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Abstract 

Chemogenomics data generally refers to the activity data of chemical compounds on an array of protein targets and 
represents an important source of information for building in silico target prediction models. The increasing volume of 
chemogenomics data offers exciting opportunities to build models based on Big Data. Preparing a high quality data 
set is a vital step in realizing this goal and this work aims to compile such a comprehensive chemogenomics dataset. 
This dataset comprises over 70 million SAR data points from publicly available databases (PubChem and ChEMBL) 
including structure, target information and activity annotations. Our aspiration is to create a useful chemogenomics 
resource reflecting industry-scale data not only for building predictive models of in silico polypharmacology and off-
target effects but also for the validation of cheminformatics approaches in general.
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Background
In pharmacology, “Big Data” on protein activity and gene 
expression perturbations has grown rapidly over the past 
decade thanks to the tremendous development of prot-
eomics and genome sequencing technology [1, 2]. Simi-
larly there has also been a remarkable increase in the 
amount of available compound structure and activity 
relation (SAR) data, contributed mainly by the develop-
ment of high throughput screening (HTS) technologies 
and combinatorial chemistry for compound synthesis [3]. 
These SAR data points represent an important resource 
for chemogenomics modelling, a computational strat-
egy in drug discovery that investigates an interaction of 
a large set of compounds (one or more libraries) against 
families of functionally related proteins [4].

Frequently, the “Big Data” in chemogenomics refers to 
large databases recording the bioactivity annotation of 
chemical compounds against different protein targets. 
Databases such as PubChem [5], BindingDB [6], and 
ChEMBL [7] are examples of large public domain reposito-
ries of this kind of information. PubChem is a well-known 
public repository for storing small molecules and their 
biological activity data [5, 8]. It was originally started as 
a central repository of HTS experiments for the National 
Institute of Health (USA) Molecular Libraries Program, 
but nowadays also incorporates data from other sources. 
ChEMBL contains data that was manually extracted from 
numerous peer reviewed journal articles, as do WOMBAT 
[9], BindingDB [6], and CARLSBAD [10]. Similarly, com-
mercial databases, such as SciFinder [11], GOSTAR [12] 
and Reaxys [13] have accumulated a large amount of data 
from publications as well as patents. Besides these sources, 
large pharmaceutical companies maintain their own data 
collections originating from in-house HTS screening cam-
paigns and drug discovery projects.

This data serves as a valuable source for building in 
silico models for predicting polypharmacology and 
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off-target effects, and benchmarking the prediction per-
formance and computation speed of machine-learning 
algorithms. The aforementioned publicly available data-
bases have been widely used in numerous cheminformat-
ics studies [14–16]. However, the curated data are quite 
heterogeneous [17] and lack a standard way for anno-
tating biological endpoints, mode of action and target 
identifier. There is an urgent need to create an integrated 
data source with a standardized form for chemical struc-
ture, activity annotation and target identifier, covering as 
large a chemical and target space as possible. There are 
also irregularities within databases: the public screening 
data in PubChem, especially the inactive data points, are 
spread in different assay entries uploaded by data provid-
ers from around world and cannot be directly compared 
without processing. This makes curating SAR data for 
quantitative structure–activity relationship (QSAR) mod-
eling very tedious. An example of work to synthesize the 
curated and uncurated data is Mervin et al. [15], where a 
dataset with ChEMBL active compounds and Pubchem 
inactive compounds was constructed, including inac-
tive compounds for homologous proteins. However, the 
dataset can only be accessed as a plain text file, not as a 
searchable database.

In this work, by combining active and inactive com-
pounds from both PubChem and ChEMBL, we created 
an integrated dataset for cheminformatics modeling 
purposes to be used in the ExCAPE [18] (Exascale Com-
pound Activity Prediction Engine) Horizon 2020 project. 
ExCAPE-DB, a searchable open access database, was 
established for sharing the dataset. It will serve as a data 
hub for giving researchers around world easy access to a 
publicly available standardized chemogenomics dataset, 
with the data and accompanying software available under 
open licenses.

Dataset curation
The standardized ChEMBL20 data from an in-house 
database ChemistryConnect [3] was extracted and 
PubChem data was downloaded in January 2016 from the 
PubChem website (https://pubchem.ncbi.nlm.nih.gov/) 
using the REST API. Both data sources are heterogene-
ous. Data cleaning and standardisation procedures were 
applied in preparing both chemical structures and bioac-
tivity data.

Chemical structure standardisation
Standardisation of PubChem and ChEMBL chemical 
structures was performed with ambitcli version 3.0.2. The 
ambitcli tool is part of the AMBIT cheminformatics plat-
form [19–21] and relies on The Chemistry Development 
Kit library 1.5 [22, 23]. It includes a number of chemical 
structure processing options (fragment splitting, isotope 

removal, handling implicit hydrogens, stereochemistry, 
InChI [24] generation, SMILES [25] generation and struc-
ture transformation via SMIRKS [26], tautomer genera-
tion and neutralisation etc.). The details of the structure 
processing procedure can be found in Additional file  1. 
All standardisation rules were aligned between Janssen 
Pharmaceutica, AstraZeneca and IDEAConsult to reflect 
industry standards and implemented in open source soft-
ware (https://doi.org/10.5281/zenodo.173560).

Bioactivity data standardisation
The processing protocol for extracting and standard-
izing bioactivity data is shown in Fig.  1. First, bioassays 
were restricted to only those comprising a single target; 
the black box (target unknown) or multi-target assays 
were excluded. 58,235 and 92,147 single targets con-
taining concentration response (CR) type assays (con-
firmatory type in PubChem) remained in PubChem and 
ChEMBL, respectively. The assay target was further lim-
ited to human, rat and mouse species, and data points 
missing a compound identifier (CID) were removed. For 
those filtered assays, active compounds whose dose–
response value was equal to or lower than 10  μM were 
kept as active entries and others were removed. Inactive 
compounds in CR assays were kept as inactive entries. 
Compounds that were labelled as inactive in PubChem 
screening assays (assays run with a single concentration) 
were also kept as inactive records.

The chemical structure identifiers (InChI, InChIKey 
and SMILES) generated from the standardized com-
pound structures (as explained above) were joined with 
the compounds obtained after the filtering procedure.

The compound set was further filtered by the following 
physicochemical properties: organic filters (compounds 
without metal atoms), molecular weight (MW) <1000 Da, 
and a number of heavy atoms (HEV) >12. This was done 
to remove small or inorganic compounds not representa-
tive for modelling the chemical space relevant for a nor-
mal drug discovery project. This is a much more generous 
rule than the Lipinski rule-of-five [27], but the aim was 
to keep as much useful chemical information as possi-
ble while still removing some non-drug like compounds. 
Finally, fingerprint descriptors were generated for all 
remaining compounds. So far JCompoundMapper (JCM) 
[28], CDK circular fingerprint descriptors and signature 
descriptors [29] were generated respectively. For circular 
fingerprint and signature calculation, the maximum topo-
logical radius for fragment generation was set to 3.

From each data source, various attributes were read 
and converted into controlled vocabularies. The most 
important of these are target (Entrez ID), activity value, 
mode of action, assay type and assay technology etc. The 
underlying data sources contain activity data with various 
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result types; the results were unified as best possible to 
make them comparable across tests (and data sources) 
irrespective of the original result type. The selected com-
patible dose–response result types are listed in Addi-
tional file 2: Table S1. Generally, the end-point name of 
a concentration related assay (e.g. IC50, units in µM) 
should match one of the keywords in this list. In the case 
when a compound has multiple activity data records for 
the same target, the records are aggregated so that one 
compound only has one record per target and the best 
(maximal) potency was chosen as the final aggregated 
value for a compound–target pair. The AMBIT generated 
InChIKey from the standardisation procedure was used 
as the molecular identifier to identify duplicate structures 
in the data aggregation. Finally, targets which have <20 
active compounds were removed from the final dataset.

Entrez ID [30], gene symbol [31–33] and gene ortho-
logue were collected as information for the target. The 
gene symbol was converted from Entrez ID with the 
gene2accession table [34] provided by National Center 
for Biotechnology Information (NCBI). Gene orthologues 
was included from the orthologue table [34] from NCBI.

Database and web interface
The ExCAPE-DB is built based on the AMBIT database 
and web application [19], enhanced with a free text search 
engine (Apache Solr [35]). An instance of the AMBIT web 
application (ambit2.war) was installed and the chemi-
cal structures were imported. This enables chemistry-
aware search (similarity, substructure) and depiction, all 
exposed via a REST API and the web interface provided 
by the web application itself. The bioactivity data, consist-
ing of compound related information (e.g. target activity 
label and InChIKey) and target related information (e.g. 
Entrez IDs and official gene symbols), is imported into an 
Apache Solr collection (http://lucene.apache.org/solr/) 
and exposed through the Solr REST API. The open source 
JavaScript client library jToxKit (https://github.com/
ideaconsult/jToxKit) is used to interact with the AMBIT 
REST API and the Solr REST API. A dedicated JavaScript 
web interface was developed for ExCAPE-DB, integrating 
the chemical search, as well as the free text and faceted 
search functionality for biological activities.

The ExCAPE-DB is available online (https://solr.idea-
consult.net/search/excape/) and a screenshot of the web 

Fig. 1  Workflow for data preparation

http://lucene.apache.org/solr/
https://github.com/ideaconsult/jToxKit
https://github.com/ideaconsult/jToxKit
https://solr.ideaconsult.net/search/excape/
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browser interface is shown in Fig. 2a. The dataset can be 
searched both by target name and CID. For target based 
searches, the Entrez ID, gene symbol, gene orthologous 
group and target species can be used for subsetting 
datasets. For compound searches, a user can choose to 
input the InChIKey or specify a CID (SMILES, InChI 
or IUPAC chemical name) for doing free-text search or 

use the embedded structure editor for doing substruc-
ture or similarity search (Fig.  2b). It is also possible to 
follow a link to the original ChEMBL or PubChem page 
of the specific compound from the search result. The 
download tab on the web page provides several down-
load options. The “Filtered entries” download option 
allows the downloading of all of the current search 

Fig. 2  Browsing the ExCAPE-DB web interface. a Searching the database via gene symbol or free-text. The original compound information is linked 
to from the result page. b Searching the database via substructure search
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result. For downloading specific entries, it is possible 
to include “Add to selection” links and compile a subset 
of selected entries, which will be available for download 
as “Selected entries”. A static link for downloading the 
entire ExCAPE-DB dataset is available at the down-
load tab. The dataset is also uploaded to the Zenodo.
org repository and available for download from there as 
doi:10.5281/zenodo.173258.

Discussion
The dataset composition is described in Table 1. In total 
there are 998,131 unique compounds and 70,850,163 SAR 
data points. These SAR data points cover 1667 targets 

Table 1  Public chemogenomics dataset

ChEMBL PubChem ExCAPE-DB

Actives

 # SAR data points 1,259,338 439,288 1,332,426

 # Compounds 566,143 263,119 593,156

Inactives

 # SAR data points 1,530,908 68,948,609 69,517,737

 # Compounds 416,655 654,562 719,192

Total

 # SAR data points 2,790,246 69,387,897 70,850,163

 # Compounds 710,324 828,317 998,131

 # Targets 1644 1588 1667

Fig. 3  Composition of active compounds in the dataset. The distribution of active compounds among the targets in a ExCAPE-DB, b ChEMBL part 
of ExCAPE-DB and c the fraction span of actives in both datasets. We note that the ChEMBL dataset is shown here before the filtering and aggrega‑
tion process and contains only single-target assays. Active compounds should have a pXC50 no less than 5 and only targets with at least 20 active 
compounds were considered

http://Zenodo.org
http://Zenodo.org
http://dx.doi.org/10.5281/zenodo.173258


Page 6 of 9Sun et al. J Cheminform  (2017) 9:17 

(Additional file 3: Table S2). It constitutes a curated large 
scale chemogenomics set freely available in the public 
domain under the Creative Commons Attribution Share-
Alike 4.0 license. The dataset is useful for building QSAR 
models for predicting activity against one or more spe-
cific targets for novel compounds and will also serve as 
a benchmark dataset for evaluating the performance of 
various machine-learning algorithms, especially multi-
target learning algorithms. The distribution of active 
compounds of ExCAPE-DB and ChEMBL themselves are 
shown in Fig. 3. Overall, most targets have far fewer inac-
tive compounds than active compounds, which means 
that the chemogenomics dataset is highly imbalanced in 
both the ChEMBL and ExCAPE-DB datasets. 

By adding inactive compounds from PubChem, the 
ExCAPE-DB has many more targets where the fraction of 
active compounds is <10% of the total number of com-
pounds. Inclusion of inactive compounds from PubChem 
better mimics chemogenomics datasets available in the 
pharmaceutical industry, and it has been shown that 
inclusion of true inactive compounds results in bet-
ter models than using random compounds as inactive 
compounds [15]. A low ratio between active and inac-
tive compounds also reflects better the results of high-
throughput screening where the hit rate is usually around 
1%.

A clustering analysis was carried out for ChEMBL, 
PubChem and ExCAPE-DB compounds (as shown in 
Table  1) using an in-house program Flush [36] with a 
default Tanimoto similarity threshold of 0.7 that was 
calculated based on Foyfi fingerprints [37]. The distri-
bution of cluster size for active compounds and inactive 
compounds is shown in Fig.  4. Here the singletons and 
small clusters whose size is <4 are excluded to give a bet-
ter comparison. It can be seen that the cluster sizes of 
ChEMBL active and inactive compounds are very similar, 
while Pubchem active compounds tend to have a larger 
cluster size than the inactive compounds and hence 
they are less diverse than the inactive compounds. This 
is probably due to the fact that ChEMBL is composed 
of a series of analogue compounds, while the inactive 
compounds from screening campaigns in PubChem are 
more likely to be structurally diverse compounds. The 
SAR data is provided as is, but the underlying differences 
on structural diversity between active and inactive com-
pounds should be considered when using ExCAPE-DB 
data for modelling.

The target class distribution across the dataset was also 
examined. The results are described in Fig. 5 for several 

major target families. The most common target class is 
enzymes followed by membrane receptors and then ion 
channels and transcription factors. The physicochemi-
cal property distribution of the dataset is shown in Fig. 6. 
Figure 6a–d are for MW, ClogP [38] representing calcu-
lated lipophilicity, polar surface area (PSA) which rep-
resent compounds polarity, and fraction of sp3 carbon 

Fig. 4  Distribution of cluster size in ExCAPE-DB. Here singletons and 
small clusters whose size is <4 are excluded from the analysis

Fig. 5  Target family distribution in the dataset
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atoms (Fsp3) in the compound which is a measure of the 
“flatness” of a compound [39], respectively. The MW of 
most compounds is between 220 and 540  Da. ClogP is 
mainly between 1 and 8. Most compounds have a PSA 
<150 and Fsp3 <0.7. In general, these distributions show 
that most compounds in the dataset fulfil the Lipin-
ski rule-of-five [27] and are considered to be drug like 
compounds.

As an example of the utility of the generated data-
set, 18 targets which have imbalance level varying from 
1:10 to 1:1000 (ratio of active/inactive) were chosen for 

building support vector machine (SVM) models using 
LIBSVM [40]. Signature descriptors were used as input 
features. The performance of binary classification is given 
in Table 2 and model metrics shown are sensitivity, pre-
cision, specificity and Cohen’s κ value [41]. The results 
show that performance as expected varies from case to 
case and reasonable SVM models can be built even for 
some severely imbalanced datasets. This validates that 
the generated data set can be useful for predicting activ-
ity for novel compounds and for benchmarking studies.

Fig. 6  The physicochemical property distribution. a Molecular weight (MW), b calculated value of lipophilic efficiency (ClogP), c polar surface area 
(PSA) and d fraction of sp3 carbon (FCS)
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Conclusion
ExCAPE-DB is a large public chemogenomics dataset 
based on the PubChem and ChEMBL databases, and 
large scale standardisation (including tautomerization) of 
chemical structures using open source cheminformatics 
software was performed in data curation. Comprehen-
sive compound related information such as target activ-
ity label, fingerprint based descriptors and InChIKey, and 
target related information such as Entrez IDs and official 
gene symbols were collected and are easily accessible in 
the publicly available database. The active labels were 
determined based on their dose–response data to make 
sure the data quality is as high as possible. This ‘Big Data’ 
set covers large number of targets reported in the liter-
ature and can be used for building holistic multi-target 
QSAR models for target prediction. The data set will be 
used as a comprehensive benchmark set to evaluate the 
performance of various machine-learning algorithms in 
the ExCAPE project. To the best of our knowledge, this 
is first attempt to build such a large scale and searchable 
open access database for QSAR modelling.
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PubChem.

Additional file 3: Table S2. The list of targets in the final dataset.
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Table 2  Performances of fivefold cross-validation for 18 targets using SVM

Target Active compounds Inactive compounds Ratio (active/inactive compounds) Sensitivity Precision Specificity κ

PPARA 1955 1465 1.33 0.96 0.94 0.92 0.89

MMP2 2742 2363 1.16 0.96 0.96 0.96 0.92

MAOA 732 733 1.00 0.79 0.80 0.81 0.59

NR1I2 249 1090 0.23 0.82 0.73 0.93 0.72

TMPRSS15 139 724 0.19 0.43 0.54 0.93 0.39

HSD17B10 3410 11,510 0.30 0.41 0.40 0.82 0.23

KDM4E 3938 35,059 0.11 0.22 0.29 0.94 0.18

LMNA 14,533 171,164 0.09 0.49 0.13 0.72 0.10

TDP1 23,133 276,782 0.08 0.76 0.38 0.90 0.45

TARDBP 12,193 387,934 0.03 0.22 0.08 0.92 0.08

ALOX15 1932 69,362 0.03 0.49 0.12 0.90 0.16

BRCA1 8619 363,912 0.02 0.72 0.20 0.93 0.29

DRD2 4613 343,076 0.01 0.96 0.93 1.00 0.94

GSK3B 3334 300,186 0.01 0.85 0.72 1.00 0.78

JAK2 2158 213,915 0.01 0.85 0.81 1.00 0.83

POLK 773 389,418 0.002 0.55 0.17 0.99 0.26

FEN1 1050 381,575 0.003 0.35 0.03 0.96 0.04

HDAC3 369 311,425 0.001 0.98 0.76 1.00 0.86

http://dx.doi.org/10.1186/s13321-017-0203-5
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