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Abstract: Background/Objectives: Identification of human remains is of utmost importance
for criminal investigations and providing closure to the families. The reconstruction of a
biological profile of the individual will narrow down the list of candidates for identification.
From another perspective, facial approximations performed by a forensic artist can provide
investigative leads, with the identity being confirmed by primary or secondary methods of
identification. In recent years, DNA analysis has evolved, trying to create a portrait of the
perpetrator/victim based on External Visible Characteristics (EVCs), the color of the eyes,
hair, and skin and Biogeographical ancestry (BGA), called DNA phenotyping. Despite
these advances, currently, there are no studies integrating the biological profile performed
by forensic anthropologists, the facial approximation created by forensic artists and EVCs
determined by DNA. The goal of this work was to integrate these three investigative leads
to enhance the possibility of human identification. Methods: Five donated remains from
Mercyhurst were studied through these approaches: reconstruction of biological profile,
facial approximation and estimation of EVCs based on previous studies. Results: Our
results indicated the feasibility of integrating this biological profile and EVCs data into
the facial approximation developed by the forensic artist, aiming to an enhance portrait
of the remains. In a second phase of this project, the accuracy of the integrated facial
approximation will be assessed. Conclusions: This study pointed out the importance of
an interdisciplinary approach towards the identification of human remains, as well as the
combination of current methods with new technologies.

Keywords: biological profile; facial approximation; DNA phenotyping; integration

1. Introduction
When human remains are found, the first step in the identification process is to re-

construct the biological profile of the individual, which consists of a broad description of
the deceased regarding population affinity, biological sex, age and stature. The reconstruc-
tion of the biological profile of the skeleton is one of the pillars of forensic anthropology
and provides critical information in the identification of unknown human remains. Each
component (population affinity, biological sex, age and stature) relies on established mor-
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phological and/or metric methods. From all the biological profile components, biological
sex and age are the most relevant for narrowing down the list of candidates for the identity.

Estimation of population affinity remains one of the most challenging aspects of
the biological profile. Hefner’s method for population affinity estimation [1] as well as
Hefner and Ousley [2] rely on a combination of nonmetric cranial traits and discrim-
inant function analysis. Hefner’s approach uses a probabilistic framework to classify
individuals into populational groups based on cranial traits. Fordisc, a software program
developed by Ousley and Jantz [3], is another widely used tool for population affinity
estimation. Fordisc employs discriminant function analysis to classify individuals based
on cranial measurements (although postcranial measurements can be used, they generally
are not very informative). The software allows forensic anthropologists to compare an
unknown individual’s measurements to these reference groups, providing a statistical
probability of group membership. While Fordisc is a powerful tool, its accuracy depends
on the availability of population-specific reference data and the appropriateness of the
comparative samples.

Biological sex estimation is most accurately determined by the os coxae, namely the
ventral arc, subpubic concavity and medial aspect of the ischiopubic ramus, as described by
Phenice [4]. Klales et al. [5] reported a revised scoring system for these traits that improved
reliability and reduced observer error. Cranial morphology also provides informative sex
indicators, including the nuchal crest, mastoid process and supraorbital margin. Walker [6]
developed a probabilistic approach to sex estimation from cranial features that has been
tested and validated on several populations. MorphoPASSE [7], is a computer program for
sex estimation relying of the scoring of pelvic and cranial traits for sex estimation, which is
widely used nowadays.

Different methods are used to estimate age-at-death for juveniles and adults. Age
estimation methods for juveniles rely on growth and developmental changes in bones
and teeth. Whilst age estimation in adults relies on degenerative changes in the skeleton.
Most widely used adult age estimation methods are the Suchey–Brooks method of pubic
symphysis [8] and the Lovejoy et al. [9] system for the auricular surface. Several authors
have explored the use of cranial sutures obliteration for age estimation [10,11]. However, all
methods utilizing cranial sutures closure have shown a poor correlation with chronological
age [12]. İşcan et al. [13,14] developed a phase-based system that evaluates changes
in the costal cartilage surface at the sternal end of the 4th rib. This method has been
validated in multiple populations and is particularly useful for its precision in middle-aged
and older adults. Hartnett [15,16] introduced revised standards for estimating age from
the pubic symphysis and sternal rib ends that provide increased accuracy and restrict
interobserver error.

Overall, the biological profile of the skeleton remains a vital component in forensic
anthropology. While traditional methods are a good basis, ongoing research and technolog-
ical advancement continue to improve their precision and applicability. The integration
of anthropological analysis with other methods of identification such as genetic analysis
and forensic art techniques could help overcome the current limitations of each group of
techniques individually.

Another traditional method often employed to assist with the identification of human
remains is forensic art. Forensic art is a broad and diverse discipline offering a wide range
of forensic techniques to assist with suspect and victim identification in a law enforcement
context. Its primary focus is to generate investigative leads by triggering recognition
through the creation of facial images which enable other forensic disciplines, such as DNA
analysis, to make legally valid identifications [17].
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Forensic facial approximation is a forensic art technique that assists identification
efforts by simulating the in-life appearance of an unidentified decedent. This is a highly col-
laborative effort where the forensic artist works in tandem with other forensic professionals
such as pathologists, forensic anthropologists and law enforcement investigators who pro-
vide information on biological sex, population affinity and cause and/or manner of death.
It is based on a procedure of approximating the soft tissue contours of the face using statis-
tical tissue depth data. The morphological information of the skull provides the underlying
architecture of the development of the soft tissue features. These facial approximations can
be developed in several ways including two-dimensional and three-dimensional formats.

While forensic facial approximation is not a conclusive means of identification, it
serves as a means of expediting the investigative process while investigators await more
conclusive determinations of identity. The forensic facial approximation process may
serve as a means of generating leads when other forensic avenues of identification have
been exhausted. Its function is to generate leads rather than serve as the primary means
of identification.

As one of the other primary methods of identification, DNA analysis from human
remains could be crucial in cases of missing persons and disaster victim identification [18].
As a resilient molecule, DNA degrades gradually in hard tissues, such as bones and teeth,
with extraction of the DNA being possible under favorable conditions [19]. However, envi-
ronmental factors could affect the remains, leading to problems of degradation, inhibition
and contamination of DNA and hampering the possibility of obtaining a STR profile [20].
Additionally, as more time passes since the disaster or when the person went missing,
it is possible that less ante-mortem samples from relatives or the person itself would be
available [21]. In these cases, other means of identification are required. Single Nucleotide
Polymorphisms (SNPs) have been emerged as potential solutions to these problems [22].
SNPs are nucleotide substitutions, insertions or deletions that are normally biallelic with
low mutation rates and high heritability [23–25]. Moreover, the small size of their PCR
amplicons makes them useful to analyze in cases of degraded or scarce DNA. Based on
them, it has been possible to develop assays for the prediction of Externally Visible Charac-
teristics (EVCs) and biogeographical ancestry (BGA) [26,27], referred to as forensic DNA
phenotyping (FDP). As a result, FDP could be also useful in missing persons’ investigations
and in the identification of human remains [28].

In this study, we chose to apply the HIrisPlex-S system for the prediction of eye, hair
and skin color [26]. It consists of 41 DNA SNPs: 24 included in the original HIrisPlex
assay and 17 SNPs investigated in another analysis to complement the skin color. It was
carried out based on this original protocol, with SNaPshot™ (Single Based Extension
(SBE) and Capillary Electrophoresis (CE)). The results of the analysis were introduced
in the open-source software available at https://hirisplex.Erasmusmc.nl/ (accessed on
25 April 2025) to evaluate the prediction probabilities for three iris colors, four hair colors
and five skin color categories [26].

These three techniques independently showed different successes in aiding with
the identification of human remains, providing investigative leads. However, currently,
there are no studies assessing the combination of these methods. Overall, the aim of this
study was to integrate a forensic anthropology biological profile, facial approximation by a
forensic artist and forensic DNA phenotyping to improve human identification.

2. Methods and Materials
2.1. Samples

Five skeletons from the Donated Collection of the Department of Applied Forensic
Sciences at Mercyhurst University were included in this study.

https://hirisplex.Erasmusmc.nl/
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2.2. Anthropological Analysis

Population affinity, biological sex and age-at-death estimations were conducted for
the five individuals included in this project.

Non-metric population affinity was estimated using six macromorphoscopic traits
described in Hefner [1] and the optimized summed scored attributes (OSSAs) method
outlined in Hefner and Ousley [2]. Metric analysis for population affinity estimation was
conducted using twenty-six standard cranial measurements recorded from an individual
which were compared to individuals of known sex and ancestry through linear discriminant
function analysis in FORDISC 3.1 [2,3] following the guidelines outlined in Ousley and
Jantz [29].

Non-metric sex estimation was based on features of the os coxae and cranium, using
ordinal scores of the 12 variables (2 unilateral and 2 binary skull traits, as well as 3 bilateral
pelvis traits) and the random forest classification provided by MorphoPASSE [7].

For age estimation, the pubic symphysis, auricular surface and cranial sutures were an-
alyzed using the computer-based age estimation program ADBOU, which utilizes transition
analysis [30,31].

Stature (though not related to the facial approximation) was estimated using
FORDISC 3.1 [2,3].

2.3. Bone Samples for DNA Analysis

Bone fragments of approximately 2 × 2 cm were collected from the femoral diaphysis
for the five individuals using a Stryker 810 Autopsy Saw (Stryker, Portage, MI, USA).

2.4. Facial Approximation

The process of developing forensic facial approximations for the five unknown skeletal
samples was initiated by three-dimensionally scanning the remains and generating a virtual
3-D model of each of the skulls. The scans contained both the mesh and texture data of
the skulls facilitating the creation of virtual replicas of the skulls using a 3-D modeling
application (Autodesk 3ds Max).

Multiple tissue depth data sets were then researched based on the sample profiles to
ensure the most accurate soft tissue approximations. The Rhine and Moore tissue data
sets for normal male and female, European-derived, samples were selected for this study.
Appropriate tissue depth markers were created and placed at various craniometric land-
marks on each of the skulls based on Karen Taylor’s two-dimensional facial reconstruction
techniques [32].

The skulls were then aligned in the Frankfort Horizontal Plane to minimize perspective
distortion. Frontal and lateral 2-D images were rendered and exported in a lossless format
(.PNG). A scale was generated to facilitate accurate scaling of exported images in a digital
imaging application (Adobe Photoshop).

The frontal and lateral images were aligned to correspond to one another to facilitate
the development of two-dimensional frontal and lateral facial approximations in concurrent
fashion. Empirical data from the skull was gathered to locate phenotypic traits on the
splanchnocranium. The lateral projection of the nose was calculated using data based on
the anterior nasal spine and Dr. Robert George’s technique for lateral projection [33].

2.5. DNA Isolation from Bone Samples

A diamond cutting disk was used to cut femur bones samples into smaller pieces.
Then, the bone pieces were mechanically ground using an agate mortar and pestle and
were divided into aliquots of approximately 200 mg each. DNA was isolated from the
bone aliquots by using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) with
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some modifications to the manufacturer’s instructions. First, 180 µL of ATL buffer plus
20 µL of proteinase K were added to each sample and they were mixed thoroughly by
vortex. The resulting solution was then incubated (overnight) under agitation at 56 ◦C
until the tissue was completely lysated. The following day, 200 µL of AL buffer was
added and mixed by vortexing. Then, 200 µL ethanol (100%) was added to the solution
and mixed again by vortexing. The solution was transferred to a DNeasy Mini Spin
column placed in a 2 mL collection tube and centrifuged at 6000× g for 1 min. The
flow-through was discarded, and the column was placed in a new 2 mL collection tube.
Next, 500 µL of AW1 Buffer was added, and the column was centrifuged at 6000× g
for 1 min. The flow-through was discarded, and the column was placed in a new 2 mL
collection tube. Later, 500 µL of AW2 buffer was added, and the column was centrifuged at
20,000× g for 3 min. The flow-through was discarded and the column was centrifuged one
more time at 20,000× g for 1 min to eliminate the ethanol residues. The flow-through was
discarded, and the column was placed in a new 1.5 mL tube. Then, 35 microliters of AE
buffer were added directly onto the DNeasy column’s membrane and incubated for 1 min
at room temperature. Finally, the column was centrifuged at 6000× g for 1 min to elute the
DNA. The resulting DNA samples were stored at −20 ◦C.

As preventive measures to avoid DNA contamination of the samples, the whole
molecular biology workflow, from DNA extraction through sequencing, was performed
under sterile working conditions: working under a biological safety cabinet II UV-sterilized
before and after being used, utilizing new sterile material such as pipette tips with filters,
nitrile gloves discarded after one single use and utilizing molecular-grade sterile water.

2.6. DNA Quantification

The DNA samples were quantified by using the Qubit dsDNA HS Assay Kit (Invitro-
gen, Life Technologies, Carlsbad, CA, USA), according to the manufacturer’s protocol.

2.7. Hair and Eye Color Genotyping System Protocol

For the genotyping of hair and eye color, we used the HIrisPlex system. The HIrisPlex
system is based on the evaluation of 23 SNPs and 1 insertion/deletion (INDEL) polymor-
phism from 11 genes [34]. All the marker details, primer sequences, and concentrations are
provided in Table 1. PCR amplification of all SNPs was performed in a single multiplex
PCR assay with a total volume of 12 µL containing PCR primers, concentrations described
in Table 1, 1 µL genomic DNA isolated from bones (1 ng/µL), 1X PCR buffer (Applied
Biosystems. Waltham, MA, USA), 2.7 mM MgCl2 (Applied Biosystems), 200 µM of each
dNTP (Promega Corporation. Madison, WI, USA) and 0.5 U AmpliTaq Gold 360 DNA
Polymerase (Applied Biosystems). The thermocycler PCR parameters were set as follows:
95 ◦C for 10 min; 33 cycles of 95 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 30 s and a final elonga-
tion phase of 72 ◦C for 7 min. The PCR products were purified using ExoSAP-IT Express
(Applied Biosystems) and incubated at 37 ◦C for 4 min and 80 ◦C for 1 min. The multiplex
SBE (single base extension) was carried out for all 24 products at the same time in a single
multiplex reaction using 2 µL of the purified PCR product, 2 µL of the SBE primer mix
(final concentrations of each SBE primer in Table 1) and 1 µL of the ABI Prism® SNaPshot
Multiplex Kit (Applied Biosystems) with the following thermocycler parameters: 96 ◦C for
2 min; 25 cycles of 96 ◦C for 10 s, 50 ◦C for 5 s and 60 ◦C for 30 s. The resulting products
were purified using 1 µL of shrimp alkaline phosphatase (SAP) (Applied Biosystems) and
incubated 37 ◦C for 45 min and 75 ◦C for 15 min. Finally, the purified SBE products were
analyzed on the SeqStudio Genetic Analyzer machine (Applied Biosystems) with Applied
Biosystems POP-1 polymer on a 28 cm capillary length under an injection voltage of 1.2 kV
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for 7 s and with a running time of 330 s at 60 ◦C. Gene Mapper ID-X v1.6 software (Thermo
Fisher Scientific, Waltham, MA, USA) was used for analysis of the results.

Table 1. Information about the 24 DNA variants of the HIrisPlex assay, including PCR and single
base extension (SBE) primer sequences and concentrations. Major and minor alleles correspond to
the input information entered to the HIrisPlex prediction model.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene HIrisPlex
Model Input Sequence Concen-

tration

1 MC1Rset1F
GCAGGGAT

CCCAGA
GAAGAC

0.55 µm

117 bp

N29insA MC1R C/insA CCCCAGCTGGGGCTGG
CTGCCAA 1.3 µm

2 MC1Rset1R
TCAGAGATG
GACACCT

CCAG
0.55 µm rs11547464 MC1R G/A ttttttttttttGCCATCGCCG

TGGACC 0.1 µm

3 MC1Rset2F
CTGGTGAG
CTTGGTG

GAGA
0.5 µm

158 bp

rs885479 MC1R C/T ttttttttttttttttttGATGGC
CGCAACGGCT 1.25 µm

4 MC1Rset2F
TCCAGCAG
GAGGATG

ACG
0.5 µm rs1805008 MC1R C/T tttttttttttttACAGCATCG

TGACCCTGCCG 0.375 µm

5 MC1Rset3F
GTCCAGCC

TCTGCTT
CCTG

0.5 µm

147 bp

rs1805005 MC1R G/T tttttttttttttttTGGTGGA
GAACGCGCTGGTG 0.75 µm

6 MC1Rset3R
AGCGTGCT
GAAGACG

ACAC
0.5 µm rs1805006 MC1R C/A ttttttttttttttttttttCTGCCT

GGCCTTGTCGGA 0.75 µm

7 MC1Rset4F
CAAGAACTT
CAACCTC
TTTCTCG

0.4 µm

106 bp

rs1805007 MC1R C/T tttttttttttttttttttttttttCTCCA
TCTTCTACGCACTG 1 µm

8 MC1Rset4R
CACCTCCT
TGAGCGT

CCTG
0.4 µm rs1805009 MC1R G/C ttttttttttttttttttttttttttttttATC

TGCAATGCCATCATC 0.4 µm

9 0.4 µm Y152OCH MC1R C/A ttttttttttttttttttttttttttttttCAT
CTTCTACGCACTGCGCTA 0.6 µm

10 0.4 µm rs2228479 MC1R G/A
tttttttttttttttttttttttttttttttttttt

CTGGTGAGCGGG
AGCAAC

0.375 µm

11 0.4 µm rs1110400 MC1R T/C
ttttttttttttttttttttttttttttttCT
TCTACGCACTGCGCTACC

ACAGCA

12 rs28777_F
TACTCGTG
TGGGAGT

TCCAT
0.4 µm

150 bp

rs28777
SLC45A2 A/C

ttttttttttttttttttttttttttttttttttttttt
CATGTGATCCTCA

CAGCAG
0.3 µm

rs28777_R
TCTTTGAT
GTCCCCT

TCGAT
0.4 µm

13 Rs16891982_F
TCCAAGTT
GTGCTAG
ACCAGA

0.4 µm

128 bp

rs16891982
SLC45A2 G/C

ttttttttttttttttttttttttttttttttttttt
tttttttAAACACGGAGTT

GATGCA
1.2 µm

Rs16891982_R
CGAAAGAG
GAGTCGA

GGTTG
0.4 µm

14 rs12821256_F
ATGCCCAA
AGGATAA

GGAAT
0.4 µm

118 bp

rs12821256
KITLG A/G

ttttttttttttttttttttttttttttttttttttttt
GGAGCCAAGGGCATGT

TACTACGGCAC
1 µm

rs12821256_R
GGAGCCAA
GGGCATG

TTACT
0.4 µm
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Table 1. Cont.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene HIrisPlex
Model Input Sequence Concen-

tration

15 Rs4959270_F
TGAGAAAT
CTACCCC

CACGA
0.4 µm

140 bp

rs4959270
EXOC2 C/A

tttttttttttttttttttttttttttttttttt
tttttttGGAACACATCCA
AACTATGACACTATG

0.375 µm

Rs4959270_R
GTGTTCTT
ACCCCCT

GTGGA
0.4 µm

16 rs12203592_F
AGGGCAGC

TGATCTC
TTCAG

0.4 µm

126 bp

rs12203592
IRF4 C/T

tttttttttttttttttttttttttttttttttttttt
tttttttTCCACTTTGGTGGG

TAAAAGAAGG
0.3 µm

rs12203592_R
GCTTCGTC
ATATGGC
TAAACCT

0.4 µm

17 rs1042602_F
CAACACCC

ATGTTTA
ACGACA

0.4 µm

124 bp

rs1042602
TYR G/T

ttttttttttttttttttttttttttttttttttttt
tttttttttttttttTCAATGTCT

CTCCAGATTTCA
1.25 µm

rs1042602_R
GCTTCATG
GGCAAAA

TCAAT
0.4 µm

18 rs1800407_F
AAGGCTGC

CTCTGTT
CTACG

0.4 µm

124 bp

rs1800407
OCA2 G/A

tttttttttttttttttttttttttttttttt
tttttttttttttttttttttttttttttGCA

TACCGGCTCTCCC
0.1 µm

rs1800407_R
CGATGAGA
CAGAGCA
TGATGA

0.4 µm

19 rs2402130_F
ACCTGTCT
CACAGTG

CTGCT
0.4 µm

150 bp

rs2402130
SLC24A4 A/G

ttttttttttttttttttttttttttttttttttt
tttttttttttttttttttttttttTGAAC
CATACGGAGCCCGTG

0.75 µm

rs2402130_R
TTCACCTC
GATGACG

ATGAT
0.4 µm

20 rs12913832_F
TCAACATC
AGGGTAA

AAATCATGT
0.4 µm

150 bp

rs12913832
HERC2 C/T

tttttttttttttttttttttttttttttttttttt
ttttttttttttttttttttttttttttTAGC
GTGCAGAACTTGACA

1.2 µm

rs12913832_R
GGCCCCTG
ATGATGA

TAGC
0.4 µm

21 rs2378249_F
CGCATAAC
CCATCCC

TCTAA
0.4 µm

136 bp

rs2378249
ASIP/PIGU T/C

tttttttttttttttttttttttttttttttttttt
ttttttttttttttttttttttttttttttCCA
CACCTCTCCTCAGCCCA

0.18 µm

rs2378249_R
CATTGCTT
TTCAGCC

CACAC
0.4 µm

22 Rs12896399_F
CTGGCGAT
CCAATTC

TTTGT
0.4 µm

125 bp

rs12896399
SLC24A4 T/G

tttttttttttttttttttttttttttttttt
ttttttttttttttttttttttttttttttttt
TCTTTAGGTCAGTATA

TTTTGGG

1.125 µm

Rs12896399_R
GACCCTGT
GTGAGAC

CCAGT
0.4 µm

23 Rs1393350_F
TTTCTTTA
TCCCCCT

GATGC
0.4 µm

124 bp

rs1393350
TYR C/T

tttttttttttttttttttttttttttttttt
ttttttttttttttttttttttttttttttttttt
CATTTGTAAAAGACC

ACACAGATTT

1.1 µm

Rs1393350_R
GGGAAGGT

GAATGAT
AACACG

0.4 µm
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Table 1. Cont.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene HIrisPlex
Model Input Sequence Concen-

tration

24 rs683_F
CACAAAAC

CACCTGT
TGAA

0.4 µm

138 bp

rs683
TYRP1 T/G

ttttttttttttttttttttttttttttttttttt
tttttttttttttttttttttttttttttttG
CTTTGAAAAGTATGCC

TAGAACTTTAAT

0.175 µm

rs683_R
TGAAAGGG

TCTTCCC
AGTT

0.4 µm

2.8. Skin Color Genotyping System Protocol

For the genotyping assay of skin color, the HIrisPlex-S (HPS) system was used follow-
ing Chaitanya et al.’s [26] protocol, a 17-plex system involving the evaluation of 36 SNPs
from 16 genes for skin color. A detailed mention of all the markers, primer sequences, and
concentrations is provided in Table 2. PCR amplification of all SNPs was performed in a
single multiplex PCR assay with a total volume of 12 µL containing PCR primers, concen-
trations described in Table 2, 1 µL genomic DNA isolated from bones (1 ng/µL), 1X PCR
buffer (Applied Biosystems. Waltham, MA, USA), 2.7 mM MgCl2 (Applied Biosystems),
200 µM of each dNTP (Promega Corporation, Madison, WI, USA) and 0.5 U AmpliTaq
Gold 360 DNA Polymerase (Applied Biosystems). The thermocycler PCR parameters
were set as follows: 95 ◦C for 10 min; 33 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for
30 s and a final elongation phase of 72 ◦C for 7 min. The PCR products were purified using
ExoSAP-IT Express (Applied Biosystems) and incubated at 37 ◦C for 4 min and 80 ◦C for
1 min. The multiplex SBE (single base extension) was carried out for all 17 products at the
same time in a single multiplex reaction using 2 µL of the purified PCR product, 2 µL of
the SBE primer mix (Table 2) and 1 µL of the ABI Prism® SNaPshot Multiplex Kit (Applied
Biosystems) with the following thermocycler parameters: 96 ◦C for 2 min; 25 cycles of 96 ◦C
for 10 s, 50 ◦C for 5 s and 60 ◦C for 30 s. The resulting products were purified using 1 µL of
shrimp alkaline phosphatase (SAP) (Applied Biosystems) and incubated 37 ◦C for 45 min
and 75 ◦C for 15 min. Finally, the purified SBE products were analyzed on the SeqStudio
Genetic Analyzer machine (Applied Biosystems) with Applied Biosystems POP-1 polymer
on a 28 cm capillary length under an injection voltage of 1.2 kV for 7 s and with a running
time of 330 s at 60 ◦C. Gene Mapper ID-X v1.6 software program (Thermo Fisher Scientific,
Waltham, MA, USA) was used for analysis of the results.

Table 2. Information about the 17 DNA variants HIrisPlex-S (HPS) DNA test with PCR and single
base extension (SBE) primer sequences and concentration. Major and minor alleles correspond to the
input information entered to the HPS prediction model.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene
HPS

Model
Input

Sequence Bases
Concen-

tration

1 rs3114908_F

CAGAA
CACAG
CCACA
CCCTA

0.4 µm

118 bp rs3114908_R ANKRD11

C/T
TTT TTT TTT TAG

AGA AGG GTC
AAG CAC TT

29 0.12 µm

rs3114908_R

CATAA
AGGGG
TCACC
AGCAA

0.4 µm
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Table 2. Cont.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene
HPS

Model
Input

Sequence Bases
Concen-

tration

2 rs1800414_F

GCTGC
AGGAG
TCAGA
AGGTT

0.4 µm

145 bp rs1800414_R OCA2

T/C
TTT TTT TTT TTC

AGA ATC CCG
TCA GAT ATC CTA

43 0.2 µm

rs1800414_R

GGGAC
AAACG
AATTG
AGGAA

0.4 µm

3 rs10756819_F

AAAGC
AAGCT
CATGT
TTCCA

0.4 µm

145 bp rs10756819_F BNC2

A/G
TTTTTTTTTTTTGGA
CCAGTTATTTTGGG

TTTGGA
35 1.7 µm

rs10756819_R

CGTCA
TGACT
AGAAA
AACAC

CAA

0.4 µm

4 rs2238289_F

GGAAC
ATGAA
GATTT

CCCAGT

0.4 µm

112 bp rs2238289_F HERC2

C/T

TTT TTT TTT TTT
TTT TTT TTG AGA

TTG GAA GAT
TGG AGC C

53 0.5 µm

rs2238289_R

CTGAT
TCAGG
TCTGC

TGTCACT

0.4 µm

5 rs17128291_F

CCAGC
ACTGC
CAAAA
TAACA

0.4 µm

129 bp rs17128291_R SLC24A4

T/C

TTT TTT TTT TTT
TTT TTT TTT CAA

TGT GCA CTG GAT
TAA AAG TC

58 1 µm

rs17128291_R

CTCTT
TGGAC
CCATC
ACCTC

0.4 µm

6 rs6497292_F

TCTGC
TGTAG
AACCA
ATGTCC

0.4 µm

150 bp rs6497292_R HERC2

T/C

TTT TTT TTT TTT
TTT TTT TTT TTT

TTG TCT CCT GTG
TCT TCA TCC T

61 0.2 µm

rs6497292_R

GAATT
GCACC
TGTAG

CTCCAT

0.4 µm

7 rs1129038_F

ATGTC
GACTC
CTTTG
CTTCG

0.4 µm

137 bp rs1129038_F HERC2

A/G

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
GAG CCA GGC
AGC AGA GC

70 0.4 µm

rs1129038_R

ACACC
AGGCA
GCCTA
CAGTC

0.4 µm

8 rs1667394_F

CAGCT
GTAGA
GAGAG
ACTTT
GAGG

0.4 µm

130 bp rs1667394_R HERC2

C/T

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT GCA

GCA ATT CAA
AAC GTG CAT A

73 0.2 µm

rs1667394_R

CACCA
TTAAG
ACGCA
GCAAT

0.4 µm



Genes 2025, 16, 511 10 of 18

Table 2. Cont.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene
HPS

Model
Input

Sequence Bases
Concen-

tration

9 rs1126809_F

TGTTT
CTTAG
TCTGA

ATAACC
TTTTCC

0.4 µm

100 bp rs1126809_F TYR

A/G

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT

TGT ATT TTT GAG
CAG TGG CTC C

77 0.05 µm

rs1126809_R

GGTGC
ATTGG
CTTCT
GGATA

0.4 µm

10 rs1470608_F

TTTCT
TGTGT
TAACT
GTCCT

TACAAA

0.4 µm

145 bp rs1470608_F OCA2

A/C

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTC ATT

CTC TCT TAA AAA
TAT TAA TTT GCA

CC

62 4 µm

rs1470608_R

GGAAA
ATATG
TTAGG
GTTGA

TGG

0.4 µm

11 rs1426654_F

TTCAG
CCCTT
GGATT
GTCTC

0.4 µm

123 bp rs1426654_F SLC24A5

A/G

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TGT

CTC AGG ATG TTG
CAG GC

86 0.16 µm

rs1426654_R

TGAGT
AAGCA
AGAAG
TATAA

GGAGCA

0.4 µm

12 rs6119471_F

GCAGG
AGAAT
TGCTG
GAACT

0.4 µm

170 bp rs6119471_R ASIP

G/C

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TGA

AGG AAG AGT
GAA AAT GCG

TAA

91 1 µm

rs6119471_R

AACCC
GAAGG
AAGAG

TGAAAA

0.4 µm

13 rs1545397_F

GGTAT
AGGAT
TATTTG
GGGAA

TGA

0.4 µm

144 bp rs1545397_F OCA2

A/T

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT GTA

CAA CTT TGT
GAA TAT ACT

AAA ATA C

97 1 µm

rs1545397_R

TGGAG
ATATA
GAATT
CACAC
AACAT

AAA

0.4 µm
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Table 2. Cont.

Assay
Position

PCR
Primers Sequence Concen-

tration
Product

Size
SBE

Primers Gene
HPS

Model
Input

Sequence Bases
Concen-

tration

14 rs6059655_F

GTGAG
GAAAT
CGAGG
CTCAG

0.4 µm

112 bp rs6059655_R RALY

A/G

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT

GCT GAT GCC CTG
AGC A

76 2 µm

rs6059655_R

AGGAG
AAAGC
TGCAG
ATCCA

0.4 µm

15 rs12441727_F

GGGAA
GAGAC
AGCTC
CATGT

0.4 µm

137 bp rs12441727_F OCA2

A/G

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT

TTT TGG CTC AGT
GTG GCC TT

106 0.5 µm

rs12441727_R

ACAAT
CCTGG
GAGGT
ACACG

0.4 µm

16 rs3212355_F

GAGTG
AACCC
AGGAA
GATGC

0.4 µm

144 bp rs3212355_R MC1R

T/C

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TCC

GAA GCC CAG
CAG G

113 1.5 µm

rs3212355_R

CATCA
AAGGC
AGACC
TCTCG

0.4 µm

17 rs8051733_F

AGGCG
GTGGT
CTCTC
TCTC

0.4 µm

124 bp rs8051733_R DEF8

T/C

TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTT
TTT TTT TTT TTC

ACC CTG CCT GTC
TCG

115 1.6 µm

rs8051733_R

TTGCA
ACAGG
AGGGT
CTAGG

0.4 µm

2.9. Hair, Eye and Skin Color Prediction

The prediction of eye, hair and skin color from the donors was performed based on
the identification of the specific SNPs described in previous sections and populated on the
open source website reported by Chaitanya et al. [26], known as HIrisplex-S: HIrisPlex-S
Eye, Hair and Skin Colour DNA Phenotyping Webtool: https://hirisplex.Erasmusmc.nl/.
This tool provided the probabilities of the predictive phenotypes based on the different
categories of eye color, hair color and shade and skin color.

https://hirisplex.Erasmusmc.nl/
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3. Results
3.1. Biological Profile

The results obtained from the skeletal biological profile estimations are summarized
in Table 3, comprising population affinity, biological sex and age-at-death for the five indi-
viduals (stature was not used for facial approximation). Known data from the individuals
is also included.

Table 3. Summary of the skeletal biological profile analysis for each individual. Population affinity
was estimated using Fordisc, biological sex estimation was conducted using MorphoPASSE and age
at death was estimated using ADBOU. Additionally, the known population affinity, sex and age of
the individuals are presented.

Individual
Population

Affinity
Estimation

Known
Population

Affinity

Sex
Estimation Known Sex Age

Interval
Age Point
Estimate

Known
Chronological

Age

1 White White Male Male 35–75 49.8 60

2 White White Male Male >50 79.2 88

3 White White Male Male 30–75 48.1 42

4 White White Female Female 30–65 41.2 66

5 White White Male Male 45–85 63.7 62

Individual 1’s skeletal profile estimation corresponded to a white male between
35 and 75 years of age at the time of death and between 165 and 185 cm in stature, which
was consistent with the known data of the individual (white male, 66 years of age, and
170 cm). Individual 2’s skeletal profile estimation corresponded to a white male over
50 years and between 165 and 185 cm in stature, which was consistent with the known data
of the individual (white male, 88 years of age and 165 cm). Individual 3 corresponded to a
white male between 30 and 75 years, and 162 to 185 cm in stature, which was consistent
with the known data of the individual (white male, 42 years of age and 165 cm). Individual
4’s skeletal profile estimation corresponded to a white male between 30 and 65 years, which
was consistent with the known data of the individual (white male, 66 years of age and
185 cm). Individual 5’s skeletal profile estimation corresponded to a white female between
45 and 85 years of age at the time of death, which was consistent with the known data of
the individual (white female, 62 years of age and 162 cm) (Table 3).

3.2. Phenotyping Predictions

A summary of the results from the HIrisPlex-S online tool is depicted in Table 4,
including the prediction p-values. Regarding the eye color, the prediction was performed
by comparing the probabilities obtained by entering our genotyping results into the online
tool and matching the resulting probabilities to the pictures in the figures provided by Walsh
et al. (2011) [35]. Hair color prediction was performed according to the recommendations
from Walsh et al. (2013) based on the hair color and shade probabilities as derived from the
HIrisPlex-S online tool [34]. In brief, the process for predicting the hair color and shade with
the best probability of matching the true hair color is as follows: (1) Calling the category of
the leading color (black, brown, red, redhead and blonde) prediction based on the highest
probability value; (2) calling the final color prediction based on the contribution and effect
of black and blonde using the probability values for dark and light attributes. For a clearer
reference on the color and tone of the hair, we refer to the images shown in the same
article [34]. Finally, skin color was predicted as described in Chaitanya et al. (2018) [26].
In their guide for skin color prediction, the authors set different threshold values for the
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probabilities obtained by using the HIrisPlex-S DNA test system and classify skin color in
five different categories: very pale, pale, intermediate, dark, and dark to black. The pictures
of the exemplified performance of their predictive model were also used in order to clarify
the skin color of our samples.

Table 4. Phenotyping predictions according to the HIrisPlex-S online tool.

Phenotypic Characteristics
Individuals

1 2 3 4 5

Eye Eye Color
Blue eye 0.926 0.067 0.026 0.948 0.848

Intermediate 0.057 0.13 0.063 0.038 0.088

Brown eye 0.017 0.803 0.912 0.014 0.065

Hair Color
Hair Color

Blond hair 0 0 0 0 0

Brown hair 0 0.006 0.006 0.001 0

Red hair 1 0.994 0.994 0.999 1

Black hair 0 0 0 0 0

Hair Shade
Light hair 0.936 0.071 0.367 0.973 0.998

Dark hair 0.064 0.929 0.633 0.027 0.002

Skin Skin Color

Very pale skin 0.231 0.074 0.004 0.029 0.0421

Pale skin 0.711 0.442 0.079 0.675 0.51

Intermediate skin 0.058 0.479 0.692 0.293 0.069

Dark skin 0 0.005 0.2 0.003 0

Dark to black skin 0 0 0.025 0 0

According to the genotyping analysis, Individual 1 would have blue eyes and light
red hair with pale skin tone. Individual 2 would have brown eyes, dark red hair and
intermediate to pale skin tone. Individual 3 would have brown eyes, intermediate red hair
and intermediate skin tone. Individual 4 would have blue eyes, light red hair and pale skin.
Individual 5 would have blue eyes, dark red hair and pale skin tone. These phenotyping
predictions have been included in the facial approximation based on the pictures displayed
in previous publications [26,36].

3.3. Facial Approximation Integration

Using the forensic anthropological profile, 3-D skull model and accepted forensic art
techniques, 2-D frontal and lateral facial approximations were developed for each of the
samples in a monochromatic grayscale. These grayscale versions served as templates for
developing the final facial approximation likenesses in full color using the forensic DNA
phenotyping predictions for hair, eye and skin color.

Digital imaging techniques were used to enhance the final facial approximations.
Additionally, superimpositions of the skulls over the facial approximations were cre-
ated to illustrate the correspondence between the contours of the face and the distal
points of the tissue depth markers. Figure 1 presents the frontal view of the facial
approximation products.
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4. Discussion
This technical report presented, for the first time, the application of an interdisciplinary

approach, integrating a forensic anthropology biological profile, facial approximation and
forensic DNA phenotyping, with the aim of improving human identification.

The next step of this project will be the comparison of the facial approximations
obtained (only with the anthropological information and with the anthropological and
phenotyping information) with in-life photos of the sample decedents. Therefore, the
facial approximations will be assessed in terms of overall likeness and accuracy of
facial proportion.

Image comparison is a topic that has been adjudicated in legal contexts in a variety of
cases. However, image comparison as it relates to forensic facial approximation is not typi-
cally subject to legal scrutiny. It is a forgone conclusion that forensic facial approximations
capture an approximate likeness at best as the name would suggest. Therefore, evaluating
the efficacy of facial approximation in even the broadest statistical terms can prove quite
challenging. Facial approximations are subject to subtle interpretations of appearance
and likeness and do not necessarily fit into the prescribed standards of one-to-one image
comparison used in facial recognition algorithms and facial identification analyses.

Moreover, each technique by itself has its limitations. Forensic anthropology, in the
first phase of the identification process, through the estimation of the biological profile
(population affinity, biological sex, age at death and stature), as well as other unique
characteristics (i.e., previous ante-mortem trauma), could help to reduce the number of
missing persons candidates for the identity [37]. However, if there are no other ante-
mortem data like dental records or DNA reference samples from the deceased or relatives,
the identification is challenging. Facial approximation could help in these cases; although it
is not a scientific method of identification, it can provide visibility, especially for cold cases,
and it can assist in achieving a positive identification through scientific means.

Evaluating the efficacy of forensic facial approximations through feature interpretation
is inherently grounded in a qualitative analysis of likeness best expressed in terms of
language rather than numerical values. Consequently, the evaluation of a facial approxima-
tion remains a nuanced process that demands a holistic appreciation for the intricacies of
facial feature interpretation and its qualitative dimensions [17]. Some “successful” forensic
facial approximations have elements of “built-in ambiguity” [32]. This tendency is often
preferred in situations where the specificity of an image may prove detrimental to the
identification process where potential leads are ruled out. Assessing likeness through an
image comparison then becomes a discussion of qualitative data versus quantitative data
where the results are more aptly expressed through language and value judgments instead
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of numerical values [17]. As mentioned previously in this article, the evaluation of the
facial approximations recognition of the method presented will be assessed in the second
phase of this project.

This study is based the FDP on the HIrisPlex-S system [26,34–36,38,39], which is the
most common one used in several studies [20,37,40–42] applying different methodologies
with advantages and disadvantages. Many of these previous works have been focused on
translating these HIrisPlex-S into Next Generation Sequencing (NGS) platforms [41,43–46].
Additionally, there are tools, like VISAGE Basic Tool (BT) from the VISAGE Consortium,
which includes ancestry SNPs as well as the 41 SNPs from the HIrisPlex-S panel [47]. More-
over, there are commercial solutions like the MiSeq FGx™ Forensic Genomics System, from
Qiagen, with a first panel including 27 autosomal, 7 X- and 24 Y-chromosomal STRs and 94
identity-SNPs; a second panel includes 56 ancestry SNPs and 22 phenotype-informative
SNPs (for eye and hair color) [22]. Parabon Nanolabs also offers the Snapshot™ DNA
Phenotyping Service, creating a complete profile, including genetic ancestry, eye, hair and
skin color, freckling and face shape [22]. Overall, the aforementioned platforms point
out one of the main limitations of FDP: the lack of standardization of methodologies. As
described, current efforts are focused on translating these panels into NGS, as they al-
low higher throughput, multiplexing capacity and sequencing accuracy, as well as the
possibility to automate and sequence different markers in the same run [48]. However,
the overall cost is too high and may not be affordable for routine use by the forensic
labs [20]. As a result, the gold-standard technique is still SNaPshot™ (SBE-CE assay) due
to its robustness, simplicity and efficiency, but more precisely, because the instrument
is already present in forensic laboratories. This is the reason why this study applied
this classical methodology instead of NGS. The idea was to develop a protocol that is
affordable and accessible for forensic laboratories, using the equipment they already have
available. However, it is not exempt from drawbacks; SNaPshot™ has higher risk of con-
tamination and error, and more importantly, is limited to analyzing three single traits with
30 to 40 markers (eye, hair and skin color) [43]. Despite this, previous studies and our
present work demonstrated its applicability to deteriorated DNA [49,50]. Finally, it is worth
noting that, overall, these previous works, both applying classical SNaPshot™ and NGS
sequencing technologies, based their facial approximation only on forensic DNA phenotyp-
ing; the present study is the first one integrating these FDP traits into facial approximation
and anthropological findings, enhancing human identification.

5. Conclusions
This is the first interdisciplinary study integrating anthropological biological profiling,

facial approximation and forensic DNA phenotyping. The findings from this research
indicate the possibility of performing forensic DNA phenotyping in a forensic lab, with
the instrumentation used for STR profiling in degraded human remains, and work along-
side the forensic artist and forensic anthropologist to enhance facial approximation and
improve human identification. Although the integrated methodology is presented in this
technical report, the second phase of this project will involve an assessment of the recog-
nition of the facial approximations with and without the information obtained from the
phenotyping analysis.

Further research is needed in this new multidisciplinary approach, including
more individuals in the sample encompassing wider ranges of age and including
different populations.
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