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Abstract
Background: Accumulating evidence suggests that breastfeeding exclusivity and du-
ration are positively associated with child cognition. This study investigated whether 
DNA methylation, an epigenetic mechanism modified by nutrient intake, may con-
tribute to the link between breastfeeding and child cognition. The aim was to quan-
tify the relationship between global DNA methylation and cognition and behavior at 
4 years of age.
Methods: Child behavior and cognition were measured at age 4 years using the 
Wechsler Preschool and Primary Scale of Intelligence, third version (WPPSI-III), 
and	Child	Behavior	Checklist	 (CBC).	Global	DNA	methylation	 (%5-methylcytosines	
(%5mC))	was	measured	 in	buccal	 cells	 at	 age	4	years,	 using	 an	enzyme-linked	 im-
munosorbent	assay	 (ELISA)	commercial	kit.	Linear	regression	models	were	used	to	
quantify the statistical relationships.
Results: Data were collected from 73 children recruited from the Women and Their 
Children's	Health	(WATCH)	study.	No	statistically	significant	associations	were	found	
between global DNA methylation levels and child cognition or behavior (p > .05), 
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1  | BACKGROUND

The	Developmental	Origins	of	Health	and	Disease	(DOHaD)	hypoth-
esis postulates that environmental exposures in utero or during the 
postnatal period may alter physiological programming and disease 
risk	in	adulthood	(Gluckman,	Hanson,	and	Pinal	(2005)).	Early-life	ex-
posures,	 including	maternal	smoking	 (Polanska	et	al.,	2017;	Moylan	
et	 al.,	 2015),	 low	 birthweight	 (Arcangeli,	 Thilaganathan,	 Hooper,	
Khan,	&	Bhide,	2012;	Miller,	DeBoer,	&	Scharf,	2017),	and	inadequate	
nutrition	(Darling	et	al.,	2017;	Liu	and	Raine,	2017),	have	been	associ-
ated with behavioral and cognitive deficits in later life. Epigenetics 
is postulated to be a possible mechanism involved in the association 
between	early-life	exposures	and	human	diseases	(Bauer	et	al.,	2016;	
Radtke et al., 2011; Tobi et al., 2015). Epigenetic processes, including 
DNA methylation, histone modifications, and noncoding RNAs, are 
involved in brain development, including neuronal proliferation and 
differentiation, which provides neural plasticity in response to envi-
ronmental exposures (Stadler et al., 2005; Wang et al., 2012).

The nutritional environment during prenatal and postnatal devel-
opment can influence the establishment and maintenance of DNA 
methylation patterns of the genome (Cooney, Dave, & Wolff, 2002; 
Dominguez-Salas	 et	 al.,	 2014;	 Kotsopoulos,	 Sohn,	 &	 Kim,	 2008;	
Obermann-Borst	 et	 al.,	 2013).	 Dietary	 nutrients,	 including	methi-
onine,	choline,	betaine,	folate,	choline,	and	vitamins	B2,	B6,	and	B12,	
are involved in the biochemical pathways of one-carbon metabolism 
(Van den Veyver, 2002). These nutrients act as methyl donors and 
cofactors in a series of biochemical reactions that regulate the pro-
duction	of	the	universal	methyl	donor,	S-adenosylmethionine	(SAM).	
DNA	methylation	involves	the	transfer	of	a	methyl	group	(CH3) from 
SAM	to	a	DNA	cytosine–guanine	nucleotide	pair	bound	by	phosphate	
(CpG;	Law	&	Jacobsen,	2010).	To	establish	new	methylation	patterns,	
methyl groups are transferred to CpG nucleotides by DNA methyl-
transferase	 (DNMT)	enzymes,	DNMT3a	and	DNMT3b	@@(Okano,	
Bell,	Haber,	&	Li,	1999),	while,	during	DNA	replication,	DNMT1	cop-
ies the DNA methylation patterns from the parental DNA strand to 
the	synthesized	daughter	strand	(Li,	Bestor,	&	Jaenisch,	1992).	The	
transcription of genes are inhibited by methylated DNA bound to 
methyl-CpG	binding	proteins	(MBPs)	which	triggers	the	recruitment	
of chromatin remodeling proteins to form compact inactive chro-
matin,	 thereby	preventing	transcription	factors	 from	binding	 (Bird,	

2002;	Klose	&	Bird,	2006).	Gene	expression	and	physiological	func-
tion can be altered if DNA methylation occurs within the promoter 
regions	(Jones	&	Taylor,	1980).

During human development, epigenetic programming, including 
DNA methylation, is essential for establishing cell- and tissue-spe-
cific	transcriptional	regulation	(Wolffe	&	Matzke,	1999).	For	exam-
ple,	upon	human	fertilization,	genome-wide	demethylation	occurs,	
while	the	prenatal	and	postnatal	periods	are	characterized	by	signif-
icant remethylation to acquire tissue-specific functionality (Numata 
et al., 2012; Spiers et al., 2015). Emerging evidence suggests that 
during prenatal brain development, significant DNA methylation 
occurs during neurulation, which coincides with the differentiation 
of the neuroprogenitor cells (Chen, Damayanti, Irudayaraj, Dunn, & 
Zhou, 2014). During prenatal and postnatal life, significant epigen-
etic reprogramming appears to occur during the initiation of neu-
rodevelopmental processes, including neural differentiation and 
synaptogenesis	(Chen	et	al.,	2014;	Lister	et	al.,	2013).	Evidence	from	
animal models suggests that DNA methylation is involved in the de-
velopment of cognitive abilities and behavior via the cellular regula-
tion	of	synaptogenesis	and	synaptic	pruning	(Feng	et	al.,	2010;	Gapp	
et	al.,	2016;	Meadows	et	al.,	2015;	Halder	et	al.,	2016).

Epidemiological studies suggest that child cognitive development 
is related to early-life nutrition. A large (n = 13,889)	cluster-randomized	
control trial demonstrated that cognitive development at 6.5 years was 
strongly	associated	with	the	duration	of	exclusive	(≥	3	months)	breast-
feeding, after adjustments for potential confounders of geographical lo-
cation, age at follow-up, sex, birthweight, and both maternal and paternal 
education (Kramer et al., 2008). These findings were also confirmed in a 
systematic review and meta-analysis of 17 studies demonstrating a posi-
tive association between breastfeeding and child cognition (up to the age 
of	15	years),	after	adjusting	for	maternal	IQ	(Horta,	2015).	Furthermore,	
the	Women	and	Their	Children's	Health	(WATCH)	study,	a	small	but	de-
tailed prospective longitudinal birth cohort, previously reported signifi-
cant differences in serum nutrients required for one-carbon metabolism 
and DNA methylation between breastfed infants compared to formu-
la-fed	infants	(Hure,	Collins,	&	Smith,	2012).	More	specifically,	breast-
fed	 infants	had	significantly	 lower	plasma	B12	and	 folate,	 and	higher	
homocysteine levels compared to formula-fed infants at 6 month of age 
(Hure,	Collins,	&	Smith,	2012).	Therefore,	it	may	be	hypothesized	that	
lower	B12	and	folate	levels	may	restrict	the	conversion	of	methionine	

though the estimates of effect were consistently negative. Global DNA methylation 
levels	in	males	were	significantly	higher	than	in	females	(median	%5mC:	1.82	vs.	1.03,	
males and females, respectively, (p < .05)).
Conclusion: No association was found between global DNA methylation and child 
cognition and behavior; however given the small sample, this study should be pooled 
with other cohorts in future meta-analyses.
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to S-adenosylmethionine subsequently reducing DNA methylation and 
changing	the	regulation	of	the	epigenome.	Furthermore,	Cheatham	and	
Sheppard (2015) demonstrated that higher choline and lutein levels in 
breastmilk were associated with higher memory recognition in infants 
(n = 55) at 6 month, suggesting that adequate postnatal nutrition is im-
portant for establishing specific DNA methylation patterns that support 
brain development and cognitive function.

In	 the	 Growing	 Up	 Singapore	 Towards	 Healthy	 Outcomes	
(GUSTO) cohort, greater cord blood DNA methylation was associ-
ated	with	 lower	externalizing	behavior	scores	 in	one-year-old	chil-
dren (n = 108;	Lillycrop	et	al.,	2015).	The	UK	Southampton	Women's	
Survey (SWS) showed greater cord blood DNA methylation was as-
sociated with higher intelligence quotient (IQ) scores at 4 years of 
age (n = 175) and higher executive memory function at 7 years of 
age (n = 200;	 Lillycrop	 et	 al.,	 2015).	 In	 the	US	Rhode	 Island	Child	
Health	Study	(RICHS)	cohort,	placental	DNA	methylation	was	posi-
tively associated with attention in newborns (n = 335;	Lesseur	et	al.,	
2014). The US Conditions Affecting Neurocognitive Development 
and	Learning	 in	Early	Childhood	 (CANDLE)	cohort	 found	no	asso-
ciation between genome-wide DNA methylation of cord blood and 
cognition outcomes in children at 1 year of age (n = 168; Krushkal 
et al., 2014). These studies have reported both positive and negative 
associations between DNA methylation patterns and child cognition 
or behavior; therefore, further evidence is required from compara-
ble studies before more definitive conclusions can be drawn.

We	 hypothesized	 that	 the	 association	 between	 breastfeeding	
and child cognition may be attributed to epigenetic mechanisms. 
Therefore, the present study aimed to test whether buccal DNA 
methylation at age four is associated with cognition and behavior 
outcomes in a population of Australian children.

2  | METHODS

2.1 | Study population

This study included data from mothers and their children enrolled in 
the	WATCH	cohort	(Hure,	Collins,	Giles,	Wright,	&	Smith,	2012).	The	
following methods have been described previously (Taylor et al., 2018); 
briefly, pregnant women were recruited from the antenatal clinic at 
the	John	Hunter	Hospital	(JHH),	New	South	Wales	(NSW),	Australia,	
from	July	2006	 to	December	2008.	All	women	who	were	 less	 than	
18 weeks pregnant, lived in the local area, and were able to attend 
JHH	were	eligible	to	participate.	Women	were	recruited	by	midwives,	
local	media	coverage,	or	word	of	mouth.	A	consent	rate	of	61%	was	
achieved for pregnant women who were approached to participate in 
the study, and 181 women were enrolled in the study. The mothers 
and their children attended regular follow-up visits during pregnancy 
(19, 24, 30, and 36 weeks of gestation) and the postnatal period (three-
monthly intervals during the first year after birth and then annually 
until	 age	4	years).	The	WATCH	study	 received	ethics	approval	 from	
the	Hunter	New	England	Research	Ethics	Committee	(06/05/24/5.06),	
and all participants gave written informed consent.

2.2 | DNA collection

Child	buccal	cheek	swabs	were	collected	from	the	WATCH	cohort	at	
4 years of age for DNA extraction, using the Isohelix buccal DNA iso-
lation kits (Isohelix, Cat. no. SK-1S), as previously described (Taylor 
et al., 2018). In preparation for the sample collection, children re-
frained from eating and drinking for 45 min prior to their study visit. 
To collect the buccal cells, a research assistant firmly rubbed a sterile 
swab head against the child's inside cheeks for approximately 20 s on 
both	sides.	The	samples	were	stored	in	a	sterile	5-ml	tube	at	−80°C.	
Buccal	cheek	cell	 samples	were	chosen	to	examine	DNA	methyla-
tion because they are the least invasive sample to collect, which is 
appropriate for a cohort of young children, and the cell population is 
more	homogenous	compared	to	blood	samples	(Lowe	et	al.,	2013).	
Compared with blood, buccal samples have also shown greater cor-
relation in the hypomethylated tissue-specific differentially methyl-
ated	regions	(tDMRs)	with	hypomethylated	regions	in	other	tissues	
(brain, full-term placenta, liver, kidneys, pancreas, skeletal muscle, 
and	sperm;	Lowe	et	al.,	2013).

2.3 | DNA extraction

DNA samples were extracted from the buccal cells using the Qiagen 
Gentra	Puregene	Buccal	Cell	Kit	 (Qiagen,	Cat	no.	158845),	as	previ-
ously described (Taylor et al., 2018). The swab heads were removed 
from the handle and added to 2-ml tubes containing 300 µl of cell 
lysis	solution	and	1.5	µl	proteinase	K.	After	incubating	at	55°C	over-
night, the swab collection heads were discarded and 1.5 µl RNase A 
solution was added to the tubes. The DNA samples were incubated 
at	37°C	for	1	hr	prior	to	adding	100	µl	protein	precipitation	solution	
to the tubes. Precipitated proteins and insoluble cellular debris were 
pelleted	by	centrifuging	the	2-mL	tubes	at	13,000	g for 3 min and in-
cubating them on ice for 5 min. This step was repeated to form a tight 
protein pellet. The supernatant was collected into sterile 1.5-ml tubes, 
and 300 µl of isopropanol and 0.5 µl of glycogen solution were added 
to the precipitated DNA. The tubes were gently inverted and centri-
fuged at 13,000 g for 5 min. The supernatant was discarded, and the 
DNA	pellets	were	resuspended	in	300	µl	of	ethanol	solution	(70%)	and	
centrifuged at 13,000 g for 1 min. The supernatant was discarded, and 
the DNA pellets were left to dry at room temperature for 5 min. The 
DNA pellets were resuspended in 20 µl of DNA hydration solution and 
centrifuged for 3 min at 13,000 g. The DNA samples were incubated at 
room temperature overnight. The DNA concentration of each sample 
was	estimated	using	a	NanoDrop	1000	(Thermo	Fisher	Scientific).

2.4 | Quantification of genome-wide DNA 
methylation

Genome-wide DNA methylation of child buccal cheek swabs was an-
alyzed	using	an	(indirect)	ELISA-based	commercial	kit	(MethylFlash	
Methylated	DNA	5-mC	Quantification	Kit	(Colorimetric),	EpiGentek	
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Group Inc., Cat. no. P-1034-96), as previously described (Taylor et al., 
2018).	Briefly,	0.4–5	µl	of	sample	DNA	(25–100	ng	input	DNA)	was	
bound	to	strip	wells	with	a	high	DNA	affinity.	Methylated	DNA	was	
detected using capture and detection antibodies to 5-methylcyto-
sine (5-mC) and then quantified colorimetrically by reading the ab-
sorbance	at	450	nm,	using	a	SPECTROstar	Nano	plate	reader	(BMG	
Labtech).	 In	 this	ELISA,	 the	amount	of	methylated	DNA	 is	propor-
tional	to	the	optical	density	(OD).	In	human	somatic	cells,	70%–80%	
of	CpG	dinucleotides	are	methylated,	which	constitute	<1%	of	the	
genome (Ehrlich et al., 1982). Therefore, the percentage of detected 
5-mC is expected to be low, due to the low prevalence of CpGs in the 
human	genome.	All	DNA	samples	were	analyzed	in	triplicates;	how-
ever, if the amount of DNA amount was limited (<0.5 ng per 1 ml), the 
samples	were	analyzed	in	duplicates,	and	mean	values	were	used	for	
the statistical analysis. A standard curve was generated according to 
the manufacturer's instructions and used to quantify the percentage 
of methylated DNA in the total DNA sample.

2.5 | Cognition and behavioral assessment

2.5.1 | Cognition

Child cognition was assessed using the Wechsler Preschool and 
Primary Scale of Intelligence (WPPSI-III Australian; Wechsler, 2002a) 
which	is	suitable	for	children	aged	4–7.3	years	(PsychCorp).	The	cog-
nition assessments were individually administered by a research psy-
chologist at the four-year study visit. The WPPSI-III is widely cited 
for preschool children and has satisfactory criterion validity, cor-
relating with Wechsler Preschool and Primary Scale of Intelligence, 
revised version (WPPSI-R), Wechsler Intelligence Scale for Children, 
third edition (WISC-III), and Wechsler Intelligence Scale for Children, 
fourth edition (WISC-IV; Wechsler, 2002b; Wechsler, 2004). The 
scale	produces	three	main	composite	scores:	Full-Scale	Intelligence	
Quotient	 (FSIQ),	 Performance	 Intelligence	 Quotient	 (PIQ),	 and	
Verbal Intelligence Quotient (VIQ), as well as two additional compos-
ite	scores:	Processing	Speed	Quotient	(PSQ)	and	General	Language	
Composite	(GLC).	The	raw	scores	for	performance	IQ	and	verbal	IQ	
are based on the number of subtests successfully completed and are 
converted	to	standardized	scores	according	to	the	child's	age.	The	
full-scale	IQ	is	the	combined	standardized	scores	derived	from	both	
the performance IQ and verbal IQ. All composite scores have a mean 
of 100 and a standard deviation of 15.

2.5.2 | Behavior

Child	behavior	was	assessed	using	the	Child	Behavior	Checklist	(CBC)	
for children aged 1.5 to 5 years (Achenbach & Rescorla, 2001), which 
has demonstrated internal accuracy of the scale across 22 countries, 
including Australia (Rescorla et al., 2011). The behavior assessments 
were completed by the primary caregiver of the child during their 
four-year study visit. The checklist contains 113 behavioral/emotional 

problem items (questions) in eight syndrome scales. The syndrome 
scales include anxious/depressed, withdrawn/depressed, somatic 
complaints, social problems, thought problems, attention problems, 
rule-breaking behavior, and aggressive behavior. The first three syn-
drome	scales	combined	 to	produce	 the	 internalizing	problems	score	
(internalizing	broadband	scale),	and	the	last	two	syndrome	scales	pro-
duce	the	externalizing	problems	score	(externalizing	broadband	scale).	
The	Total	Behaviour	Problem	Scale	summarizes	 the	scores	obtained	
across all scale scores. The checklist items are rated by the child's par-
ent on a three-point scale, “not true” (0 point), “sometimes true” (1 
point), and “often true” (2 points). Scores of the scales are interpreted 
as normal, borderline, or clinical behavior.

2.6 | Participant characteristics

Sociodemographic, maternal, and medical information was collected 
from	 the	WATCH	mothers	during	 their	 first	 study	visit,	which	has	
been	previously	 reported	 (Hure,	Collins,	Giles,	 et	 al.,	 2012;	 Taylor	
et al., 2018).

2.7 | Statistical analysis

Sample	demographic	characteristics	were	summarized	as	mean	and	
standard deviation for continuous variables and as frequency and 
percentage for categorical variables. To determine the association 
of global DNA methylation on cognition and behavior outcomes, ro-
bust linear regression model was used. DNA methylation was trans-
formed (natural logarithm) to achieve linearity of the relationship. 
The association is reported as the expected change in cognition and 
behavior outcome score per unit increase in the natural logarithm-
transformed global DNA methylation percentage. Each linear re-
gression was adjusted for age as it is associated with both the study 
predictor (global DNA methylation; Alisch et al., 2012; Teschendorff 
et	al.,	2010)	and	outcomes	(cognition	and	behavior;	Harada,	Natelson	
Love,	&	Triebel,	2013;	Murman,	2015).	The	variable	sex	is	strongly	
associated with global DNA methylation (Zhang et al., 2011), but 
there is no strong evidence to suggest that child cognition outcomes, 
measured by WPPSI-III at 4 years of age, systematically vary by sex. 
Therefore, each linear regression was not adjusted for sex. All tests 
assumed	 a	 5%	 significance	 level.	 All	 statistical	 analyses	were	 per-
formed using Statistical Analysis System (SAS) software (version 9.4; 
SAS Institute).

3  | RESULTS

Seventy-three	children	from	the	WATCH	cohort	provided	buccal	
DNA samples and completed cognitive and behavioral testing (41 
female and 32 male). Global DNA methylation could not be ana-
lyzed	 in	 four	samples,	and	six	samples	could	only	be	analyzed	 in	
duplicates rather than triplicates due to limited (<0.5 ng per 1 ml) 
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DNA available. The age of the children at the four-year follow-up 
ranged from 45 to 57 months. The scheduled visits for collecting 
DNA samples and assessing cognition and behavior was age-ad-
justed for children born preterm (<37 completed weeks' gestation, 
n = 6).

The	characteristics	of	the	WATCH	mothers	in	the	study	subset	
are	summarized	in	Table	1.	In	summary,	the	mothers	within	the	co-
hort tended to be highly educated (completed a university degree) 
and married. The maternal age of the mothers ranged from 18 to 
41	years,	and	most	were	nonsmokers	and	had	1–2	live	births	includ-
ing	the	child	participating	in	the	WATCH	study.	The	birthweights	of	
the children ranged from 1960 to 5,080 g.

The	distribution	of	the	global	DNA	methylation	levels	(%5mC)	
in	buccal	cells	at	4	years	of	age	was	skewed	to	the	right	(Figure	1)	
with	 93%	 of	 the	 samples	 between	 0%	 and	 3%	 methylated,	 the	
median	was	1.32%,	and	the	values	ranged	from	0.31%	to	10.75%.	
Samples	 (7%)	 that	were	>3%	methylated	 are	 considered	outliers	
but	were	included	due	to	the	small	size	of	the	study.	Global	DNA	
methylation	 levels	 (%5mC)	were	 significantly	 (p = .01) higher in 
males compared to the females [median (interquartile range (IQR)) 
1.82(0.61–1.86)	vs.	1.03(0.99–2.73)].	The	global	DNA	methylation	
data percentage was log-transformed to satisfy normality as-
sumptions	(Figure	2).	The	median(IQR)	cognition	scores	at	4	years	
of	 age	 were	 full-scale	 IQ	 108(101–114),	 verbal	 IQ	 103(98–111),	
performance	 IQ	 107(100–118),	 PSQ	 109(104–114),	 and	 GLC	
108(97–116).	The	 following	behavioral	 scores	could	not	be	mod-
eled due to the sparsity of their distributions: emotionally reac-
tive	54(50–81),	anxious/depressed	54(50–58),	somatic	complaints	
50(50–62),	withdrawn	73(54–84),	sleep	problems	54	(50–73),	at-
tention	problems	54(50–69),	aggressive	behavior	50(50–69),	and	
stress	62(54–85).	The	median(IQR)	behavior	scores	at	age	4	years	
for	total	problems,	internalizing,	and	externalizing	were	42(17–69),	
46(21–73),	and	38(19–73).

The linear regression models suggest that all cognition and 
behavioral scores decreased for each additional unit increase in 
log-transformed global DNA methylation, though all effects were 
small and none were statistically significant (Table 2). All models 
were adjusted for age at completion of behavioral/cognition assess-
ment. The R-squared values for the linear regression models indi-
cated	that	each	adjusted	model	accounted	for	only	2%	to	6%	of	the	
variation in the cognitive or behavioral outcomes.

4  | DISCUSSION

Examining whether associations exist between DNA methylation 
and cognitive and behavioral outcomes is important for understand-
ing whether early epigenetic programming contributes to variation 
in child cognitive function and behavior. One-carbon metabolism is 
regulated by dietary nutrients and is required for DNA methylation; 
therefore, this mechanism potentially contributes to the association 
between breastfeeding and child cognition. Emerging human studies 

suggest that breastfeeding is negatively associated with DNA meth-
ylation	 of	 specific	 loci	 including	 the	 leptin	 (LEP)	 gene,	 implicated	
in	 appetite	 regulation	 and	 fat	metabolism	 (Obermann-Borst	 et	 al.,	
2013), and the cyclin-dependent kinase inhibitor 2A (CDKN2A) 
gene, involved in the production of tumor compressor proteins (Tao 
et	al.,	2013).	However	given	the	very	limited	evidence	available,	fur-
ther investigation is warranted.

Previous studies have shown that prenatal DNA methylation 
patterns are associated with cognitive function and behavior during 
infancy	and	childhood	 (Lesseur	et	al.,	2014;	Lillycrop	et	al.,	2015).	
To our knowledge, this is one of few studies that has explored as-
sociations between early childhood DNA methylation patterns with 
cognition and behavior. Therefore, the current study should act as a 
design template for the development of future studies. No associa-
tion was found between global DNA methylation and child cognitive 
and	behavioral	outcomes,	although	the	sample	size	was	small,	hence	
limiting the ability to detect the relationship as statistically signifi-
cant.	Based	on	the	study's	reported	regression	model,	we	estimate	
that	a	sample	size	of	230	children	would	be	required	to	detect	a	sta-
tistical significant (p < .05) association between global DNA meth-
ylation and cognition and behavioral outcomes, assuming that the 
true effect is as large as what we observed. The current data could 
potentially be pooled with other datasets in future meta-analysis to 
determine the impact of DNA methylation on child cognition and 
behavior.	Furthermore,	the	impact	of	DNA	methylation	patterns	on	
gene expression and brain function may not be apparent until later 
in life, which will require further exploration.

4.1 | Child cognition and behavior

This	 study	 used	 WPPSI-III	 and	 CBC,	 which	 are	 multiple	 domain	
based assessments for child cognition and behavior that are appli-
cable	 to	a	broader	 research	setting.	However,	 there	are	methodo-
logical issues that impact on the accuracy of child cognition and 
behavior assessments (Isaacs & Oates, 2008). A child's performance 
during cognition and behavioral assessments can be affected by 
their mood, motivation, anxiety, energy levels, and personal effort. 
Environmental factors including noise, temperature, lighting, and 
who conducts the assessment can also influence child performance 
(Isaacs	&	Oates,	2008).	However,	preschool	age	(3–4	years)	cogni-
tive and behavioral assessments can differentiate between specific 
cognitive skills (e.g., verbal and spatial skills) and are likely to be more 
predictive of their future IQ than assessments in younger children 
(Volpe,	 2017).	 The	 WATCH	 cohort	 reported	 similar	 full-scale	 IQ	
scores to the SWS cohort that also measured cognition in healthy 
four-year-old children using the WPPSI. The SWS reported a median 
full-scale IQ of 110, which is only two IQ points greater than the 
WATCH	cohort	(Lillycrop	et	al.,	2015).	Both	these	cohorts	generally	
reported a high level of maternal education and low prevalence of 
maternal smoking which may have contributed to a full-scale IQ that 
exceeded the mean of 100.
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4.2 | Gender differences in DNA methylation

Global DNA methylation was found to be higher in males compared 
to	females,	which	is	in	agreement	with	previous	studies	(Boeke	et	al.,	
2012;	Huen	et	al.,	2014;	Perng	et	al.,	2012).	Although	the	absolute	
gender	difference	 in	DNA	methylation	 is	 small	 (0.79%)	 at	 a	 global	
level, this may be functionally significant at a locus-specific level. 
Sexual differentiation of DNA methylation patterns occurs during 
implantation	and	embryo	development.	For	example,	in	males,	DNA	
methylation controls the timing of the sex-determining region Y 
chromosome (Sry) gene expression which initiates the development 
of	the	testis	(Nishino,	Hattori,	Tanaka,	&	Shiota,	2004).	 In	females,	
one of the two X chromosomes is transcriptionally silenced by hy-
permethylation	 and	 chromatin	 modifications,	 which	 equalizes	 the	
dosage	of	genes	between	males	and	females	(Avner	&	Heard,	2001).

Evidence also suggests that significant DNA methylation changes 
occur during the postnatal period (Gilsbach et al., 2014; Weaver et al., 
2004). Gender-specific differences in epigenetic programming could 
be attributed to the actions of steroid hormones, which are known 
to influence DNA methylation and gene expression, and thus mod-
ulate the differentiation of organs and tissues (Wood, Washburn, 
Mukherjee,	&	Banerjee,	1975;	Gonzales,	Ballard,	Ertsey,	&	Williams,	
1986). In males, a surge in the testicular hormone testosterone oc-
curs	at	age	1–3	months,	which	has	a	role	in	the	sexual	dimorphism	
of	 the	brain	 (Winter,	Hughes,	&	Reyes,	1976).	Testosterone	 is	me-
tabolized	 to	 estradiol	 or	 dihydrotestosterone,	 which	 can	 then	 act	
on estrogen and testosterone receptors in the brain (Gabory, Attig, 
&	Junien,	2009).	Evidence	from	animal	models	indicates	that	estra-
diol can alter DNA methylation patterns and estrogen receptor ex-
pression resulting in structural and behavioral sexual differentiation 
of	 the	 brain	 (Kudwa,	 Bodo,	Gustafsson,	&	Rissman,	 2005;	Kurian,	
Olesen, & Auger, 2010; Westberry, Trout, & Wilson, 2010).

4.3 | Locus-specific DNA methylation

In the current study, there were no statistically significant correla-
tions with measures of cognition and methylation at a global level 
detected	 in	 the	 WATCH	 cohort.	 However,	 significant	 changes	 in	
methylation at a locus-specific level cannot be excluded. The SWS 
cohort identified 41 loci that at birth were associated with WPPSI 
full-scale	IQ	at	age	4	years	(Lillycrop	et	al.,	2015).	More	specifically,	
the SWS study found an association between hairy and enhancer 
of	split-1	(HES1)	gene	and	WPPSI	full-scale	IQ	in	children	(n = 175) 
at	age	4	years	(Lillycrop	et	al.,	2015).	These	findings	were	also	con-
firmed within the GUSTO cohort (n = 108),	demonstrating	that	HES1	
DNA methylation was correlated with infant behavior at one year 
of	 age	 (Lillycrop	 et	 al.,	 2015).	HES1	provides	 an	 important	 role	 in	
the Notch signaling pathway, which is necessary for neural devel-
opment	 and	 differentiation	 (Richards	 &	 Rentzsch,	 2015;	 Sestan,	
Artavanis-Tsakonas, & Rakic, 1999). Recent animal studies have 
shown that Notch is required for memory consolidation (Dias et al., 
2014; Yoon et al., 2012). In addition, Paquette et al. (2016) found a 

TA B L E  1  Characteristics	of	the	WATCH	mother–child	pairs	
included in the analysis (n = 73)

Characteristics

Mother Median (SD) Range

Maternal	age	(year) 30 (6) 18–41

 n %

Education

No formal qualification 1 1.4

Year 10 or equivalent 13 18

Year 12 or equivalent 13 18

Trade/apprenticeship 3 4.2

Certificate/diploma 12 17

University degree 23 32

Higher	university	degree 6 8.5

Missing 2  

Income (per week)

No income 7 9.7

$1–299 26 36

300–699 25 35

700–999 11 15

Unsure 3 4.2

Missing 1  

Marital	status

Never married 23 32

Married 46 64

Divorced 2 2.8

Widowed 1 1.4

Missing 1  

Maternal	smoking

Yes 7 10

No 62 90

Missing 4  

Live	births	(>37	weeks	of	gestation)

None 1 1.6

1–2 46 75

3–4 14 23.1

>5 1 1.6

Missing 11  

Live	preterm	births	(≤36	weeks	of	gestation)

None 39 53.4

1 6 8.2

2 1 1.4

Missing 27  

Child Mean (SD) Range

Birthweight	(g) 3,526 (552) 1,960–5,080

Birth	length	(cm) 51.4 (2.4) 48–57.5

Head	circumference	(cm) 34.7 (1.5) 31–39.5

Gender n %

Male 32 44

Female 41 56
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correlation between placental DNA methylation ankyrin repeat do-
main 11 (ANKRD11) genes and newborn attention. Deletions of the 
ANKRD11	gene	are	correlated	with	KBG	syndrome	(Ockeloen	et	al.,	
2015;	Sirmaci	et	al.,	2011),	autism	(Butler,	Rafi,	&	Manzardo,	2015;	
Willemsen et al., 2010), and reduced nonverbal IQ (Willemsen et al., 
2010).	 Based	 on	 this	 emerging	 evidence	 related	 to	 prenatal	 DNA	
methylation patterns, the association between locus-specific post-
natal DNA methylation patterns and cognition and behavior would 
be	of	interest	in	our	cohort.	Analyzing	both	global	and	locus-specific	
DNA methylation is a comprehensive approach for understanding 
how specific DNA methylation patterns may influence gene expres-
sion and disease susceptibility.

4.4 | DNA methylation surrogate tissue

DNA methylation patterns in live human brain tissue cannot be ana-
lyzed;	therefore,	the	current	study	used	buccal	tissue	as	a	surrogate.	

F I G U R E  1  Frequency	histograms	for	
the range of global DNA methylation 
percentage versus percentage of the 
sample	population	for	the	WATCH	
children

F I G U R E  2  Frequency	histogram	for	the	natural	logarithm	
transformation of global DNA methylation percentage versus 
percentage	of	the	population	for	the	WATCH	children

TA B L E  2  Association	of	buccal	global	DNA	methylation	with	cognition	and	behavioral	outcomes	for	the	WATCH	children

Modela  N Variableb  Outcome Association (95% CI) p-Value R2

1 56 DNA	methylation	% Full-scale	IQ −1.73	(−5.22	to	1.77) .33 .02

2 57 DNA	methylation	% Verbal IQ −1.49	(−4.81	to	1.84) .38 .02

3 57 DNA	methylation	% Performance IQ −0.859	(−5.02	to	3.31) .69 .03

4 49 DNA	methylation	% Processing speed composite −1.847	(−4.99	to	1.29) .25 .03

5 57 DNA	methylation	% General language composite −2.175	(−7.06	to	2.71) .38 .02

6 56 DNA	methylation	% Total problems score −1.943	(−13.14	to	9.25) .73 .06

7 56 DNA	methylation	% Internalizing	broad	band	score −3.257	(−15.09	to	8.57) .59 .05

8 56 DNA	methylation	% Externalizing	broad	band	score −0.043	(−11.00	to	10.92) .99 .05

aAll models were adjusted for age at cognition and behavioral assessment. 
bThe natural logarithm transformation of global DNA methylation was used for the linear regression models to meet normality assumptions. 
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Buccal	 and	 neural	 cells	 may	 share	 similar	 DNA	 methylation	 pat-
terns,	as	both	cells	originate	 from	the	ectoderm	germ	 layer.	Lowe	
et	al.	(2013)	observed	a	32%	overlap	in	DMR	DNA	methylation	(in	
regions	<30%	methylated)	between	buccal	and	brain	tissue,	when	
analyzed	using	bisulfite	sequencing	(BS-seq)	and	reduced	represen-
tation	bisulfite	sequencing	(RRBS)	data	(Lowe	et	al.,	2013).	However,	
75%–87%	of	the	DMRs	could	not	be	captured	by	BS-seq	and	RRBS;	
therefore, potential correlations and variations between the tissues 
may	not	have	been	detected	(Lowe	et	al.,	2013).	Fisher	et	al.	(2015)	
recently demonstrated that the CpG site cg23933044 was hypo-
methylated in buccal cells in twins (n = 24) with reported psychotic 
symptoms at 12 years of age and in postmortem brain tissue of 
adults	with	schizophrenia	(n = 38;	Fisher	et	al.,	2015).	However,	re-
cent evidence suggests that postmortem intervals and postsampling 
effects may induce changes in global DNA methylation levels in the 
brain; therefore, these findings should be interpreted with caution 
(Pidsley	&	Mill,	2011;	Sjoholm,	Ransome,	Ekstrom,	&	Karlsson,	2018).	
To	address	the	limitations	of	using	postmortem	brain	tissue,	Braun	
et al. (2019) compared genome-wide DNA methylation in live brain 
tissue samples (n	=	27)	from	patients	aged	5–61	years	with	medically	
intractable epilepsy undergoing brain resection, with peripheral tis-
sues	(blood,	saliva,	and	buccal).	Findings	from	this	study	indicated	
that DNA methylation across subjects showed relatively high lev-
els	 of	 cross-tissue	 correlations	 (buccal–brain	 r	 =	 .85,	 blood–brain	
r	=	 .86,	saliva–brain	r	=	 .90;	Braun	et	al.,	2019).	However,	analysis	
of specific DNA CpGs and genes indicated that cross-tissue correla-
tions	varied	widely	(Braun	et	al.,	2019).	The	authors	concluded	that	
surrogate tissues for the brain may only be informative for a specific 
genomic region/s in which a high level of cross-tissue correlation is 
demonstrated	(Braun	et	al.,	2019).	As	the	sample	size	of	the	study	by	
Braun	et	al.	(Braun	et	al.,	2019)	was	small,	further	research	is	needed	
to understand whether buccal cells can be used as surrogate tissue 
for the brain and in what context.

5  | CONCLUSION

Due to limited statistical power, in the current study there is a high 
probability of a type 2 error; therefore, the lack of a demonstra-
tion of a correlation between global methylation of buccal DNA and 
measures of cognition should not be regarded as definitive. These 
results	are	valuable	 in	 identifying	the	size	of	required	future	stud-
ies to test the hypothesis, and these data could be pooled with that 
of other cohorts for meta-analyses. The association between DNA 
methylation at a global and locus-specific level, and cognition and 
behavioral outcomes in later childhood warrants further investiga-
tion. These data will be important for understanding whether DNA 
methylation is a potential mechanism that may explain the associa-
tion between breastfeeding and child cognition.
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