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This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift
removal. In the authors’ previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As
an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations.
Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed
algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline
wander data acquired from the Massachusetts Institute of Technology University and Boston’s Beth Israel Hospital (MIT-BIH) Noise
Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 uV (mean), 0.63 uV (median) and 0.6 uV
(standard deviation) per heartbeat on a 1 mV, , 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 uV (mean), 8.5 uV
(median) and 9.0 uV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows

10.7 uV, 11.6 uV (mean), 7.8 uV, 8.9 uV (median) and 9.8 uV, 9.3 uV (standard deviation) per heartbeat.

1. Introduction: Interpolation is a method of constructing new data
points within the range of a discrete dataset. It is a problem that
dates back to ancient civilisations, which were known to use
interpolation methods for analysing astronomical data [1]. The
mathematical basis of this method was not defined till later, as in
the work of Waring [2], which is today attributed to Lagrange.

Lagrange polynomials define the least degree of polynomial
curves that pass through a given set of coordinates x;,
However, as the order of Lagrange polynomials increase, any
small perturbations in coordinates results in large overshoots at
the end points as known in the literature as the Runge phenomenon
[3]. These oscillations may have no relation to the true nature of the
overall function itself and without rigorous error monitoring higher-
order polynomial interpolations degrade accuracy as well as
increase complexity of the algorithm.

Later, cubic spline (third order) functions were defined [4]. These
polynomials are smoothly connected to each other at the coordi-
nates x;, y; and since their continuous first and second derivatives
exist everywhere, the overall generated curve is smooth.
However, spline interpolation algorithms rely on matrix inversion
techniques for computing coefficients. Therefore, they are computa-
tionally demanding, and though efficient, they are not adaptable to
real-time systems without windowing techniques. More adaptable
are Rifman’s [5] and Keys’ [6] cubic convolution interpolation
methods which involve fitting piecewise cubic polynomials
(kernels) within intervals. Similar to cubic splines, these methods
are computationally complex and not suitable for certain real-time
system designs.

There are of course several algorithms and methods throughout
the literature, aiming to approximate smoother curves and better
fits. However, for real-time systems challenges still exist to
balance complexity versus accuracy, and to allow adaptability to
changing signal dynamics. The latter especially the case in biological
signal applications.

One example of such a biological signal is the electrocardiogram
(ECQG). Being prone to interference from physiological and environ-
mental sources has made ambulatory ECG, with a clinical accuracy, a
challenge. Techniques exist to remove each of these noise sources;
however, on occasions where signal integrity is crucial these
methods do not meet clinical standards. As discussed in our previous
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work [7], baseline wander can be removed by detecting fiducial
points and estimating the baseline wander by interpolating through
those points with a piecewise cubic hermite interpolation (PCHIP).
However, PCHIP is still somewhat complex; therefore, a new
method is investigated where baseline wander estimation is accurate-
ly achieved with less computational hardware resources required.

This Letter presents a new interpolation algorithm that allows a
better tradeoff between computational efficiency and signal distortion
than prior methods. ECG signals are used as our test application,
wherein we measure the distortion of the ST segment (an indicator
of heart malfunction) while estimating the baseline wander. These
baseline wander signals are low-frequency noise artefacts that can
be modelled as sinusoids with amplitudes up to 300 pV. This
Letter is organised as follows: Section 2 describes the overall
system concept and methods; Section 3 describes the artificial and
real test datasets; Section 4 presents and discusses results with
complex algorithms; and Section 5 concludes this Letter.

2. Methodology: The overall methodology to the proposed
algorithm is illustrated in Fig. 1. The main purpose of the
algorithm is to estimate curvatures (turning points) with a better
approximation than linear interpolation and in other cases simply
use linear interpolation to reduce computational complexity. The
algorithm is divided into two stages: (i) turning point detection
and (ii) weighted piecewise linear (WPL) interpolation.

2.1. Turning point detection: First, we define the slopes, M,
between adjacent interpolation points. These slopes are then used
to determine if a turning point exists. Here, we utilise two
criteria. The first condition checks if the slopes change sign such
that either a local/absolute minima or maxima exists. However,
this condition on its own is not enough to capture all turning
points such that on occasions, when adjacent slopes do not
change sign, there might be possible curvatures such as during
M; instant as shown in Fig. 1. Therefore, a second condition is
required such that even when the slopes do not change sign,
these turning points are detected accurately. We have found that
when the magnitude of adjacent slopes satisfies Condition 2 in
(1), the algorithm accuracy improves even though no local/
absolute minima or maxima are detected.
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During noisy conditions, it is harder to detect interpolation points
as for every other method. Therefore, filters have been utilised to
crudely remove noise artefacts and detect these points as reported
in our previous work [7]. Once these points are located, turning
point conditions focus on reducing random errors associated with
the interpolation method. On the contrary, when there is no
turning point detection, the algorithm uses linear interpolation to
improve computational efficiency of the overall algorithm

Condition 1 — M, | >0& M, <0 || M, ; <0& M, >0

3 3 1
Condition 2 — ) * [ M_;| > |M,| HZ * |M;| > |M,;_,| M

2.2. Interpolation methods

2.2.1 Linear interpolation: This method only requires current slope,
M;, and a fraction of this slope is added for every interpolation point
in between y; and y;,. Therefore, the number of operations required
is minimal and the algorithm can interpolate both uniformly and
non-uniformly sampled data since interpolation is based on addition
operation and the only condition is to meet x;,, v;+; coordinates. In
Fig. 1, linear interpolation occurs at intervals M 5 456

2.2.2 WPL interpolation: An improvement to linear interpolation is
achieved when a turning point is detected as shown in Fig. 1.
Following this detection, the distance between x; and x;., is calcu-
lated and this interval is divided into three equal smaller segments.
A counter checks this segment distribution and on events where the
distance cannot be divided accurately, a compensation factor is
added to the final sample such that x;,{, y;+; coordinates are met.
As mentioned in linear interpolation, this characteristic shows that
both uniformly and non-uniformly sampled data can be interpolated
and in each of these segments WPL interpolation is achieved where
every clock cycle, the corresponding segment slopes H; , H; , H;,
are added to the previous sample as such in linear interpolation.
The first segment’s slope, Hil, is the average of M;_; and M,
which estimates the concavity/convexity with its past knowledge.
The second slope, H;, is defined as M; and the last H;  is shown
as defined in (2). The error function of the WPL interpolation in
this case are bounded by M; and M;., slopes and though limited
to three segments, the algorithm could be segmented further with
increased complexity

M, +M,
H =M Ty My b =M -, ()
1 2 2 3 1

ECG SIGNAL WITH BASELINE WANDER

SLOPE
GENERATION
M, M,

TURKING POIN
DETECTION

YES,
WEIGHTED P.L LINEAR
INTERPOLATICH INTERPOLATION]

! ]

HHH, M,
INCREMENTS INCREMENTS

INTERPOLATION OF DETECTED FIDUCIAL POINTS
TO ESTIMATE BASELINE WANDER

BASELINE WANDER REMOVED ECG SIGNAL

el ol

a b

COUNTER

Fig. 1 Weighted piecewise interpolation methodology showing
a Example input signal

b Algorithm flowchart

¢ Illustration of concept
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3. Test data: To test our algorithm we use two sets of data:
synthetic and real data. The former models ECG baseline wander,
whereas the latter is real data that we shall describe. We first
generate interpolation points that are realistic isoelectric fiducial
points that define the baseline wander [7]. These fiducial points
are generated over 2243 heartbeats of the Massachusetts Institute
of Technology University and Boston’s Beth Israel Hospital
(MIT-BIH) Arrhythmia Database signal 100 m.mat. These points
are therefore realistic representations of non-uniformly distributed
interpolation points for baseline wander estimation and are
therefore used on both synthetic and real data.

3.1. Synthetic data: Baseline wander can be modelled as a sinusoid
around 0.15-0.3 Hz [8] that increases with exercise. Therefore,
synthetic datasets are generated with 1 mV,_, sinusoids each with
fundamental frequencies that change from 0.05 to 0.7 Hz
corresponding to a respiration rate of 3-42 per minute. These
sinusoids are sampled at 360 Hz and last for 30 min (i.e. ~650 k
samples).

3.2. Real data: Real data is obtained from the MIT-BIH Noise
Stress Database [9]. These datasets (BWMI.mat and BWM?2.mat)
are baseline wander recordings, sampled at 360 Hz with a gain of
200 V/V. Each recording lasts for 30 min (i.e. ~650 k samples)
and the fast fourier transform (FFT) of these signals show that
the respiration frequency is mostly around 0.1 Hz with white
Gaussian noise present throughout the whole sample set. Owing
to this white noise, the baseline wander signals have been filtered
with a 16-point moving average filter prior to testing. This filter
order was deemed sufficient to reduce the white noise below 5
uV in worst conditions. Otherwise, the noise floor is defined by
the white noise within the recorded signal itself making it
impossible to test interpolation methods thoroughly.

4. Results and discussion

4.1. Synthetic data: Fig. 2 compares three different interpolation
methods: linear, cubic spline and our proposed interpolation
method, when applied to sinusoidal baseline wander signals.
Among all frequencies, WPL interpolation yields better accuracy
when compared with linear interpolation alone. However, as the
frequency of the sinusoids increase, all three algorithms’
performance degrades. This is due to there being less
interpolation points per period available. When the respiration
rate increases, this reflects an increase in pulse rate, maintaining a
ratio of ~1 breath for every 3—4 heartbeats [10] and on successful
detection of fiducial points as in our previous work [7] at least
9-12 interpolation points should be located per period of the
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Fig. 2 Synthetic data; mean and standard deviation of RMS errors per
heartbeat of different interpolation methods

baseline wander. Using the 100 m.mat signal however, the heart
rate of the patient is around 72 bpm, and as the frequency of the
synthetic data increases less interpolation points can be used per
period; therefore, we see a degradation in accuracy.

Fig. 3 shows two sinusoids at different frequencies with their
sample-by-sample errors for both WPL and linear interpolation.
This shows that WPL interpolation successfully estimates curva-
tures when compared with linear. Even though, the algorithm
does not perform better compared with cubic spline interpolation,
the complexity required is significantly reduced without requiring
second derivative calculations and triangular matrix solving for
determining the polynomial coefficients.
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4.2. Real data (MIT-BIH): As described, the algorithm is also tested
on baseline wander signals acquired from the MIT-BIH Noise
Stress Database. Table 1 shows that BWM1 and BWM2 results
differ. When we observed these two signals, BWMI signal has a
higher standard deviation (93 versus 36) and a higher kurtosis
(15.6 versus 4.3) indicating BWMI1 signal varies more in
amplitude and peakedness which would make it more difficult to
interpolate. Possible causes of this variance can be due to gender,
stress test conditions and lung capacity since baseline wander
occurs due to the impedance change seen by the amplifier as
mentioned in the works of Friesen and et.al. [8]. Also, when
comparing interpolation methods, we focused on both root mean
square (RMS) and maximum errors since the baseline wander can
be modelled as a sinusoid, RMS error would carry good measure
of its effect, whereas maximum error seen during ST segment
carries crucial information.

As mentioned in Section 3.2, the fundamental frequency of these
signals is mostly around 0.1 Hz. On occasions where the respiration
rate increases, the errors become more comparable with the residual
Gaussian noise errors present. Fig. 4 shows a 0.12 Hz respiration
signal with residual Gaussian noise comparable with the error
results at 0.4 Hz respiration rate. This is due to the fact that, since
less interpolation points can be used, any high-frequency content
cannot be captured due to the Nyquist sampling theorem.
Therefore, not all of the errors reported in Table 1 are due to
interpolation errors.

Fig. 5 shows that for almost all curves the algorithm results in
smaller errors than linear interpolation except for one case, where
an overshoot occurs, whereas Fig. 6 shows that the histogram of
errors is more spread for linear interpolation, while WPL interpola-
tion’s spread more closely resembles that of cubic spline interpol-
ation. In addition, these figures comply with American Heart
Association and International Electrotechnical Commission stan-
dards which allow a maximum error of 100 uV for clinical ECG
systems [11]. Also, Fig. 6 histogram results and Table 1 results
show that RMS errors per heartbeat are in accordance with
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Fig. 3 Comparison of our algorithm with linear interpolation using a 1 mV,,_, sinusoidal signal. Signals are denoted as sinusoidal (green), linear interpolation

(blue), WPL interpolation (red). Shown are

a 0.3 Hz sinusoid response

b Sample-by-sample error analysis (linear versus WPL interpolation)
¢ 0.5 Hz sinusoid response

d Sample-by-sample error analysis (linear versus WPL interpolation)
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Table 1 Real data — RMS and maximum error per heartbeat and ST segment

Interpolation method Signal, Hz RMS error, uV per heartbeat” Maximum Error, pV per ST segment®
u Median o u Median o
Linear BWMI1 14.8 10.6 13.1 28.8 21.7 25.1
BwM2 8.4 7.1 5.5 16.2 14.5 9.7
Cubic spline (windowed N=3) BWM1 13.5 9.2 14.2 26.1 19.3 21.8
BwWM2 7.9 6.4 54 15.3 13.6 8.0
WPL BWMI1 13.7 10.0 12.7 26.8 19.8 22.1
BWM2 8.1 6.9 52 15.5 13.7 8.6
42243 Heartbeats detected via MIT-BIH Arrythmia Database (100 m.mat)
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Fig. 4 Error analysis between respiration rate versus residual Gaussian noise. Signals are denoted as real baseline wander (green), linear interpolation (blue),

WPL interpolation (red). Shown are
a BWMI1.mat response
b Sample-by-sample error analysis (WPL interpolation)

maximum ST segment errors. Even though all of these methods
comply with the standards, in the event of missing fiducial point
detections these errors would increase. This is also similar to
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Fig. 2 result; as the fiducial point count remained constant,
frequency increase of the baseline wander degraded system
performance due to decreased sampling rate.
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Fig. 5 Comparison of our algorithm with linear interpolation with real baseline wander signals (BWMI1.mat, BWM2.mat). Signals are denoted as real baseline

wander (green), linear interpolation (blue), WPL interpolation (red). Shown are

a BWMI.mat response

b Sample-by-sample error analysis (linear versus WPL interpolation)
¢ BWM2.mat response

d Sample-by-sample error analysis (linear versus WPL interpolation)
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Fig. 6 RMS and maximum error per heartbeat/ST segment histogram results of real baseline wander signal (BWM1I.mat). Shown are for

a Linear interpolation
b Cubic spline interpolation
¢ WPL interpolation

Table 2 Comparison in computational complexity between different interpolation methods

Interpolation method

Number of operations

Additions Multiplications Conditions Memory
Linear per sample 1 - - 2
per fiducial® 2 1 - 4
Cubic spline (windowed N=3) per sample 10 14 3 16
per fiducial® 10+ 12N 10+ 10N 12 +20N 4
WPL per sample 2 - 4 2
per fiducial® 6 6 4 12

Fiducial points are detected every 100 samples under normal conditions.

4.3. Complexity: As the linear interpolation takes only two
coordinates, the complexity of the WPL interpolation and cubic
spline increases due to past knowledge requirements. In the case of
WPL interpolation, the complexity of the algorithm is an additional
slope calculation, interval segmentation and piecewise slope
generation. As fiducial points are non-uniformly sampled
depending on heart rate and characteristics (P, QRS and T waves)
as mentioned in [7], an accurate complexity measure is hard to
achieve. However, under normal conditions an estimation of
interpolation point generation per 100 sample is a reasonable
estimate. Table 2 shows the complexity requirements for each
interpolation method under this assumption. As can be seen, WPL
interpolation requires eight if statements, eight additions, two shift
operations and four multiplications to generate a piecewise
interpolation. The actual computational requirement on the other
hand is much lower since the algorithm utilises these resources
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only when a turning point is detected. When we quantify the
complexity measure of cubic spline interpolation, a single sample
generation requires 14 floating point multiplications, 10 additions
and 3 conditions [12] and also requires the solution of an Nx N
matrix to evaluate the second derivatives, where N is the window
size defined for cubic spline interpolation. Therefore, the
polynomial approach needs much more complexity; however, the
advantages in return such as the continuity of the interpolation
estimation get disturbed by the quantisation noise and the accuracy
results do not show an effective improvement.

5. Conclusion: In this Letter, we have described a computationally
efficient interpolation algorithm that is suitable for real-time ECG
baseline wander estimation. Using both synthetic and real data
(from the MIT Noise Stress Database), we have shown that WPL
interpolation is more accurate than linear interpolation, more
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computationally efficient than cubic spline interpolation and in
compliance with clinically valid diagnosis.
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