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Capacity and architecture of emotional face-ensemble coding
Daniel Fitousi Department of Psychology, Ariel University, Ariel, Israel

The ability to process emotion in ensembles of faces
is essential for social functioning and survival. This study
investigated the efficiency and underlying architecture
of this ability in two contrasting tasks: (a) extracting
the mean emotion from a set of faces, and (b) visually
searching for a single, redundant-target face within an
ensemble. I asked whether these tasks rely on similar or
distinct processingmechanisms. To address this, I applied
the capacity coefficient—a rigorous measure based on
the entire response time distribution. In Experiment 1,
participants judged the average emotion of face
ensembles. In Experiments 2 and 3, participants searched
for a predefined emotional target among multiple faces.
In both tasks,workload was manipulated by varying
the number of faces in the display. Results revealed
that ensemble averaging is a super-capacity process that
improves with increased workload, while visual search
is capacity-limited and impaired by greater workload.
These findings suggest that averaging is a preattentive
process supported by a coactive, summative architecture,
whereas visual search is attention-dependent
and governed by a serial or parallel architecture
with inhibitory interactions between display items.

Introduction

The present effort addresses a practical and
theoretical question concerning the human ability of
detecting, recognizing, and averaging emotions from
ensembles of faces (Haberman, Lee, & Whitney, 2015;
Haberman & Whitney, 2007; Hansen & Hansen, 1988;
Öhman, Flykt, & Esteves, 2001; Son et al., 2023; Yang,
Yoon, Chong, & Oh, 2013). Imagine that you are facing
a crowd of people who are marching toward you in a
threatening way, and you should decide immediately
whether to stay or run away. To save your life, you must
estimate the emotional expression on those faces. If,
on average, the faces in the crowd are angry, you are
probably at risk. If, on average, the faces in the crowd
are happy, you are safe. Recent studies have shown that
humans can briefly and accurately estimate the average
emotion expression of a set of faces (Haberman,
Harp, & Whitney, 2009; Haberman & Whitney, 2007;
Sweeny, Grabowecky, Suzuki, & Paller, 2009), as well
as other facial aspects, such as identity or gender

(Leib et al., 2014; Whitney & Yamanashi Leib, 2018).
Earlier studies have documented similar apparently
effortless averaging abilities with nonfacial attributes
such as size (Chong & Treisman, 2003).

However, averaging is not the only cognitive
operation that can be performed by an observer when
presented with face ensembles. For example, observers
may engage in a visual-search (Hansen & Hansen,
1988; VanRullen, 2006) or a target-detection (Fitousi,
2021c; Miller, 1982) task whereby they look for a
predefined target (e.g., an angry face). These tasks are
consequential for survival to the same degree, or even
more than averaging. Consider again the example of a
crowd of people who are marching toward you. You
might want to detect a single angry face in that crowd
rather than compute the average in order to prepare for
a fight-or-flight response (Hansen & Hansen, 1988).
While research on processing of face ensembles in recent
years has focused mainly on averaging (Haberman,
Harp, & Whitney, 2009; Haberman & Whitney, 2007;
Sweeny et al., 2009), there has been an earlier and
not-less important line of research on visual search
with face ensembles (Hansen & Hansen, 1988; Hershler
& Hochstein, 2005; Robitaille & Harris, 2011; Suzuki
& Cavanagh, 1995; Won & Jiang, 2013). Averaging and
visual-search operations are quite different from each
other but, when studied together, may provide valuable
insights into the underlying mechanisms. In averaging,
observers are asked to ignore the individual items and
extract the gist of the set, whereas in visual search, the
opposite is true—observers are required to focus on
the item-level and ignore the overall context. Another
marked difference is that averaging likely requires
exhaustive processing of all or most (Baek & Chong,
2020) items in the display, whereas visual search can be
accomplished by adopting a so-called self-terminating
stopping rule (Sternberg, 1966), according to which
processing halts once a predefined target is found.

Here I address the question of whether averaging
and visual-search tasks with face ensembles
are governed by same or different processing
strategies. In particular, the goal is to investigate the
architectures (i.e., serial/parallel), stopping rules (i.e.,
self-terminating/exhaustive), and capacity requirements
(i.e., limited-, unlimited-, super-capacity) involved in
the two tasks. I therefore harness comparable stimuli
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and computational frameworks, but with different
instructions (averaging vs. visual search). Averaging
and visual search may or may not be sustained by
the same processing mechanisms. This is an empirical
question the present study aims to answer. To address
this question, I apply the redundant-target task (Miller,
1982), along with a powerful measure of efficiency
known as the capacity coefficient (Townsend & Nozawa,
1995; Townsend & Wenger, 2004b). The latter is a
response time (RT)–based measure on the entire RT
distributions. These tools allow me to test several
theoretically plausible mechanisms. For example, it
may be the case that averaging is an unlimited-capacity
process that requires minimal investment of attention
and instantiated in a parallel-exhaustive architecture,
whereas target detection is a limited-capacity process,
sustained by a serial-exhaustive architecture. Questions
about capacity and architecture can also provide more
insights into the attentional requirements of these two
tasks. In the next sections, I review the central findings
and ideas.

Does averaging of emotion require
attention?

It is tempting to answer “no” because it would be
otherwise difficult to explain how observers accomplish
high levels of accuracy and rapid responses when they
extract the average emotion of faces in an ensemble
(Haberman & Whitney, 2007; Leib et al., 2014). In that
case, one would like to argue that faces are processed
preattentively and therefore require minimal effort. This
may explain how people can process many faces at once.
If faces demanded attention, then ensemble processing
should have been a slow and error-prone process,
which it appears not to be case, and indeed, several
researchers have argued that statistical averaging of
simple and complex objects does not require attention
(Alvarez & Oliva, 2009). Averaging of emotion can
survive crowding (Fischer & Whitney, 2011). It can
be performed without being part of task demand
(Haberman, Harp, & Whitney, 2009). In addition, the
accuracy of averaging performance does not depend on
set size (Chong & Treisman, 2003). Moreover, several
studies (Cha & Chong, 2018; Cho, Im, Yoon, Joo, &
Chong, 2023; Robitaille & Harris, 2011) have shown
that ensemble processing speeds up rather than slows
down as more items are added to the display. The
improvement in efficiency as a function of increasing
workload resembles gestalt phenomena, whereby the
sum is greater than its parts (Algom & Fitousi, 2016). In
terms of capacity, it can be argued that such a process is
characterized by super-capacity processing (Townsend
& Nozawa, 1995), one that does not require effort or
attention.

However, there are other findings that do not align
well with the view that averaging is preattentive. Take,
for example, the finding by Haberman and Whitney
(2010) that observers represented more precisely
the local mean of a set of emotional faces rather
than its global mean. This entails that observers
can willingly downweight or discount items that are
outlying from the central tendency of the distribution.
Li, Herce Castañón, Solomon, Vandormael, and
Summerfield (2017) have shown that this so-called
“robust averaging” (De Gardelle & Summerfield,
2011) is beneficial because it provides a shield against
the influence of noise. Utilization of such a strategy
likely requires attention to individual items, and
observers use it to reduce processing load or capacity
demands. Haberman and Whitney (2010) noted that
“ensemble expression perception is fast, automatic,
implicit, and relatively insensitive to outliers. However,
we cannot conclude that attention plays no role.
Indeed, recognizing any face—even a single face—may
involve attention” (p. 1837). Moreover, most studies
employ a high degree of item regularity, which enables
participants to sample only a portion of the items in the
set (Myczek & Simons, 2008) and thus to maintain an
unlimited-capacity processing. However, manipulations
that affected capacity did show an influence on the
efficiency of averaging. Minimizing item regularity
resulted in decreased averaging efficiency (Marchant,
Simons, & de Fockert, 2013). In yet another study,
Elias, Padama, and Sweeny (2018) have shown that
dual-task disruption of attention eliminated averaging
of emotions. Similar findings obtained with nonface
stimuli (Jackson-Nielsen, Cohen, & Pitts, 2017).
Attarha and colleagues (Attarha & Moore, 2015;
Attarha, Moore, & Vecera, 2016) have deployed the
simultaneous-sequential paradigm (Shiffrin & Gardner,
1972). They found that averaging performance in
simultaneous presentation mode was better than
performance in sequential presentation mode. Their
findings are consistent with the view that averaging is a
limited-capacity process. These limitations could not be
attributed to crowding, low-distractor discriminability,
or a limited-capacity comparison process.

Does visual-search of emotion
require attention?

One of the first studies to apply a visual-search task
with emotional faces was conducted by Hansen and
Hansen (1988). They asked participants to search for
an angry face among neutral or happy faces. Search
slopes remained constant irrespective of the number
of distractors, a result that was interpreted as “an
anger superiority effect.” The authors claimed that
angry faces are processed preattentively according to
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a parallel search. Subsequent visual-search studies
amassed evidence for resource-free, automatic, and
parallel processing of faces irrespective of emotional
expression (Lavie, Ro, & Russell, 2003). Several studies
(Brown, Huey, & Findlay, 1997; Hershler & Hochstein,
2005; Kuehn & Jolicoeur, 1994; Nothdurft, 1993;
Purcell, Stewart, & Skov, 1996) have deployed visual
search tasks with displays of emotionally neutral
faces. These studies recorded performance (RTs,
accuracy) as a function of display set size under the
assumption that an increasing search slope should
indicate serial (and therefore attention-demanding)
processing, whereas a zero slope should entail parallel
(and therefore preattentive) processing (Treisman &
Gelade, 1980). Capitalizing on this logic, some of these
studies reported parallel processing with faces (Hershler
& Hochstein, 2005), whereas others (Brown, Huey, &
Findlay, 1997) argued for serial processing. VanRullen
(2006), for example, showed that the zero-slope (parallel
processing) effect can be reproduced with objects as
well, a finding that greatly undermines the claims for
uniqueness of faces. Moreover, by controlling the
stimuli for low-level aspects, through manipulation of
inversion or Fourier transformation, VanRullen could
eliminate the parallel processing pattern. However, the
logic sustaining the search slope methodology has been
shown to be inappropriate (Algom, Eidels, Hawkins,
Jefferson, & Townsend, 2015; Townsend, 1971). Take,
for example, the common idea that serial processing is
marked by a positive slope. This exact pattern can be
mimicked by a parallel system with limited capacity
(Townsend, 1990; Townsend & Wenger, 2004a).
Therefore, the conclusions drawn from the search slope
methodology are dubious (see also Fitousi, 2021c), and
consequently, other, more appropriate methodologies
are needed to investigate this issue.

Won and Jiang (2013) were the first to test hypotheses
regarding the attention limitations of ensemble
processing using a methodology that bears close
affinity with the one deployed here. Their experimental
approach is not subjected to the critical weaknesses
of the search slope methodology (Algom et al.,
2015; Townsend, 1971). They have used a speeded
discrimination task with happy and angry faces to
measure the gain in multiple face displays. Specifically,
by comparing performance in single-face and multiple-
face displays, they documented improved performance.
This redundancy gain was interpreted as supporting
a parallel processing architecture (Raab, 1962). The
present study employed a similar experimental task but
also harnessed a powerful complementary RT measure
on the entire distributions that can speak directly
to the issue of processing capacity—the capacity
coefficient (Townsend & Nozawa, 1995; Townsend
& Wenger, 2004b). These tools were applied to both
averaging (Experiment 1) and target-detection tasks
(Experiments 2 and 3).

Redundancy gains and redundancy
losses

The present study applies the same RT-based tools to
both the averaging and visual-search tasks. This affords
a common yardstick for measurement and assessment.
The first tool is called redundancy gains and is derived
from performance in the redundant-target paradigm
(Miller, 1982; Raab, 1962; Townsend & Wenger, 2004b;
Fitousi, 2015, Fitousi, 2021c). In the categorization
version of this procedure, observers are presented with
displays of either a single- or four-target faces (hence
the nomenclature “redundant target”). As already
noted, this design was first deployed by Won and
Jiang (2013). Participants are asked to categorize the
emotional expression of the target(s) by pressing one of
two buttons (happy or angry). The question of interest
is whether participants benefit from the redundant
displays that present multiple-face compared to
single-target displays. To test this question, researchers
compare performance in single and multiple targets
by computing the difference in performance between
the fastest of the single-target condition and the
multiple-target displays (Houpt, Townsend, & Donkin,
2014). This quantity is dubbed redundancy gain:

RTgain = RTsingle−target − RTensemble (1)

A redundancy gain significantly greater than
zero indicates that performance benefited from the
redundancy of faces in the display. A redundancy
loss would suggest that performance was hindered
by redundancy. No redundancy gain would entail
that redundancy neither facilitated nor hindered
performance. A comparable measure exists for
accuracy. The expected finding in this paradigm is that
RTs would be faster in multiple-face displays compared
to single-target displays (Colonius & Diederich, 2004,
Colonius & Diederich, 2020; Diederich & Colonius,
1991). The origins of redundancy gains/losses for
both self-terminating and exhaustive processing have
been studied extensively (Colonius & Diederich,
2004; Miller, 1982). Various processing models have
been proposed (Townsend & Wenger, 2004b; Grice,
Canham, & Boroughs, 1984; Colonius & Vorberg,
1994; Colonius, 1990). These models take into
consideration architectural aspects (i.e., serial, parallel,
and coactive), along with capacity characteristics
(i.e., limited-, unlimited-, and super-capacity) and
stopping rule aspects (i.e., self-terminating, exhaustive).
Redundancy gains are expected if processing is held
in a parallel unlimited-capacity system according to a
self-terminating (minimum time) stopping rule (Miller,
1982). In that case, redundancy gains emerge due to
statistical facilitation (Raab, 1962). Another possibility
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is a coactive system that produces super-capacity. Such
a system is expected to produce large redundancy gains.
In contrast, in a limited-capacity system, or in a serial
exhaustive system, adding more items to the display can
hinder rather than assist performance.

One novelty of the present effort is combining the
redundant-target design and its attendant theoretical
tools with a statistical averaging task (see Experiment 1).
It is likely that the operative stopping rule in the
averaging task is exhaustive because extraction of
summary statistics requires the processing of all or
most items in the set. Elaborate explanations on
these measures and models are given in the next
section because these models are best cast within the
framework of the capacity coefficient measure to which
I turn next.

The capacity coefficient

A seminal paper by Townsend and Ashby (1978)
presented major conceptual and methodological
advancements in the measurement of processing
capacity. These authors developed various quantitative
measures on response-time distributions that adequately
capture the meaning of capacity as the amount of
energy exerted or effort invested in a task (Kahneman,
1973) and the impact of increasing workload on this
quantity. A central measure of efficiency or capacity
proposed by Townsend and Ashby (1978), and in
subsequent efforts (Townsend & Wenger, 2004b;
Townsend & Ashby, 1983; Townsend & Nozawa,
1995; Wenger & Gibson, 2004; Fitousi & Algom,
2018, Fitousi & Algom, 2020; Fitousi & Wenger,
2011, Fitousi & Wenger, 2013; Fitousi, 2015, Fitousi,
2023), is the hazard function h(t), which gives the
instantaneous intensity with which the system can
process an input under a certain load. In particular, the
hazard function gives the conditional probability of
completing processing in the next instant of time, given
that processing has not completed yet. Formally, the
hazard function can be written as

h(t) = lim
�t→ 0

P(t ≤ T ≤ t + �t|T ≥ t)
�t

= f (t)
S(t)

(2)

where S(t) = P(RT� t) is the survivor function, and f(t)
is the probability density function (pdf). The integrated
hazard function:

H (t) =
∫ t

0
h(t′) dt′ (3)

provides the cumulative value to time t of the hazard
function. The identity H(t) = −ln [S(t)] is well known
and greatly assists in computation. Townsend and

Wenger (2004b) note that “the integrated hazard
function is a slightly coarser but probably much more
stable measure of capacity than is the more microscopic
h(t), where h(t) is analogous to power and H(t) to
energy or work done” (p. 1017). The integrated hazard
function is therefore a central measure of efficiency in
response-time tasks (Fitousi & Wenger, 2011).

A second key idea in research on capacity concerns
the influence of workload on efficiency of processing
(Townsend & Ashby 1978, Townsend & Ashby 1983;
Townsend & Wenger 2004b). In particular, increasing
the number of items-to-be-processed in the display
can harm, facilitate, or leave performance unaffected.
The capacity coefficient (Townsend & Wenger, 2004b)
is a response time–based measure specifically designed
to gauge the influence of workload on processing
efficiency. The measure deploys the integrated hazard
function and compares performance in displays that
present all the targets at once to the hypothetical
case in which all targets are processed in parallel and
with no difference in speed, whether they are alone
or together (see discussion in Luce, 1986, of this
condition). The latter is deduced from performance
with the single-target displays. There are two versions
of the capacity coefficient. The first measure is designed
to assess efficiency in disjunctive (OR) tasks that
can be accomplished by adopting a self-terminating
(minimum-time) stopping rule. In such tasks, processing
can halt after finding the target, without the need
to proceed and process the other elements in the
display:

COR(t) = HE[ ∑N
i=1HSi

] (4)

where HE is the integrated hazard function for
performance with face-ensemble displays, and Hsi are
the integrated hazard function for performance with
the single-target displays. More technical details on this
coefficient can be found in Appendix A.

The second measure is a conjunctive (AND) measure.
In these tasks, processing is exhaustive (Sternberg,
1966). This requires a different intensity function than
the integrated hazard function. To this end, Townsend
and Wenger (2004b) have proposed an analogous
measure—the integrated reverse hazard function K(t)
(Chechile, 2011). This function gives the “conditional
probability density that processing completed in just
the last instant, given that it completes at or before t”
(p. 1020). The reverse hazard function is written as

k(t) = f (t)
F (t)

(5)
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and the integrated reversed hazard

K (t) =
∫ t

0
k(t′) dt′ (6)

the identity K(t) = lnF(t) (Chechile, 2011) greatly
simplifies computations. The AND capacity coefficient
is then defined as

CAND(t) =
[ ∑N

i=1KSi

]
KE

(7)

where KE is the integrated reverse hazard function for
performance with the face ensemble, and KSi are the
integrated reverse hazard functions for performance
with the single-target displays. More technical details
on this coefficient can be found in Appendix A. The
task of averaging (Experiment 1) is likely performed by
an exhaustive processing of the display and therefore
necessitates the application of the AND capacity
coefficient. Simulations (Baek & Chong, 2020) have
shown that exhaustive processing is needed for correct
averaging with displays of four or fewer items, which is
the case in the present study. In contrast, the task of
target detection (Experiments 2a, 2b, 3a, 3b) can be
accomplished by adopting a self-terminating (minimum
time) stopping rule (Miller, 1982; Raab, 1962), and the
disjunctive OR capacity coefficient is the appropriate
one.

The interpretation of the capacity coefficient for both
the OR and AND measure is based on the comparison
of performance to an unlimited-capacity independent
processing (UCIP) model, which predicts a C(t) = 1
(Townsend & Wenger, 2004b). The patterns by which
performance deviates from this value can inform us
on various types of processing capacity. If C(t) > 1,
performance is super-capacity, meaning that ensemble
representation of faces facilitates the perception of
its individual components. In this case, the channels
are dependent on each other, either due to a coactive
architecture or due to positive correlations between
independent channels (Eidels, Houpt, Altieri, Pei, &
Townsend, 2011; Fitousi & Algom, 2018). In any event,
super-capacity means that the signals from individual
faces interact with each other. If C(t) < 1, then capacity
is limited, meaning that ensemble representation
of faces hinders performance with each individual
component presented alone.

Townsend (Townsend & Nozawa, 1995; Townsend
& Ashby, 1983) provided substantial formal and
empirical evidence that aspects of a system’s capacity
(limited, unlimited, and super) are independent from
characteristics of architecture (serial, parallel) and the
stopping rule (exhaustive, self-terminating). But, there
are some cases in which architecture and the stopping

rule can predict capacity. For example, a parallel
system with positive interactions between channels
often results in super-capacity, whereas a parallel
system with negative interactions often culminates in
limited-capacity processing (Eidels et al., 2011; Fitousi
& Algom, 2018). Another example is exhaustive serial
systems, which are expected to be of limited capacity
(Townsend & Nozawa, 1997). Thus, results from
the capacity coefficient can provide insights into the
underlying architectures and stopping rules (Fitousi,
2019, Fitousi, 2021c).

Candidate architectures

The processing of face ensembles can be performed
according to at least three candidate strategies. The
first is a serial model in which faces are processed
one after the other. In the averaging task, this entails
a serial-exhaustive system because information from
all faces in the set should be considered to extract
the required summary statistics (e.g., average). In the
target-detection task, the candidate model is a serial
self-terminating architecture because the decision is
based on the first face detected. In both cases, no
redundancy gains are predicted, and the capacity
coefficient is expected to be smaller than 1 [Cand(t) < 1,
Cor(t) < 1], indicating limited capacity.

The second theoretical possibility is a parallel
system. The prediction for the averaging task is an
exhaustive-parallel system because all items in the
display should be processed to compute the average.
The channels in this system may incorporate (a) no
cross-channel correlation, (b) positive (facilitation)
correlation, or (c) negative (inhibitory) correlation. In
case (a), we can predict no redundancy gains because
there is no statistical facilitation (Raab, 1962) and
unlimited capacity (Cand(t)= 1). In case (b), redundancy
gains and super-capacity (Cand(t) > 1) are expected.
In case (c), redundancy losses and limited capacity
(Cand(t) < 1) are predicted. Negative interactions are
consistent with the possibility of crowding (Bouma,
1970) or suppression (Desimone & Duncan 1995).
According to the latter suppression model of attention,
competition between the neuronal activation of stimuli
in the visual cortex leads to sensory inhibition by
various areas of the visual cortex, including V2, V4,
MT, and MST. In the present case, it is predicted that
faces in multiple-item displays compete for neuronal
representation and therefore suppress each other. The
predictions for the target-detection task are similar, but
with the likelihood that processing is a self-terminating
process. Thus, in case (a), small redundancy gains are
expected due to statistical facilitation (Raab, 1962),
but capacity should be unlimited (Cor(t) = 1). In case
(b), large redundancy gains are expected along with
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super-capacity (Cor(t)> 1). In case (c), large redundancy
losses are predicted accompanied by limited capacity
(Cor(t) < 1).

The third model is a coactive system (Miller, 1982;
Townsend & Nozawa, 1995) in which evidence from
each face is accumulated into an integration node,
which then sums up activation from all faces (channels).
Response is emitted when activation in the integration
node breaks a given threshold. In the case of averaging,
the threshold might be set according to the standard
of comparison. Such a system has been recently
implemented by Utochkin, Choi, and Chong (2023)
in a two-layer neuronal network with a simple feature
layer and a pooling layer. Ensemble representations
in this model are conceived as population responses
in the pooling layer, which can decode various
statistical properties from population responses. The
coactive model predicts super-capacity (Cand > 1).
Simulations (see Appendix B) of redundancy gains
in a simple AND model show that these emerge only
when super-capacity exceeds a certain level. All of
these predictions are tested in three experiments.
Experiment 1 deploys an averaging task, while
Experiments 2 and 3 administer a redundant-target
task.

Experiment 1

This experiment implements a speeded averaging
task (Haberman & Whitney, 2007) that is embedded
within a redundant-target design (Won & Jiang, 2013).
Participants are presented with either a single-target
face or four-face ensembles and asked to decided
whether the average emotional expression is larger or
smaller than that of a standard. This design affords
the measurement of redundancy gains/losses and
the computation of the conjunctive AND capacity
coefficient. A critical issue in the processing of face
ensembles concerns the type of emotional expression
conveyed by the faces. Faces expressing negative
emotions (e.g., anger) may require less attention than
faces expressing neutral or positive emotions, maybe
due to their survival value (Eimer & Holmes, 2007).
Several studies (Horstmann & Bauland, 2006; Hansen
& Hansen, 1988; Öhman, Flykt, & Esteves, 2001)
have documented “an anger superiority effect” by
which angry faces are detected more efficiently than
happy or neutral faces in a crowd of faces. Moreover,
there is evidence that the type of emotion can affect
the averaging operation (Ji & Pourtois, 2018; Ji,
Pourtois, & Sweeny, 2020). To address this issue,
the present study administrated displays with happy
or angry faces to examine the impact of emotion
on the capacity and architecture of ensemble face
processing.

Methods

Participants
Fifty participants took part in this experiment

(mean age = 26.3, sd = 2.3, F = 34, M = 16).
Participants were recruited from Ariel University pool
of participants and compensated with a course credit.
The study was performed in accordance with the ethical
standards as laid down in the 1964 Declaration of
Helsinki. The experiments reported here received the
approval of the Ethics Committee of Ariel University
(AU-SOC-DF-20230205). All participants gave their
informed consent.

Stimuli and apparatus
The stimuli were two-dimensional (2-D) gray

images of artificial faces without hair or other external
features. The faces measured approximately 5.5 cm ×
4 cm. From a distance of 50 cm, the faces subtended
a visual angle 6.3° vertically and 4.6° horizontally.
These were created with Singular Inversions FaceGen
Modeller 3.2 (Inversions, 2008). The FaceGen software
deploys a three-dimensional (3-D) morphable model
of faces and has been used extensively in the literature
to generate artificial faces (Fitousi, 2021a, Fitousi,
2021b, Fitousi, 2020). One of its great advantages
is that it allows researchers to control for the level
of various facial dimensions (e.g., age, emotion) in a
parametric fashion (Blanz & Vetter, 1999). To create
the emotional face ensembles in this experiment, I first
generated a single front view of a young Caucasian
identity. I then changed the desired parameters of
happiness and anger by moving two corresponding
sliders across nine equally distanced steps on each
emotion, starting from the lowest value possible to the
highest. The resulting faces can be seen in Figure 1,
where the nine levels of emotion for happy (top panel)
and angry (bottom panel) faces are presented. The
angle, lighting, and other perceptual parameters of the
faces were held fixed. The “Sync Lock” option was
checked to afford synchronized contributions of texture
and shape. The faces were numbered on a 1 to 9 scale
according to the strength of emotional expression they
conveyed. The face with the highest level of emotional
expression received the value of 9. This numbering
system afforded the construction of an “emotion
scale” in order to produce face ensembles with a given
average.

Face-ensemble displays consisted of four faces, one
on each spatial quadrant (see Figure 2). Each display
presented variable degrees of emotional expression (e.g.,
anger) and had a known average that was either larger
or smaller than 5. Single-target displays consisted of a
single face, appearing in one of four possible quadrants.
The facial expression of this face could receive any
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Figure 1. (A) Increasing levels of facial happiness. (B) Increasing levels of facial anger. The middle face in each row (highlighted with an
arrow) served as a standard for comparison.

one of the values on the range 1 to 9 except that of
the standard, which was 5. Emotion (angry, happy)
was tested across participants. There were 16 unique
ensemble displays (see Figure 2), with the following
averages of emotion: 1.5, 1.75, 2.5, 3.25, 3.5 3.75, 4.5,
4.75, 5.5, 5.75, 6.0, 6.25, 6.5, 7.5, 8, and 8.5. So, for
example, a face display with an average anger of 6.0
was created by placing angry faces 8, 7, 6, and 3 in the
display. Each set was build to represent a given average,
and in most cases, there were no repetitions of values
in the set. Half of the displays had an average below
5.0, while the other half had an average above 5.0.
The total average of all displays was 5.0. The faces on
each display were arranged relative to a white fixation
point (1.5 cm diameter, which is 1.71°) at the top-left,
top-right, bottom-left, and bottom-right corners (see
Figure 2). The edge-to-edge horizontal and vertical
distances between neighboring faces amounted to 6 cm
(= 6.86°). The four images occupied an area of 12 cm
× 12 cm (= 13.68°).

Each experimental block consisted of 128 trials. Half
of the trials (64) were ensemble displays, while the
other half were single-target displays. In the ensemble
displays, all 16 possible averages mentioned earlier
were presented equally often. In the single-target
displays, all eight possible emotion levels created were
presented with the same frequency and could appear
equally often, at one of the four quadrants of the
screen. The type of emotion (happy or angry) was
manipulated across observers. Each observer performed
in 12 such blocks. In total, each observer completed
1,536 trials.

Procedure and design
Figure 2 illustrates the time course of a typical

trial. Each trial started with a fixation point for
500 ms, and then the average face (“standard”)
appeared on the screen for 1,000 msec, disappeared,

and the target display appeared until response. The
target display could be either a four-face ensemble
or a single-target face. The standard was presented
always at a fixed location at the top center of the
screen for 1,000 ms and then disappeared before the
target-display presentation. The standard face was
smaller in size than the target faces (5.5 × 4.5 cm).
The participant’s task was to indicate whether the
display’s average emotional expression (whether it
was an ensemble or a single face) was higher or lower
than that of the standard. The standard was fixed
and represented the average of all displays and faces
in the experiment, which was 5. Participants pressed
a right-hand key if the average of the display (or
single target) was larger than the standard, and a
left-hand key if the average of the display (or single
target) was smaller than the standard. Both speed and
accuracy were highlighted. Of the total 50 participants,
27 were allocated to a version of the experiment
with happy faces and 23 to a version with angry
faces.

Results

Data were analyzed using R statistical software
(R Core Team, 2017). The capacity analyses were
performed with the sft package (Houpt, Blaha,
McIntire, Havig, & Townsend, 2014). RTs slower than
5,800 ms or faster than 150 ms were removed from
analysis. The data of two observers were removed
because they did not comply with the required error
rate (less than 30%). One belonged to the happy face
group and one to the angry face group.

Averaging
Figure 3 presents mean RTs (across participants)

as a function of the judged set’s mean, separately for
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Figure 2. Experiment 1: The time course of a typical trial in the experiment. (A). Examples of redundant and single-target conditions
with happy faces. (B). Examples of redundant and single-target conditions with angry faces.
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Figure 3. Mean RTs (ms) as a function of judged set’s average in comparison to a standard of 5 (in arbitrary units of emotion). The
standard value is marked by a black arrow. (A) Single-target condition happy faces. (B) Single-target condition angry faces. (C)
Ensemble condition happy faces. (D) Ensemble condition angry faces.

single-target and four-target (ensemble) displays. As can
be noted, the patterns for single-target and four-target
displays are comparable for both happy and angry
faces. In all conditions, RTs decreased monotonically
as the distance between the display’s average and
the standard increased. This is a classic finding in
psychophysics (Dehaene, Dupoux, & Mehler, 1990;
Fitousi & Algom, 2020) that is often attributed to the
graded discriminability of stimuli.

One point to note is that the psychophysical
function relating RTs to sample-test distance looks
shifted to the left from where the peak RT is expected
(i.e., the actual reference face). This can reflect the
so-called amplification effect when the average feature
is overestimated due to biased sampling of more
salient items (Kanaya, Hayashi, & Whitney, 2018;
Iakovlev & Utochkin, 2021). In case of faces, more
intense facial expressions are likely to be amplified
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(Goldenberg, Weisz, Sweeny, Cikara, & Gross, 2021).
Interestingly, this bias is less salient in the error data
presented in Figure 4. The psychophysical function
is similar to that observed with RTs. Errors decrease
as the distance from the mean increases. For some

reason, the highest item in the single-target displays
in the error data exhibited a slight deviation from the
level of error expected. This anomaly does not occur
in the RT data, and I have no ready explanation for
it.

Figure 4. Error rates (%) as a function of judged set’s average in comparison to a standard of 5 (in arbitrary units of emotion). The
standard value is marked by a black arrow. (A) Single-target condition happy faces. (B) Single-target condition angry faces. (C)
Ensemble condition happy faces. (D) Ensemble condition angry faces.
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Figure 5. Experiment 1: Mean RTs (left) and mean error rates (right) as a function of emotion (angry, happy) and display type (single
target, ensemble). * p < 0.05, ** p < 0.01, *** p < 0.0001.

The resemblance between the single-target and
multiple-target (ensemble) RT patterns strengthens the
idea that these were subjected to the same cognitive
operation. This conclusion makes sense also when
considered from a mathematical perspective. Note
that the averaging operation is independent of the
number items (as long as it is greater than 0) and can be
applied even to a single item.1 The upshot is that the
brain extracts a summary value in the same fashion,
whether a single item or many items are presented, and
is doing so in a similar way. This gives currency to the
deployment of single-face displays in this and the next
experiment. The single-target condition is a necessary
condition for the application of the redundant-target
methodology and the capacity coefficient.

Redundancy gains/losses
Mean RTs in single- and four-face target displays

were compared (see Figure 5). Observers who
performed with happy faces exhibited a redundancy
loss, namely, slower mean RTs in the four-face displays
compared to the single-face displays, t(26) = −8.01,
p < 0.005. Comparable redundancy losses were
documented with error rates, such that more errors were
made with four-face displays compared to single-face
displays, t(26) = −6.20, p < 0.005. Observers who
performed with angry faces exhibited comparable
results. Redundancy losses were documented for RTs,
t(22) = −8.28, p < 0.005, and error rates, t(22) = −9.14,
p < 0.005. These results suggest that adding more
faces to the ensemble hampers rather than facilitates
performance. However, as demonstrated in the capacity
analysis and in Appendix B, this may not necessarily
dictate limited-capacity processing.

Capacity coefficient
The conjunctive AND capacity coefficientCand(t) was

computed for each observer according to Equation 7.

Figures 6A and 6B present the values of the capacity
coefficient for observers who performed with angry
and happy face displays, respectively. As can be
noted, all observers exhibited values of the capacity
coefficient that were above 1 for most of t. This was
tested statistically using the statistics developed by
Houpt and Townsend (2012) and implemented with
the sft R package (Houpt et al., 2014) at the individual
level.

The dedicated statistics (z-score) (Houpt &
Townsend, 2010) developed to assess the statistical
significance of the capacity coefficient was computed
for each observer. The null hypothesis was that the
observer performed according to the unlimited-capacity
parallel model (UCIP), which predicts Cand = 1 (Houpt,
Townsend, & Donkin, 2014). The test is two-sided.
All observers exhibited positive and significant values
of the statistics (all p < 0.05). These results imply that
Cand > 1; namely, performance was super-capacity
for all observers. These results suggest that averaging
is a highly efficient process, in the sense that adding
more faces to the ensemble facilitates rather hinders
performance. The capacity coefficient compares the
efficiency of the ensemble processing to the expected
efficiency based on the processing of the individual
faces in a parallel, exhaustive unlimited-capacity
system. An AND capacity larger than 1 (Cand > 1)
therefore supports the conclusion that the efficiency
of the ensemble coding exceeds that predicted by the
individual faces. This finding may seem at odds with
the redundancy losses documented. But it should be
noted that redundancy gains/losses are based on the
mean RT statistics, whereas the capacity coefficient
is a theoretically driven measure that is measured on
the entire RT distribution, and as such provides a
more sensitive and accurate measure of performance.
Moreover, in Appendix B, I outline a proof of existence
that a super-capacity system can generate either
redundancy gains or redundancy losses, depending on
the degree of its super-capacity.
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Figure 6. Experiment 1: The capacity coefficient of the AND type
CAND(t) for each participant. The line at CAND(t) = 1 is diagnostic,
since CAND(t) > 1 entails super-capacity, CAND(t) = 1 signals
unlimited capacity, and CAND(t) = 1 points to unlimited capacity.
All participants exhibited CAND(t) > 1 for most of t supported by
dedicated statistical tests. (A) Angry faces. (B) Smiling faces.

Discussion

The results of Experiment 1 showed that (a)
participants are capable of extracting the average
emotion of a set of faces, a finding that replicates
earlier studies (Haberman & Whitney, 2007; Son et al.,
2023; Yang et al., 2013), (b) the averaging operation is

slower and more error prone when more faces are added
to the display, but (c) processing capacity improves
rather than hindered by adding more faces to the
display, and (d) happy and angry face ensembles were
subjected to comparable processing mechanisms. The
capacity coefficient results suggest that processing is
held according to a coactive super-capacity architecture
in which every face in the ensemble contributes an
activation that is proportional to its distance from
the standard (Utochkin, Choi, & Chong, 2023). It is
consistent with the view that averaging of emotion is
not only a preattentive process that does not require
attention but rather a gestalt-like process, in which the
sum is greater than its parts (Haberman & Whitney,
2007; Leib et al., 2014). It is interesting to compare
these results to other studies that have shown that
ensemble processing of more items produced faster
RTs in averaging facial expressions (Cho et al., 2023)
and orientations (Cha & Chong, 2018; Robitaille
& Harris, 2011). In yet another study, using the
simultaneous-sequential paradigm, Attarha, Moore,
and Vecera (2014) have demonstrated an unlimited
capacity for ensemble processing of size. These studies
are essentially consistent with a super-capacity system,
because they show that processing is more efficient as
workload is increased. As I show in Appendix B, a
super-capacity system can produce opposite patterns
by which mean RTs either increase or decrease
with workload, depending on the magnitude of
super-capacity. Therefore, even the mean RTs patterns
documented here are consistent with the conclusion
that averaging is a highly efficient process very much
like a gestalt, where the individual items are processed
according to a summative-coactive architecture.

Experiments 2a and 2b

The goal of Experiments 2a and 2b is to test
performance in the classic target-detection task (Miller,
1982; Won & Jiang, 2013). As in Experiment 1,
observers were presented with displays of either single-
or four-target unfamiliar faces. However, in contrast to
Experiment 1, the observers’ task was that of detection
rather than averaging. Specifically, observers were
asked to categorize the display as conveying either
happy or angry emotion. Notably, all faces in a given
display posed the same identical expression (anger
or happiness) and in the same emotional intensity.
Thus, decision in this experiment can be based on the
processing of a single target. But the question of interest
is whether the observer benefits from the redundancy
in the ensemble displays. Because here observers can
stop processing the display once a target is found, the
effective stopping rule is self-terminating (minimum
time), and consequently, the disjunctive (OR) capacity
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coefficient is the appropriate measure of efficiency.
In this OR design, if processing is parallel unlimited
capacity, increasing the number of faces in the display
should result in better performance due to statistical
facilitation (Raab, 1962). In addition, the role of image
variability (Burton, Kramer, Ritchie, & Jenkins, 2016;
Fitousi, 2024) is also tested. In Experiment 2b, image
variability is induced, such that images of different
identities were presented, whereas in Experiment 2a,
this factor is removed, and each ensemble display
consisted of four replicas of the same identity.

Method

Participants
Sixty-eight participants were recruited from the

participants’ pool of Ariel University (mean age =
23.4, SD = 4.2). All participants reported normal
or corrected-to-normal vision. All participants gave
their informed consent. Half of the participants
were assigned to Experiment 2a and the other half
to Experiment 2b. The experiments reported here
received the approval of the Ethics Committee of Ariel
University (AU-SOC-DF-20230205).

Stimuli
Face stimuli were retrieved with permission from

the Karolinska Directed Emotional Face (KDEF)
archive (Lundqvist, Flykt, & Öhman, 1998). This
archive consists of dozens of facial identities that
appear as color images. The faces were photographed
in frontal view while displaying various emotional
expressions according to professional standards. I
randomly selected eight facial identities (four males
and four females) expressing anger or happiness. The
images were converted to grayscale photos using the
free GIMP software, and measured approximately
5.5 cm × 4 cm. Seen from a distance of 50 cm, the faces
subtended a visual angle of 6.3° vertically and 4.6°
horizontally. They were cut and placed in a standard
oval shape. In general, the displays were comparable
to those presented in Experiment 1 in terms of size
and appearance. In the four-target condition, four
identical replicas of the same facial identity in the
same emotional expression (e.g., angry) were arranged
on the display (top-left, top-right, bottom-left, and
bottom-right) around a white dot (1.5 cm diameter)
that served as a fixation point (see Figure 7). The
horizontal and vertical edge-to-edge distances between
neighboring images amounted to 6 cm. The four
images occupied an area of 12 cm × 12 cm. In the
single-target condition, a single image appeared in
one of the four possible locations (top-left, top-right,
bottom-left, or bottom-right). Thus, there were four

possible displays (see Figure 7). In total, there were 16
four-target unique displays (8 identities × 2 emotions)
and 64 single-target unique displays. These were created
by presenting one of the images at one of the four
quadrants. Multiple-face displays always presented
the same gender. Experiments 2a and 2b differed
only with respect to image variability, such that face
images in a multiple-face display were either replicas
of the same image, and therefore the same identity
(Experiment 2a), or were different images, and therefore
different identities (Experiment 2b). Identities in each
display were of the same gender and presented with
equal frequency across all displays.

Design and procedure
Design and procedure for Experiments 2a and 2b

were identical. In each experimental block, the number
of single-target and four-target trials was equated
by presenting each of the possible 16 four-target
displays four times (4 × 16 = 64), while single-target
displays were presented only once (1 × 64 = 64).
Thus, in total, each block consisted of 128 trials, of
which half (64) were single targets and half (64) were
four-target displays. In this way, the number of happy
and angry displays was also equated. Thus, the design
encapsulated the redundant-target critical trials for
happy and angry displays. Each participant completed
24 consecutive blocks of trials in two separate days of
testing. This amounted to 3,072 trials (2 × 12 × 128).
This considerably large number of trials is necessary
for conducting analyses on RT distributions, as is the
case with the capacity coefficient. Each experimental
session started with a short explanation and an
example. Both accuracy and speed were highlighted
by the experimenter. On each trial, observers were
asked to judge whether the display contained a happy
or an angry face(s) by pressing one of two buttons. A
short break separated each block. Each trial started
with presentation of a fixation point for 500 ms, then
a face display was presented on the screen until the
participant responded, then the screen was erased, and
after 200 ms, another face display was presented on the
screen. Happy and angry faces were randomly mapped
to two response keys “M” and “Z.” RTs were recorded
with an accuracy of 1 ms.

Results

Experiment 2a
RTs larger than 150 ms or smaller than 2,800 ms

were removed from analysis. Error rates amounted to
9.1% of the total trials. The top panel of Figure 8 gives
mean RTs and error rates as a function of number of
targets (one vs. four) and emotion (angry vs. happy).
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Figure 7. Experiments 2a and 2b: (A) Examples of single- and four-target displays of unfamiliar identities with no image variability in
Experiment 2a. (B) Examples of single- and four-target displays of unfamiliar identities, including image variability.
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Figure 8. Experiments 2a and 2b: Mean RTs (left) and percentage of error rates (right). Error bars are standard error of the mean. ***
p < 0.0001.

A two-way ANOVA with Emotion (angry, happy) ×
Target (one, four) showed a main effect of Emotion,
F(1, 33) = 12.35, MSE = 11318, p < 0.005, entailing
slower responses with angry (709 ms) compared to
happy (691 ms) faces. Most importantly, a main effect
of Target, F(1, 33) = 112.5, MSE = 27,556, p <
0.0001, underscored a significant redundancy loss, such
that, on average, performance was 28 ms slower with
four-target displays than with single-target displays.
The interaction of Emotion and Target was not
significant, F<1. Comparable analyses on error rates
mimicked the RT results. A main effect of Emotion,
F(1, 33) = 14.65, MSE = 0.01, p < 0.0001, showed that
angry faces elicited more errors than happy faces. Most
importantly, a main effect of Target, F(1, 33) = 59.75,
MSE = 0.01, p < 0.0001, documented redundancy
loss in error rates too. Participants committed more
errors with four-target displays than with single-target
displays. The interaction of Emotion and Target was
also significant, F(1, 33) = 4.85, MSE = 0.001, p <
0.05, reflecting larger redundancy losses for happy
faces, t(33) = 6.46, p < 0.0001, than for angry faces,
t(33) = 4.01, p < 0.001.

Experiment 2b

The same exclusion criteria on RTs as in
Experiment 2a led to removal of 7.6% of the data.
The bottom panel of Figure 8 gives mean RTs and
error rates in this experiment. A two-way ANOVA with
Emotion (angry, happy) × Target (one, four) showed
a main effect of Emotion, F(1, 33) = 45.22, MSE =
43658, p < 0.0001, which replicated the finding from
Experiment 2a, underscoring slower processing of
angry than happy face-displays. Most importantly,
a significant main effect of Target, F(1, 33) = 8.13,
MSE = 14258, p < 0.005, modulated by Emotion,
F(1, 33) = 24.52, MSE = 3838, p < 0.0001, indicated
the presence of a 31-ms redundancy gain for angry
face displays, t(33) = 3.71, p < 0.001, but no such
effect for happy faces, t(33) = 1.51, p > 0.05. Similar
analyses on error rates revealed a main effect of Target,
F(33) = 66.32, MSE = 0.020, p < 0.0001, that was
not modulated by Emotion, F(33) = 1.78, MSE =
0.0002, p = 0.19. In contrast to the RT data, this main
effect recorded substantial redundancy losses, such
that overall, error rates were higher with multiple-face
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displays than with single-face displays, irrespective of
emotion.

Experiments 2a and 2b differed only with respect to
the presence of image variability. While Experiment 2a
provided clear evidence for redundancy losses for
both speed and accuracy, Experiment 2b showed
redundancy gains for RTs only with angry faces
and substantial redundancy losses for accuracy.
Taken together, these results generally point to a
limited-capacity process. Recall that redundancy losses
found with identical-image displays can indicate a
serial or parallel system with negative (inhibitory)
interactions among its channels, thus supporting
a suppression model (Desimone & Duncan, 1995).
In contrast, the redundancy gain found for angry

faces in Experiment 2b, may support a horserace or
a coactivation model (Miller, 1982). However, there
is computational (Townsend & Nozawa, 1997) and
empirical (Fitousi & Algom, 2018) evidence that
redundancy gains can be still generated by a serial
limited-capacity system, and redundancy losses can be
generated by a super-capacity system (see Appendix B).
Thus, the ultimate arbiter to decide between these
candidate models should be the capacity coefficient to
which I turn now.

The capacity coefficient
Capacity analyses were held using the statistics for

the disjunctive (OR) capacity coefficient developed by

Figure 9. Experiments 2a and 2b: Individual-by-individual capacity coefficient Cor(t) for angry and happy faces in Experiment 1a (top)
and Experiment 1b (bottom). The line drawn at Cor(t) = 1 is diagnostic for limited-capacity Cor(t) < 1. The line drawn at Cor(t) = 1 is
diagnostic for extremely limited-capacity Cor(t) � 1.
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Houpt and Townsend (2012) and implemented with
the sft R package (Houpt et al., 2014) at the individual
level. The capacity coefficient was computed separately
for happy and angry face displays, experiments,
and participants. Figure 9 presents these capacity
coefficient functions. One can readily note that the
capacity coefficient in all cases and for all observers
was below the critical value of 1 along the entire
time range, irrespective of emotional expression or
image variability. This result strongly indicates limited
capacity. Moreover, a closer look at these values reveals
that the capacity coefficient values were mostly lower
than 0.5, a value that indicates extremely limited
capacity (Townsend & Wenger, 2004b). This comes as
a great surprise after the finding of super-capacity in
the averaging task in Experiment 1. Statistical tests
(Houpt & Townsend, 2010) were performed separately
for each participant, condition, and experiment. These
revealed that the capacity coefficient values were
significantly lower than those of a benchmark UCIP
(unlimited-capacity independent parallel) model for
all participants (all Zs < −41, p < 0.00001). These
results were robust across participants, conditions, and
types of displays and thus provide strong evidence for a
serial or parallel architecture with negative (inhibitory)
interactions among the faces in the display. These results
refute a coactive system with positive (faciliatory)
activations.

Discussion

The empirical patterns recorded in Experiments 2a
and 2b converged on the same theoretical conclusion,
that is, ensemble processing of emotional faces in the
redundant-target task is an extremely limited-capacity
process, irrespective of emotional expression and image
variability. First, except in one case (angry faces with
image variability), redundancy losses, rather than gains,
were documented in both RTs and accuracy rates.
Second, capacity coefficient values were consistently
lower than 1 (and mostly smaller than 0.5), indicating
extremely limited-capacity processing (Townsend &
Wenger, 2004b). These results are in marked contrast
to the super-capacity found in the averaging task
of Experiment 1. They suggest that averaging and
redundant-target detection are governed by different
mechanisms. The averaging task results support a
coactive system, or a parallel system with positive
interactions among channels (faces), whereas the
redundant-target results are consistent with a serial
or parallel system with negatively correlated channels.
These architectures are consistent with a suppression
model (Desimone & Duncan, 1995), according to which
competition between items in the visual field results in
mutual inhibition. They are also in line with (Fitousi,
2021c) recent findings with emotionally neutral faces.

These results may suggest that redundant-target
and averaging tasks are held differently. Averaging
is an automatic preattentive process, whereas
redundant-target detection is an attention-demanding
process. These redundant-target results are generally
inconsistent with those reported by Won and Jiang
(2013), who found redundancy gains rather than
redundancy losses. However, note that redundancy
gain/losses provide weaker evidence for capacity than
the capacity coefficient because (a) they are based on
mean RTs and not on entire RT distributions, and (b)
unlike the capacity coefficient, which is a theory-based
measure, their interpretation is not unambiguous
(Townsend & Nozawa, 1997).

The finding of extremely limited capacity with
unfamiliar faces is quite surprising given the super-
capacity observed in the averaging task. Previous
research (Awad, Emery, & Mareschal, 2023) has
documented important influences of familiarity on the
processing of face ensembles. Thus, the present results
certainly invite replication and generalization with
familiar faces.

Experiment 3a and 3b

The goal of Experiments 3a and 3b is to test whether
the extremely limited-processing capacity observed in
Experiments 2a and 2b also generalizes to ensembles of
familiar faces. Many researchers believe that familiar
and unfamiliar faces are processed in qualitatively
different ways (Bruce, Henderson, Newman, & Burton,
2001; Burton, Schweinberger, Jenkins, & Kaufmann,
2015). Familiar faces are handled at a semantic level,
whereas unfamiliar faces are treated at the image level
(Fitousi & Azizi, 2023; Fitousi, 2024). This critical
difference may be responsible for the robust finding
that performance with familiar faces is often faster and
more accurate than with unfamiliar faces. Moreover,
it has been shown that familiar and unfamiliar faces
activate separate brain loci (Natu & O’Toole, 2011).
The impact of familiarity on the processing of face
ensembles has been recently investigated (Awad, Emery,
& Mareschal, 2023). These researchers have shown that
when a familiar face appeared within an ensemble of
faces, perception was biased toward this face’s emotion,
regardless of its intensity. However, when all faces
were unfamiliar, the presence of any high-intensity
emotional face biased ensemble perception toward its
emotion. This suggests that ensembles with familiar and
unfamiliar faces may be subjected to different capacity
allocation strategies, a conjecture that will be tested
here with the capacity coefficient. To this end, I have
deployed the same methodology as in Experiments 2a
and 2b, with images of two famous Israeli
politicians.
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Method

Participant
A new sample of 58 participants (mean age = 22.3,

SD= 2.2) who did not take part in previous experiments
was recruited from the participants pool of Ariel
University. Twenty-four were assigned to Experiment 2a
and 34 to Experiment 2b. These experiments received
the approval of the Ethical Committee of Ariel
University (AU-SOC-DF-20230205).

Stimuli
Face images with frontal views of two famous Israeli

politicians, Binyamin Netanyahu and Yair Lapid,
were retrieved from Google’s photo search engine.
The faces conveyed either happy or angry emotional
expressions. Four different images were selected for each
facial identity (two of them conveyed anger and two
happiness). In total, there were eight different photos.
The images were converted to grayscale photos using
the free GIMP software. In the four-target condition,
four identical images of the same politician (e.g., Yair
Lapid) displaying the same emotional expression
(e.g., anger) were presented on the display (top-left,

top-right, bottom-left, and bottom-right) around a
white dot (1.5 cm diameter) that served as a fixation
point. In total, there were 16 four-target unique displays
(2 identities × 4 images × 2 emotions). In addition, I
created 64 single-target unique displays by presenting,
in each display, only one of the images at one of the
four quadrants of the screen. Experiments 3a and 3b
differed with respect to the presence of image variability.
The multiple-face displays in Experiment 3a consisted
of four replicas of the same image, whereas the
multiple-face displays in Experiment 3b incorporated
different images of the same identity and the same
emotional expression.

Design and procedure
These were identical to those reported in

Experiments 2a and 2b.

Results

Experiment 3a
RTs larger than 150 ms or smaller than 2,800 ms and

error trials were excluded. These amounted to 7.47%

Figure 10. Experiments 3a and 3b: Mean RTs (left panels) and percentage of Error rates (right panels). Error bars are standard error of
the mean. *** = p < 0.0001.
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of the total trials. Separate analyses for happy and
angry displays were performed to assess the presence
of redundancy gains. The top panel of Figure 10 gives
mean RTs and error rates in these conditions. Longer
RTs in four targets compared to single-target trials
were documented. These redundancy losses (rather
than redundancy gains) replicated the ones we found
in Experiment 2a with unfamiliar faces. This result
was corroborated by a two-way Emotion × Target
ANOVA, which revealed a main effect of Target, F(1,
23) = 119.7, MSE = 16,591, p < 0.0001, such that
four-target displays were responded to 26 ms slower
than single-target displays. The effect of Emotion was
also significant, F(1, 23) = 32.9, MSE = 40,931, p <
0.0001, entailing slower responses with angry (712 ms)
compared to happy (671 ms) faces. The interaction
of Emotion and Target was not significant (F < 1).

Comparable analyses on error rates exhibited similar
results to those observed with RTs (see right panel of
Figure 10). A main effect of Target, F(1, 23) = 31.59,
MSE = 0.004, p < 0.0001, which was not modulated
(F < 1) by Emotion, confirmed that participants
made more errors with four-target displays than with
single-target displays. The main effect of Emotion was
not significant, F(1, 23) = 3.64, MSE = 0.01, p = 0.06.
These results provide a full replication of the results
with unfamiliar faces in Experiment 2a.

Experiment 3b
The same trial exclusion criteria as in previous

experiments led to the removal of 9.2% of the data.
The bottom panel of Figure 10 gives mean RTs and
error rates in the experiment. A two-way ANOVA with

Figure 11. Experiments 3a and 3b: Individual-by-individual capacity coefficients for angry and happy faces in Experiment 1a (top) and
Experiment 1b (bottom). The line drawn at Cor(t) = 1 is diagnostic for limited-capacity Cor(t) < 1. The line drawn at Cor(t) = 1 is
diagnostic for extremely limited-capacity Cor(t) � 1.
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Emotion (angry, happy) × Target (one, four) exhibited
a main effect of Emotion, F(1, 33) = 32.02, MSE =
48,239, p < 0.0001, with angry faces being processed
less efficiently than happy faces. The effect of Task,
F(1, 33) = 7.08, MSE = 10,401, p < 0.05, which was
modulated by Emotion, F(1, 33) = 7.40, MSE = 2,413,
p < 0.05, revealed a redundancy gain for angry faces,
t(33) = 3.01, p < 0.05, but not for happy faces, t(33)
= 1.61, p > 0.05. This is the exact pattern observed in
parallel Experiment 2b. Comparable analyses on error
rates revealed an effect of Target, F(1, 33) = 66.88,
MSE = 0.019, P < 0.0001, which was modulated by
Emotion, F(1, 33) = 7.42, MSE = 0.001, p < 0.05.
In contrast to the RT results, this effect on error rates
pointed to the presence of redundancy losses that were
larger with happy, t(33) = 6.32, p < 0.0001, than with
angry, t(33) = 5.74, p < 0.0001, faces. These results
offer a full replication of those obtained with familiar
faces in Experiment 2b.

Taken together, the results of Experiments 3a and
3b replicated the exact patterns of Experiments 2a
and 2b, which were held with familiar faces. When
no image variability was present, redundancy losses
surfaced with both angry and happy faces and for
both RTs and error rates. When displays induced
image-variability, a redundancy gain was observed
for RTs with angry faces only, but redundancy losses
for errors resurfaced with both angry and happy
faces.

The capacity coefficient
The capacity coefficient was computed separately

for happy and angry face displays in an individual-
by-individual fashion. The results replicated those
found in Experiments 2a and 2b. As can be noted in
Figure 11, the capacity coefficient dwells below 0.5
along the entire time range, entailing extremely limited
processing capacity for both angry and happy emotional
expressions, irrespective of the presence or absence of
image variability. Dedicated statistical tests (Houpt &
Townsend, 2012) performed separately on the data of
each participant confirmed this observation. In all cases,
the capacity coefficient values were significantly lower
than those of a benchmark UCIP (unlimited-capacity
independent parallel) model (all Z values ranged
between −48.39 and Z = −40.61, p < 0.00001). These
results fully replicate the findings from Experiments 2a
and 2b. They provide strong evidence that the
redundant-target task with ensemble faces is extremely
limited capacity.

Discussion

Experiments 3a and 3b replicated the findings
from Experiments 2a and 2b with ensembles of

familiar faces. The results pointed to extremely limited
capacity in the redundant-target task, an outcome
that can be generated by either a serial or parallel
architecture with negative interactions. This in contrast
to the averaging task, which is characterized by
super-capacity.

General discussion

The present study tested the capacity and
architectural characteristics of two apparently opposite
tasks. The first task is averaging of the emotional
expression of face ensemble, in which the observer
should ignore the individual faces and extract the gist
of the display. The second is a redundant-target task,
in which the observer can make a response on the basis
of a single face and thus ignore the overall context.
The present results tell a clear story. The averaging can
be characterized as a super-capacity process, one that
benefits from increasing the number of faces in the
display, while the redundant-target task is an extremely
limited process, one that is compromised by increasing
workload. These two contrast outcomes suggest that,
although dealing with the same or similar ensembles,
the averaging operation and the target-detection
operation are sustained by different processing
architectures. Averaging is likely governed by a coactive
system, or a parallel system with positive interactions,
whereas target detection is sustained by a serial or
parallel system with negatively correlated channels.
These marked differences between the two tasks also
imply contrasting attentional demands. Averaging
is an automatic, preattentive, and efficient process,
whereas redundant-target detection is a controlled,
attention-demanding, and not efficient process.

The role of attentional resources allocated to
individual objects and to ensembles has been recently
modeled by Baek and Chong (2020). In their model,
attentional mechanisms, such as the zoom lens model
(distributed attention) and a spotlight model (focused
attention), were incorporated, along with early and late
noise mechanisms, into the averaging process. Baek and
Chong (2020) found that distributed attention led to
better averaging than focused attention. It might be
the case that the differences in processing efficiency
observed here between averaging and visual-search
tasks result from the deployment of different attentional
mechanisms. In particular, observers may have used
distributed attention in the averaging task and focused
attention in the redundant-target task, which in turn
led to differences in overall efficiency.

Another point that deserves a comment concerns the
question of whether observers automatically extract the
average emotion, even when they are not asked to do
so, as in the case of the redundant-target task. If that
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were the case, then super-capacity should have been
found in this task. The fact that this is not the case
suggests that averaging might be an optional process
that depends on task instructions but, once executed, is
characterized by super-capacity. An opposite question
can also be asked. Do observers pay attention to
individual items when asked to extract a summary
statistics? Consider the phenomenon of “robust
averaging” (Cha & Chong, 2018; Cho et al., 2023;
De Gardelle & Summerfield, 2011; Robitaille & Harris,
2011) – the tendency of observers to downweight or
even completely discount items that are outlying from
the mean of the distribution (Haberman & Whitney,
2010). This phenomenon may suggest that averaging
does allow for attention to be directed to individual
items. However, Utochkin, Choi, and Chong (2023)
demonstrated that robust averaging naturally occurs
during the pooling process. Thus, it is unnecessary to
pay attention to outliers to reject them.

A word is in order regarding the possibility that
observers in the redundant-target task could perform
the task by focusing on one target. This is unlikely
because the paradigm is designed to maximize
uncertainty in the location of the target. Single
targets appeared equally often in one of four possible
quadrants, so the observer could not know in advance
where the target is. Moreover, I documented substantial
redundancy losses and extremely limited capacity in
this task. These results refute the focusing hypothesis
because if it were correct, then increasing the load
from a single face to four faces should not have made a
difference.

Another issue that deserves a comment concerns
whether an averaging task with a single target is a
valid practice. The answer to this question is threefold.
First, mathematically speaking, this is an amply logical
operation. In principle, there is no obstacle in applying
the averaging operation x̄ =

∑n
i=1 xi
n to the single-item

case n = 1. In that event, x̄ =
∑1

i=1 xi
1 = x1. Second, the

empirical patterns adduced in Experiment 1 clearly
show that the RT patterns for comparing an ensemble
of faces to a standard are comparable to those of
comparing a single face to the standard. It is likely
that the underlying representations and processing
mechanisms for the extractions of summary statistics
are similar for single- and multiple-item displays. Third,
the application of the capacity coefficient and the
redundancy gain measures necessitate the incorporation
of a single-target condition. These measures are
based on comparisons, but their ultimate theoretical
resolution concerns the ensemble, not the single-target
condition.

The capacity measurements deployed here are based
on the central notion of workload and its expected
influence on processing efficiency. But there are other
related methodologies that address the temporal

efficiency of processing of multi-item ensembles
(Attarha & Moore, 2015; Attarha, Moore, & Vecera,
2016; Corbett, Utochkin, & Hochstein, 2023; Whitney
& Yamanashi Leib, 2018). For example, Attarha and
colleagues (Attarha, Moore, & Vecera, 2014) deployed
the sequential-simultaneous paradigm to assess the
processing capacity of circles with various diameters.
While computation of the mean across ensembles
was found to be of fixed capacity, computing the
mean in a single ensemble was consistent with an
unlimited-capacity processing. This result is in line
with the present findings. An important goal of future
research is to address the relations between the capacity
methodology used here and the sequential-simultaneous
paradigm of Attarha and colleagues. Other future goals
are to generalize the present conclusions to ensembles
of simple features such as line orientations and circle
sizes. Computational work can incorporate diffusion
processes at the local individual-item level to explain
processing at the global level.

Finally, the capacity coefficients and the hazard
functions have been applied here exclusively to RT
distributions, but it would be desirable to model
accuracy as well. Notably, the hazard functions
are model-free quantities that do not require any
assumptions regarding accuracy. One goal for future
research would be that of building parametric models
that take into consideration both response times and
accuracy.

Keywords: ensemble coding, extraction of summary
statistics, capacity coefficient, emotion recognition
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Appendix A

Estimation of the conjunctive (AND) capacity
coefficient in Experiment 1 was performed by first
deriving the integrated reversed hazard function K(t)
(Chechile, 2011) for each of the four single-target
conditions and for the ensemble (four-faces) condition.
Recall that there were four types of single targets, each
appearing on one of the four quadrants of the screen.
The identity K(t) = ln [F(t)] (Townsend & Ashby, 1983;
Luce, 1986) greatly assisted in computing these values.
Thus, the integrated reversed hazards for the four
single-target conditions are K1(t) = ln [F1(t)] , K2(t) =
ln [F2(t)] , K3(t) = ln [F3(t)] , and K4(t) = ln [F4(t)] . The
integrated reversed hazard function for the ensemble
is given by Kens(t) = ln [Fens(t)] . Applying Equation 7
gives the capacity coefficient:

CAND(t) = ln[F1(t)] + lnF2(t) + ln[F3(t)] + ln[F4(t)]
ln[Fens(t)]

= ln[F1(t) × F2(t) × F3(t) × F4(t)]
ln[Fens(t)]

(8)

Estimation of the disjunctive (OR) capacity
coefficient in Experiments 2a, 2b, 3a, and 3b was held
by first deriving the integrated hazard function H(t) for
each of the four single-target conditions and for the
ensemble condition. The well-known identity H(t) =
−ln [ 1 − F(t)]= −ln [S(t)] facilitated computation. The
integrated hazard functions for the four single-target
conditions are H1(t) = −ln [S1(t)] , H2(t) = −ln [S2(t)] ,
H3(t) = −ln [S3(t)] , and H4(t) = −ln [S4(t)] . The
integrated hazard function for the ensemble is given by
Hens(t) = −ln [Sens(t)] . Applying Equation 4 gives the
capacity coefficient:

COR(t) = − ln[Sens(t)]
− ln[S1(t)] − lnS2(t) − ln[S3(t)] − ln[S4(t)]

= − ln[Sens(t)]
− ln[S1(t) × S2(t) × S3(t) × S4(t)]

(9)
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Appendix B

The goal of these simulations is to show that either
redundancy gains or redundancy losses can emerge in a
super-capacity conjunctive (AND) system, depending
on the level of super-capacity. To this end, I have
simulated an AND system using the exponential
distribution (Townsend & Ashby, 1983; Luce, 1986):

f (t) =
{
λe−λt t > 0
0 otherwise. (10)

where the parameter λ determines the intensity of
processing. Larger values of λ entail more intensive
processing. This is also reflected in the fact that
the integrated hazard function of the exponential
distribution is equal to λ, H(t) = λ (see Eq. 3.18 in
Townsend & Ashby, 1983). I simulated RT distributions

for four single-target displays, assuming equal intensity
for all channels (targets) λ1 = λ2 = λ3 = λ4 = 0.33. A
super-capacity system is characterized by intensity that
is larger than the intensity of either of the single-targets
(Houpt, Townsend, &Donkin, 2014;Houpt et al., 2014).
To demonstrate the effect of super-capacity, I have used
two λ values for the ensemble display: a low-intensity
value that was 1.3 times larger than the single target’s
λ and a high-intensity value that was 2.7 times larger
than the single target’s λ. I then sampled 100 RTs from
those distributions and computed the mean for single
targets and ensemble RTs displays. I also computed
the conjunctive AND capacity coefficient. As can be
noted in Figure 12, when the intensity factor was low
(1.3), super-capacity was documented with redundancy
losses, but when the intensity factor was high (2.7),
larger super-capacity was registered with redundancy
gains. These results show that either redundancy gains
or redundancy losses can emerge in an AND system,
depending on the magnitude of super-capacity.

Figure 12. Simulations results. Intensity parameter (λ) of processing with ensemble displays was either 1.3 times larger or 2.7 larger
than that with single-target displays. (A) Redundancy losses obtained with the low-intensity factor (1.3), (B) super-capacity with the
low-intensity factor (1.3), (C) redundancy gains with the high-intensity factor (2.7), and (D) super-capacity with the high-intensity
factor (2.7).


