with 5-FU-induced mucositis. Our data showed that 5-FU induced
inflammation in the small intestine, characterized by the increased intestinal wall thickness and crypt length, the decreased
villus height, and the increased myeloperoxidase activity in tissues and proinflammatory cytokine production in sera.
Network analysis of 5-FU-affected genes by transcriptomic tool showed that the expression of genes was regulated by
nuclear factor-kB (NF-kB), and NF-kB was the central molecule in the 5-FU-regulated biological network. NF-kB activity was
activated by 5-FU in the intestine, which was judged by in vivo bioluminescence imaging and immunohistochemical
staining. However, 5-aminosalicylic acid (5-ASA) inhibited 5-FU-induced NF-kB activation and proinflammatory cytokine
production. Moreover, 5-FU-induced histological changes were improved by 5-ASA. In conclusion, our findings suggested
that NF-kB was the critical molecule associated with the pathogenesis of 5-FU-induced mucositis, and inhibition of NF-kB
activity ameliorated the mucosal damage caused by 5-FU.
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Introduction

5-Fluorouracil (5-FU) is the most commonly used chemotherapy

drug in the clinical oncologic practice. It is widely used for the

treatment of various cancers, including gastrointestinal cancer,

breast cancer, and head and neck cancer [1,2]. Clinical evidence

from patients undergoing 5-FU therapy indicates that personal

response to 5-FU is different. Some people display slight side

effects, while others suffer from severe adverse effects that lead to

the discontinuance of cancer therapy. The commonly side effects

of 5-FU include myelosuppression, dermatitis, cardiac toxicity,

diarrhea, and mucositis [1,3]. Among these adverse effects,

gastrointestinal mucositis is a major complication that occurs in

approximately 80% of patients receiving 5-FU and results in

abdominal bloating as well as vomiting and diarrhea [4].

Mucositis usually appears along the entire gastrointestinal tract

from mouth to anus and causes general debility. Mucositis of the

intestine is characterized by increased crypt apoptosis and villus

atrophy, leaving the mucosal tissue open to ulceration and

infection [5–7]. Several factors or genes contributing to the 5-

FU-induced mucositis have been studied. For examples, increased

apoptosis and decreased cellularity by 5-FU cause the histological

change in the intestine [8]. The formation of reactive oxygen

species (ROS) and the production of proinflammatory cytokines,

such as interleukin-1b (IL-1b), IL-6 and tumor necrosis factor-a
(TNF-a), lead to the mucosal damage [9–11]. Additionally, the

production of platelet-activating factor (PAF) participates in the

pathogenesis of mucositis [12]. Although several genes have been

suggested to be involved in the 5-FU-induced intestinal mucositis,

the key molecules, especially the upstream transcription factors

that regulate the downstream genes associated with the pathogen-

esis of mucositis are still uncertain. Moreover, better compounds

targeting to the mechanism of mucosal injury remain to be

developed for the treatment of mucositis.

Nuclear factor-kB (NF-kB) is an inducible transcription factor

that consists of heterodimers of RelA (p65), c-Rel, RelB, p50/NF-
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kB1, and p52/NF-kB2. NF-kB is a central coordinator of innate

and adaptive immune responses. It is also involved in the

regulation of inflammatory cytokine production and inflammation

[13,14]. When cells are exposed to the inflammatory and stress

stimulators, NF-kB activates the downstream genes, including

cytokine, cytokine receptor and cyclooxygenase genes, resulting in

the inflammatory process [15,16]. Accordingly, controlling NF-kB

activation may be a potent strategy for the treatment of inflammation.

In this study, we analyzed the mechanism of 5-FU-induced

intestinal damage by transcriptomic analysis and bioluminescent

imaging. Our findings demonstrated that NF-kB was the likely key

molecule involved in the 5-FU-induced mucositis and inhibition of

NF-kB activity by 5-aminosalicylic acid (5-ASA) improved the

mucosal damage caused by 5-FU.

Materials and Methods

Animal experiments
Mouse experiments were conducted under ethics approval from

China Medical University Animal Ethics Committee (Permit

Number: 97-28-N). Transgenic mice carrying the NF-kB-driven

luciferase gene were constructed as described previously [17].

BALB/c mice were purchased from National Laboratory Animal

Center (Taipei, Taiwan).

The 5-FU-induced mucositis model was established as described

previously [7]. Male mice (6 to 8 weeks old) were injected

intraperitoneally with phosphate-buffered saline (PBS) (137 mM

NaCl, 1.4 mM KH2PO4, 4.3 mM Na2HPO4, 2.7 mM KCl, pH 7.2)

or 5-FU (100 mg/kg) (Sigma, St Louis, MO, USA). For 5-ASA

treatment, mice were orally administered with 5-ASA (130 mM/kg)

for two consecutive days before intraperitoneal administration of 5-

FU and two consecutive days after 5-Fu administration. Mice were

imaged for the luciferase activity or sacrificed for histological and

immunohistochemical evaluations at indicated periods.

Histological analysis
Mice intestines were fixed in 10% phosphate-buffered formalin

for 2 d and dehydrated in a series of graded alcohols (50%, 70%,

and 95%) for 30 min each. Samples were then embedded in

paraffin, cut into 5-mm sections, stained with hematoxylin and

eosin (H&E), and subjected to blinded histological assessment.

Villus height was measured from the baseline to the villus tip.

Crypt length was measured from the baseline to the submucosa.

The thickness of intestinal wall was measured from the submucosa

to the serosa. Three independent measurements from 3 different

longitudinal sections per mouse were made.

Microarray analysis
Total RNA was extracted from jejunum using RNeasy Mini kit

(Qiagen, Valencia, CA, USA). Total RNA was quantified and

evaluated as described previously [18]. Microarray analysis was

performed as described previously [18–20]. Briefly, fluorescent-

labeled RNA targets were prepared from 5 mg of total RNA using

MessageAmpTM aRNA kit (Ambion, Austin, TX, USA) and Cy5

dye (Amersham Pharmacia, Piscataway, NJ, USA). Fluorescent

targets were hybridized to the Mouse Whole Genome OneAr-

rayTM (Phalanx Biotech Group, Hsinchu, Taiwan) and scanned by

an Axon 4000 scanner (Molecular Devices, Sunnyvale, CA, USA).

Three replicates from three independent mice were performed.

The Cy5 fluorescent intensity of each spot was analyzed by

genepix 4.1 software (Molecular Devices). The signal intensity of

each spot was corrected by subtracting background signals in the

surroundings. We filtered out spots that signal-to-noise ratio was

less than 0 or control probes. Spots that passed these criteria were

normalized by R program [21]. The fold changes of genes were

calculated by dividing the normalized signal intensities of genes in

5-FU-treated mice by those in PBS-treated mice. Genes with fold

changes $2 or #22 were selected and used as the input genes for

the generation of biological network using Transcription Regula-

tion algorithm in MetaCoreTM Analytical suite (GeneGo Inc., St.

Joseph, MI, USA). All microarray data are MIAME compliant and

the raw data have been deposited in a MIAME compliant database

(Gene Expression Omnibus, accession number GSE28873).

In vivo and ex vivo imaging of luciferase activity
For in vivo imaging, mice were anesthetized with isoflurane and

injected intraperitoneally with 150 mg/kg D-luciferin. Five minutes

later, mice were placed facing up in the chamber and imaged for

1 min with the camera set at the highest sensitivity by IVIS Imaging

SystemH 200 Series (Xenogen, Hopkinton, MA, USA). Photons

emitted from the whole bodies were quantified using Living ImageH
software (Xenogen). Signal intensity was quantified as the sum of all

detected photon counts from the whole body and presented as

photon/sec. For ex vivo imaging, mice were anesthetized and

injected with luciferin intraperitoneally. Five minutes later, mice

were sacrificed and tissues were rapidly removed. Tissues were

placed in the IVIS system and imaged with the same setting used for

in vivo studies. Signal intensity was quantified as the sum of all

detected photon counts per second within the region of interest after

subtracting the background luminescence and presented as photon/

sec/cm2/steradian (photon/sec/cm2/sr).

Immunohistochemical staining
Sections of 5 mm were deparaffinized in xylene and rehydrated

in graded alcohol. Endogenous peroxidase was quenched with 3%

hydrogen peroxide in methanol for 15 min and the nonspecific

binding was blocked with 1% bovine serum albumin at room

temperature for 1 h. Sections were incubated with mouse

monoclonal antibody against NF-kB p65 subunit (Chemicon,

Temecula, CA, USA) or rabbit polyclonal antibody against IL-1b
(Santa Cruz, CA, USA) or TNF-a (AbcamH, Cambridge, UK) at

1:50 dilution overnight at 4uC and then incubated with

biotinylated secondary antibody (Zymed Laboratories, Carlsbad,

CA, USA) at room temperature for 20 min. Finally, slides were

incubated with avidin-biotin complex reagent and stained with

3,39-diaminobenzidine according to manufacturer’s protocol

(HistostainsH-Plus, Zymed Laboratories).

Cytokine enzyme-linked immunosorbent assay (ELISA)
IL-1b and TNF-a in sera were quantified by ELISA with

QuantikineH mouse immunoassay kits (R&D Systems, Minneap-

olis, MN, USA). Briefly, sera were added to wells, which were

coated with monoclonal antibody against IL-1b or TNF-a. After

five washes, the biotinylated antibody against IL-1b or TNF-a, the

peroxidase-conjugated avidin, and the chromogenic substrates

were sequentially added to each well. The absorbance was read at

450 nm in an ELISA reader.

Myeloperoxidase (MPO) assay
MPO activities in the jejunum were quantified with MPO

colorimetric activity assay kit (BioVision, Mountain View, CA,

USA). Briefly, the frozen tissues were homogenized and centri-

fuged to remove insoluble materials. Supernatants were collected,

mixed with MPO assay buffer and MPO substrate, incubated at

room temperature for 1 h, and then mixed with tetramethylben-

zidine probe. The absorbance was read at 412 nm in an ELISA

reader.
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Statistical analysis
Data were presented as mean 6 standard error. Student’s t-test

was used for comparisons between two experiments. A value of

p,0.05 was considered statistically significant.

Results

5-FU induced intestinal mucositis
Chemotherapy-induced diarrhea occurs in approximately 80%

of patients treated with 5-FU. Previous studies have shown that 5-

FU kills progenitor cells in the crypts of Lieberkühn and the bases

of villi, leading to the breakdown of mucosal barrier [22].

Moreover, 5-FU administration results in increased apoptosis and

decreased cellularity in the small intestine [8]. We therefore

intraperitoneally administered mice with 5-FU and the histological

changes in the small intestine were evaluated 2 days later. In

comparison with mock, 5-FU caused mucosal damage in the small

intestine (Figure 1). 5-FU decreased the height of villi and caused

the blunting and fusion of villi. Moreover, 5-FU led to the

intestinal inflammation, characterized by the infiltration of

immune cells and the accumulation of fluid, and subsequently

increased the length of crypts. 5-FU also increased the thickness of

intestinal wall. These findings indicated that intraperitoneal

administration of 5-FU caused the mucosal damage and

inflammation in the small intestine.

NF-kB was the central molecule in the 5-FU-affected
gene expression network

We further elucidated the mechanism of 5-FU-induced

intestinal mucositis by transcriptomic analysis. In a total of

29,922 genes, 1,614 genes were upregulated and 1,574 genes were

downregulated by 2 fold by 5-FU. These genes were selected for

the generation of biological network using Transcription Regula-

tion algorithm in MetaCore. As shown in Figure 2, 5-FU-affected

genes were directly connected to the NF-kB, suggesting that

expressions of 5-FU-affected genes were regulated by NF-kB. The

expression levels of genes in the network are shown in Table S1.

Furthermore, NF-kB seemed to be the central molecule of the

network. These findings suggested that NF-kB was the likely key

molecule involved in the 5-FU-induced intestinal mucositis.

5-FU evoked the NF-kB activity judged by in vivo and ex
vivo imaging

Transcriptomic analysis showed that NF-kB was the central

molecule in the 5-FU-affected gene expression network. We

therefore performed in vivo and ex vivo imaging to elucidate the NF-

kB activity in mice following 5-FU administration. Transgenic

mice carrying the luciferase gene driven by a promoter with five

NF-kB responsive elements were used here. The luciferase activity

reflected the NF-kB trans-activity.

Transgenic mice were intraperitoneally given with PBS or 5-

FU, and the bioluminescent imaging was performed on 0, 1, 2, 5,

7, and 14 d. Figure 3A shows that a maximal induction of NF-kB

activity was observed on 2 d following 5-FU administration and ex

vivo imaging was therefore performed on 2 d. As shown in

Figure 3B and Figure 3C, 5-FU slightly affected the NF-kB

activities in lung, liver, spleen, and stomach, while 5-FU

significantly activated the NF-kB activity in the small intestine

by 2.2-fold. These findings indicated that 5-FU evoked the whole

body NF-kB activity on 2 d and induced the NF-kB activation in

the small intestine. Moreover, 5-FU-induced intestinal mucositis

could be assessed by NF-kB bioluminescent imaging.

5-FU-induced NF-kB activity was inhibited by 5-ASA
5-ASA is an anti-inflammatory drug that has been used for the

treatment of ulcerative colitis for decades [23]. Activation of NF-

kB in biopsies of ulcerative colitis is suppressed by 5-ASA,

suggesting that 5-ASA is a potent inhibitor of NF-kB activation in

vivo [23]. We therefore evaluated whether 5-ASA inhibited 5-FU-

induced NF-kB activation and subsequently ameliorated the 5-

FU-caused mucositis. Transgenic mice were administered with 5-

FU and/or 5-ASA and imaged 2 days later. 5-FU induced the NF-

kB activity in the small intestine, which was in agreement with

aforementioned findings (Figure 3D). However, 5-ASA signifi-

cantly reduced the 5-FU-induced NF-kB activity, with a 42%

reduction of bioluminescent intensity. Immunohistochemical

staining with antibody against NF-kB p65 subunit revealed that,

in comparison with mock, there were many brown p65-reactive

cells in the crypts and villi of 5-FU-treated intestine (Figure 4A).

However, 5-ASA reduced the number of brown p65-reactive cells

in the intestine. These findings indicated that 5-FU evoked the

NF-kB activity, while 5-ASA inhibited 5-FU-induced NF-kB

activity in the intestine.

Inhibition of NF-kB activity ameliorated the 5-FU-induced
mucositis in the small intestine

We further tested whether the inhibition of 5-FU-induced NF-

kB activity by 5-ASA improved the 5-FU-caused intestinal

mucositis. Histological examination of the small intestine following

5-FU and/or 5-ASA treatment showed that 5-FU increased the

thickness of intestinal wall and the length of crypt, while 5-ASA

significantly decreased 5-FU-caused histological changes (Figure 5).

5-FU also decreased the height of villus, while 5-ASA slightly

Figure 1. Histological examination of the small intestine
following 5-FU administration. BALB/c mice were intraperitoneally
administered with PBS (mock) or 5-FU and sacrificed 2 days later. (A)
Microscopic features of the jejunum. Sections were stained with H&E
and observed using light microscopy. Magnification 1006. Photos are
representative images. (B) Intestinal morphometry of intestinal wall
thickness, crypt length, and villus height. Six mice in each group were
sacrificed for the morphometry analysis. Three intestinal walls, crypts,
and villi in 3 longitudinal sections per mouse were counted. Results are
expressed as relative length, which is presented as a comparison with
the length or thickness relative to mock. Values are mean 6 standard
error. **p,0.01, ***p,0.001, compared with mock.
doi:10.1371/journal.pone.0031808.g001
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increased it. In addition to the histological changes, MPO activities

in the intestine were induced by 5-FU and suppressed by 5-ASA,

also indicating that 5-FU induced intestinal inflammation, while 5-

ASA suppressed 5-FU-induced inflammation (Figure 4B). The

levels of IL-1b and TNF-a in the tissues and sera were evaluated

by immunohistochemical staining and cytokine ELISA, respec-

tively. As shown in Figures 4A and 4C, 5-FU induced the

immunomarcation for IL-1b and TNF-a in the tissues and

increased the levels of IL-1b and TNF-a in sera, while 5-ASA

suppressed 5-FU-induced IL-1b and TNF-a production in the

tissues and sera. These findings suggested that 5-FU induced

intestinal mucositis via NF-kB activity. Moreover, inhibition of

NF-kB activity decreased the 5-FU-induced TNF-a production

and subsequently improved the 5-FU-caused mucosal damage in

the small intestine.

Discussion

5-FU is a commonly used chemotherapy drug for the treatment

of malignant tumors. It kills tumor cells through interfering DNA

synthesis and affecting protein synthesis [2]. Approximately 80%

of patients undergoing 5-FU therapy suffer from a range of

symptoms, including mucositis and diarrhea. Gastrointestinal

mucositis is frequently associated with pain and increased risk of

infection. It leads to impaired quality of life in patients. Moreover,

patients may no longer be able to continue cancer therapy in cases

of severe mucositis [24]. Therefore, developing better therapeutic

drug targeting to the mechanisms of mucosal damage is awaited.

Mechanisms involved in the pathogenesis of mucositis are very

complex. Apoptosis, hypoproliferation, and inflammation contrib-

ute to the mucosal injury [9]. It has been reported that the

Figure 2. Network analysis of 5-FU-affected genes in the small intestine. Upregulated genes are marked with red circles/disks.
Downregulated genes are marked with blue circles/disks. Cyan lines indicate the fragments of canonical pathways.
doi:10.1371/journal.pone.0031808.g002
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expression of proinflammatory cytokines, such as IL-6 and TNF-a,

in the small intestine and colon of rodents after chemotherapy is

significantly increased [7,25]. IL-1 and IL-1 receptor antagonist

are produced locally in the intestinal mucosa, and their expressions

are increased in inflammatory mucosa [26,27]. Moreover, IL-1b
plays a critical role in the genesis and development of intestinal

mucositis after chemotherapy, and this type of effect is caused by

inducing crypt cell apoptosis [11]. In addition to the proin-

flammatory cytokines, ROS generated by inducible nitric oxide

synthase (iNOS) and cyclooxygenase-2 (COX-2) lead to the

mucosal injury. Increased iNOS and COX-2 activity in the 5-FU-

and radiation-induced mucositis, suggesting the important role of

ROS in the pathogenesis of oral mucositis [9,10]. Recently, the

role of PAF in 5-FU-induced intestinal mucositis has been

suggested using knockout animals and an antagonist of PAF

receptor [12]. Because the expressions of proinflammatory

cytokines, iNOS, COX-2, and PAF are regulated by various

transcription factors, we applied transcriptomic analysis to find the

upstream transcription factors that regulate the downstream gene

expression and lead to mucosal injury.

Transcriptomic analysis by DNA microarray tool is a popular

research and screening tool for differentially expressed genes.

Microarray-based gene expression patterns have been used to

predict the clinical outcome and prognosis of patients undergoing

5-FU therapy [28-30]. It has also been applied to predict the

therapeutic efficacy of 5-FU and to identify the biomarkers in

various cancers [31,32]. We used microarray tool for the first time

to identify the key molecule involved in the 5-FU-caused intestinal

injury in this study. The expression levels of IL-6, TNF-a, and IL-

1b were increased, with fold changes of 2.28, 3.37, and 6.77,

respectively (data not shown). These data were in agreement with

previous reports. Further network analysis using Transcription

Regulation algorithm indicated that the expression of 5-FU-

affected genes was regulated by NF-kB, and NF-kB was the

central molecule in the biological network. These findings

suggested that NF-kB was the upstream key molecule that

regulated the expression of downstream genes and led to the

mucositis of intestine.

NF-kB is a central coordinator of innate and adaptive immune

responses. NF-kB has also been linked to the control of cell

Figure 3. NF-kB-dependent bioluminescence in living mice and individual organs following 5-FU administration. (A) In vivo imaging.
Transgenic mice were injected intraperitoneally with PBS or 5-FU and imaged at indicated periods. Results are expressed as relative intensity, which is
presented as the comparison with the NF-kB-dependent bioluminescent signal relative to mock. Values are mean 6 standard error (n = 6 per group).
*p,0.05, compared with mock. (B) Ex vivo imaging. Transgenic mice were injected intraperitoneally with PBS (mock) or 5-FU. Two days later, mice were
sacrificed and organs were subjected to image. The color overlay on the image represents the photon/sec emitted from the organs, as indicated by the
color scale. Photos are representative images (n = 6 per group). (C) Quantification of photon emission from the organs. Values are mean 6 standard error
(n = 6 per group). **p,0.01, compared with mock. (D) NF-kB-dependent bioluminescence in the intestine following 5-FU and/or 5-ASA administration.
Transgenic mice were administered with 5-FU and/or 5-ASA and imaged 2 days later. The color overlay on the image represents the photon/sec emitted
from the intestine, as indicated by the color scale. Photos are representative images (n = 6 per group). Quantification of photon emission from the
intestine was shown on the top. Values are mean 6 standard error. *p,0.05, compared with mock. #p,0.05, compared with 5-FU treatment.
doi:10.1371/journal.pone.0031808.g003
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growth, apoptosis, and cell cycle [33]. Previous reports have

implicated the NF-kB in the pathogenesis of several inflammatory

diseases, such as local joint inflammation, glomerulonephritis, and

inflammatory bowel diseases [34-36]. NF-kB activation is also

found in biopsy tissues in cancer patients treated with radiation

and several chemotherapeutic drugs, except 5-FU [6,37]. As a

consequence of the gene upregulation by the initial activation of

NF-kB, a broad range of biological active proteins accumulate and

target to the submucosa tissue in the gastrointestinal tract. NF-kB

activation induced by anti-neoplastic agents and radiation is

therefore though to elicit the inflammatory and apoptotic

responses that lead to the mucosal injury. In this study, we found

that NF-kB was the critical molecule that regulated the expression

of 5-FU-affected genes, and NF-kB activity was induced by 5-FU

in the intestine. In contrast, other studies indicated that 5-FU

administration inhibits NF-kB activation in vitro. Aota et al [38]

and Azuma et al [39] reported that 5-FU suppresses NF-kB

activity via the inhibition of IkB kinase activity and subsequently

induces apoptosis in human salivary gland cancer cells. Contra-

dictory effects of NF-kB activation on normal and cancer cells

have been reported [40]. Activation of NF-kB can be either pro-

apoptotic or anti-apoptotic, depending on the target cells.

Therefore, it is possible that NF-kB activated by 5-FU results in

apoptotic signals and proinflammatory cytokine production in

normal mucosal tissue and sequentially contributed to the injury of

gastrointestinal tract.

Bioluminescent imaging was applied to evaluate the NF-kB

activity after 5-FU administration. Transgenic mice carrying the

luciferase gene under the control of NF-kB-responsive element were

constructed previously, and the bioluminescent signal correlated

with NF-kB activity indicated that bioluminescent intensity

represents NF-kB activity in vivo [17,36]. Oral administration of 5-

ASA has been used for decades for the treatment of inflammatory

bowel disease [23]. 5-ASA is an anti-inflammatory drug that inhibits

NF-kB activation and suppressed the inflammatory response [23].

In this study, we also found that 5-ASA decreased 5-FU-induced

NF-kB activity and immunomarcation for IL-1b and TNF-a in the

intestine. The histological changes of mucositis have also been

improved. These findings suggested that inhibition of NF-kB

activity might result in the suppression of inflammation and the

sequential amelioration of mucositis in the intestine.

In conclusion, our findings suggested that NF-kB was the

critical molecule involved in the 5-FU-caused mucosal injury,

while inhibition of NF-kB activity suppressed the 5-FU-induced

inflammation and sequentially improved the 5-FU-induced

mucosal damage. These findings suggested that NF-kB was the

potent target for the development of drugs for the treatment of 5-

FU-induced mucositis.

Figure 4. Immunohistochemical staining and MPO activity of jejunum and cytokine ELISA of sera following 5-FU and/or 5-ASA
administration. Transgenic mice were administered with 5-FU and/or 5-ASA and sacrificed 2 days later. (A) Sections were stained by
immunohistochemistry using antibody against NF-kB, IL-1b, or TNF-a. Magnification 1006. Photos are representative images (n = 6 per group). (B)
MPO activity assay. Frozen jejunum was homogenized and MPO activity in the tissue was analyzed. Values are mean 6 standard error. *p,0.05,
compared with mock. (C) Cytokine ELISA. The levels of IL-1b and TNF-a were analyzed by cytokine ELISA. Values are mean 6 standard error. *p,0.05,
***p,0.001, compared with mock. ###p,0.001, compared with 5-FU treatment.
doi:10.1371/journal.pone.0031808.g004

5-FU Induced Mucositis via NF-kB Pathway

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e31808



Supporting Information

Table S1 Expression levels of genes in the network in 5-
FU-induced mucositis.

(DOC)

Author Contributions

Conceived and designed the experiments: CTC TYH CYH. Performed the

experiments: HL JAL HCH CCL HYL SLW YFH. Analyzed the data:

CCL HYL CYH. Contributed reagents/materials/analysis tools: CTC

TYH CYH. Wrote the paper: CTC TYH CYH.

References

1. Sausville EA, Longo DL (2001) Principles of cancer treatment. In: Braunwald E,

Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL, eds. Harrison’s

Principles of Internal Medicine, The McGraw-Hill Companies: New York. pp

530–546.

2. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of

action and clinical strategies. Nat Rev Cancer 3: 330–338.

3. Gradishar WJ, Vokes EE (1990) 5-Fluorouracil cardiotoxicity: a critical review.

Ann Oncol 1: 409–414.

4. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, et al. (2004)

Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measure-

ment, epidemiology, and consequences for patients. Cancer 100: 1995–2025.

5. Naidu MU, Ramana GV, Rani PU, Mohan IK, Suman A, et al. (2004)

Chemotherapy-induced and/or radiation therapy-induced oral mucositis–

complicating the treatment of cancer. Neoplasia 6: 423–431.

6. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4: 277–284.

7. Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, et al. (2009) Is the

pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the

type of mucotoxic drug administered? Cancer Chemother Pharmacol 63: 239–251.

8. Pritchard DM, Jackman A, Potten CS, Hickman JA (1998) Chemically-induced

apoptosis: p21 and p53 as determinants of enterotoxin activity. Toxicol Lett

102–103: 19–27.

9. Sonis ST, O’Donnell KE, Popat R, Bragdon C, Phelan S, et al. (2004) The

relationship between mucosal cyclooxygenase-2 (COX-2) expression and

experimental radiation-induced mucositis. Oral Oncol 40: 170–176.

10. Leitão RF, Ribeiro RA, Bellaguarda EA, Macedo FD, Silva LR, et al. (2007)

Role of nitric oxide on pathogenesis of 5-fluorouracil induced experimental oral

mucositis in hamster. Cancer Chemother Pharmacol 59: 603–612.

11. Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, et al. (2007) The

role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract

mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev

33: 448–460.

12. Soares PM, Lima-Junior RC, Mota JM, Justino PF, Brito GA, et al. (2011) Role

of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced

intestinal mucositis in mice. Cancer Chemother Pharmacolin press.

13. Barnes PJ, Karin M (1997) Nuclear factor-kB: a pivotal transcription factor in

chronic inflammatory diseases. N Engl J Med 336: 1066–1071.

14. Bonizzi G, Karin M (2004) The two NF-kB activation pathways and their role in

innate and adaptive immunity. Trends Immunol 25: 280–288.

15. Baldwin AS, Jr. (1996) The NF-kB and IkB proteins: new discoveries and

insights. Annu Rev Immunol 14: 649–683.

16. Baeuerle PA, Baichwal VR (1997) NF-kB as a frequent target for immunosup-

pressive and anti-inflammatory molecules. Adv Immunol 65: 111–137.

17. Ho TY, Chen YS, Hsiang CY (2007) Noninvasive nuclear factor-kB

bioluminescence imaging for the assessment of host-biomaterial interaction in

transgenic mice. Biomaterials 28: 4370–4377.

18. Cheng HM, Li CC, Chen CYH, Lo HY, Cheng WY, et al. (2010) Application of

bioactivity database of Chinese herbal medicine on the therapeutic prediction,

drug development, and safety evaluation. J Ethnopharmacol 132: 429–437.

19. Hsiang CY, Chen YS, Ho TY (2009) Nuclear factor-kB bioluminescence

imaging-guided transcriptomic analysis for the assessment of hoist-biomaterial

interaction in vivo. Biomaterials 30: 3042–3049.

20. Chang CT, Lin H, Ho TY, Li CC, Lo HY, et al. (2011) Comprehen-

sive assessment of host responses to ionizing radiation by nuclear factor-

kB bioluminescence imaging-guided transcriptomic analysis. PLoS ONE 6:

e23682.

21. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R,

Carey V, Dudoit S, Irizarry R, Huber W, eds. Bioinformatics and

Computational Biology Solutions Using R and Bioconductor, Springer: New

York. pp 397–420.

22. Bowen JM, Gibson RJ, Cummins AG, Keefe DM (2006) Intestinal mucositis: the

role of the Bcl-2 family, p53 and caspases in chemotherapy-induced damage.

Support Care Cancer 14: 713–731.

Figure 5. Histological examination of the small intestine following 5-FU and/or 5-ASA administration. Transgenic mice were
administered with 5-FU and/or 5-ASA and sacrificed 2 days later. (A) Microscopic features of the jejunum. Sections were stained with H&E and
observed using light microscopy. Magnification 406. Photos are representative images (n = 6 per group). (B) Intestinal morphometry of intestinal wall
thickness, crypt length, and villus height. Six mice in each group were sacrificed for the morphometry analysis. Three intestinal walls, crypts, and villi
in 3 longitudinal sections per mouse were counted. Results are expressed as relative length, which is presented as a comparison with the length or
thickness relative to mock. Values are mean 6 standard error. **p,0.01, compared with mock. ##p,0.01, compared to 5-FU treatment.
doi:10.1371/journal.pone.0031808.g005

5-FU Induced Mucositis via NF-kB Pathway

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e31808



23. Bantel H, Berg C, Vieth M, Stolte M, Kruis W, et al. (2000) Mesalazine inhibits

activation of transcription factor NF-kB in inflamed mucosa of patients with
ulcerative colitis. Am J Gastroenterol 95: 3452–3457.

24. Treister N, Sonis S (2007) Mucositis: biology and management. Curr Opin

Otolaryngol Head Neck Surg 15: 123–129.
25. Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, et al. (2008) Role of

cytokines (TNF-a, IL-1b and KC) in the pathogenesis of CPT-11-induced
intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer

Chemother Pharmacol 61: 775–784.

26. Wu Z, Han X, Qin S, Zheng Q, Wang Z, et al. (2010) Interleukin 1 receptor
antagonist reduces lethality and intestinal toxicity of 5-fluorouracil in a mouse

mucositis model. Biomed Pharmacother 64: 589–593.
27. Wu ZQ, Han XD, Wang Y, Yuan KL, Jin ZM, et al. (2011) Interleukin-1

receptor antagonist reduced apoptosis and attenuated intestinal mucositis in a 5-
fluorouracil chemotherapy model in mice. Cancer Chemother Pharmacolin

press.

28. Williams PD, Cheon S, Havaleshko DM, Jeong H, Cheng F, et al. (2009)
Concordant gene expression signatures predict clinical outcomes of cancer

patients undergoing systemic therapy. Cancer Res 69: 8302–8309.
29. Motoori M, Takemasa I, Yamasaki M, Komori T, Takeno A, et al. (2010)

Prediction of the response to chemotherapy in advanced esophageal cancer by

gene expression profiling of biopsy samples. Int J Oncol 37: 1113–1120.
30. Schauer M, Janssen KP, Rimkus C, Raggi M, Feith M, et al. (2010) Microarray-

based response prediction in esophageal adenocarcinoma. Clin Cancer Res 16:
330–337.

31. Petty RD, Samuel LM, Murray GI, MacDonald G, O’Kelly T, et al. (2009)
APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocar-

cinomas identified by gene expression profiling. BMC Cancer 9: 434.

32. Tsao DA, Chang HJ, Lin CY, Hsiung SK, Huang SE, et al. (2010) Gene

expression profiles for predicting the efficacy of the anticancer drug 5-
fluorouracil in breast cancer. DNA Cell Biol 29: 285–293.

33. Wu JT, Kral JG (2005) The NF-kB/IkB signaling system: a molecular target in

breast cancer therapy. J Surg Res 123: 158–169.
34. Campbell IK, Gerondakis S, O’Donnell K, Wicks IP (2000) Distinct roles for the

NF-kB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J Clin
Invest 105: 1799–1806.

35. Tomita N, Morishita R, Lan HY, Yamamoto K, Hashizume M, et al. (2000) In

vivo administration of nuclear transcription factor-kB decoy suppresses
experimental crescentic glomerulonephritis. J Am Soc Nephrol 11: 1244–1252.

36. Wu SL, Chen JC, Li CC, Lo HY, Ho TY, et al. (2009) Vanillin improves and
prevents trinitrobenzene sulfonic acid-induced colitis in mice. J Pharmacol Exp

Ther 330: 370–376.
37. Sonis ST (2002) The biologic role for nuclear factor-kB in disease and its

potential involvement in mucosal injury associated with anti-neoplastic therapy.

Crit Rev Oral Biol Med 13: 380–389.
38. Aota K, Azuma M, Yamashita T, Tamatani T, Motegi K, et al. (2000) 5-

Fluorouracil induces apoptosis through the suppression of NF-kB activity in
human salivary gland cancer cells. Biochem Biophys Res Commun 273:

1168–1174.

39. Azuma M, Yamashita T, Aota K, Tamatani T, Sato M (2001) 5-Fluorouracil
suppression of NF-kB is mediated by the inhibition of IkB kinase activity in

human salivary gland cancer cells. Biochem Biophys Res Commun 282:
292–296.

40. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, et al.
(2000) The pro- or anti-apoptotic function of NFkB is determined by the nature

of the apoptotic stimulus. Eur J Biochem 267: 3828–3835.

5-FU Induced Mucositis via NF-kB Pathway

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e31808


