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ABSTRACT While significant protection from pneumococcal disease has been achieved by the use of polysaccharide and
polysaccharide-protein conjugate vaccines, capsule-independent protection has been limited by serotype replacement along with
disease caused by nonencapsulated Streptococcus pneumoniae (NESp). NESp strains compose approximately 3% to 19% of
asymptomatic carriage isolates and harbor multiple antibiotic resistance genes. Surface proteins unique to NESp enhance colo-
nization and virulence despite the lack of a capsule even though the capsule has been thought to be required for pneumococcal
pathogenesis. Genes for pneumococcal surface proteins replace the capsular polysaccharide (cps) locus in some NESp isolates,
and these proteins aid in pneumococcal colonization and otitis media (OM). NESp strains have been isolated from patients with
invasive and noninvasive pneumococcal disease, but noninvasive diseases, specifically, conjunctivitis (85%) and OM (8%), are of
higher prevalence. Conjunctival strains are commonly of the so-called classical NESp lineages defined by multilocus sequence
types (STs) ST344 and ST448, while sporadic NESp lineages such as ST1106 are more commonly isolated from patients with
other diseases. Interestingly, sporadic lineages have significantly higher rates of recombination than classical lineages. Higher
rates of recombination can lead to increased acquisition of antibiotic resistance and virulence factors, increasing the risk of dis-
ease and hindering treatment. NESp strains are a significant proportion of the pneumococcal population, can cause disease, and
may be increasing in prevalence in the population due to effects on the pneumococcal niche caused by pneumococcal vaccines.
Current vaccines are ineffective against NESp, and further research is necessary to develop vaccines effective against both encap-
sulated and nonencapsulated pneumococci.

Streptococcus pneumoniae (pneumococcus) is a significant hu-
man pathogen. Humans are the main reservoir for the pneu-

mococcus, and asymptomatic carriage in the nasopharynx typi-
cally occurs at least once by the age of 2 years in the United States
(1). However, when the pneumococcus gains access to normally
sterile body sites, immune dysregulation and disease can occur.
The pneumococcus is a common etiological agent of several dis-
eases such as bacterial meningitis, pneumonia, otitis media (OM),
sinusitis, and conjunctivitis (2–4). According to the World Health
Organization, the pneumococcus is responsible for 1 million
deaths yearly (5). In 2000, over 14 million children worldwide
under the age of 5 years were diagnosed with an invasive pneumo-
coccal disease, with the highest incidence seen in Africa (5). Bac-
terial OM is most commonly caused by the pneumococcus, Hae-
mophilus influenzae, and Moraxella catarrhalis (3). In the United
States, OM is the number 1 reason for pediatric clinical visits and
antibiotic prescriptions. Currently, an estimated cost of 1.5 to 3
billion dollars is associated with OM despite high rates of child-
hood vaccination (6–8), while the cost was as high as 5 billion
dollars before routine vaccinations (9). Due to high rates of OM
despite pneumococcal vaccination, further investigation and in-
creased insight into how these versatile pathogens continue to
cause disease are necessary to produce widespread and effective
prevention methods.

CLASSIFICATION

One of the most important pneumococcal virulence factors is the
polysaccharide capsule, of which there are at least 97 antigenically
distinct serotypes (10). The pneumococcal capsule is necessary for
virulence of encapsulated pneumococci as it not only protects
against opsonophagocytosis but also allows nasopharyngeal (NP)

colonization (11, 12). NP colonization is required for progression
to pneumococcal disease, and the capsule has been implicated in
reducing mucosal clearance from the NP, allowing effective colo-
nization (13). Specific pneumococcal serotypes are associated
with invasive pneumococcal disease (IPD), as some serotypes
cause more IPD than others even after accounting for the more
frequent colonization of some serotypes (14–16). The pneumo-
coccal conjugate vaccines (PCVs) have significantly reduced the
rates of IPD while reducing rates of noninvasive disease such as
OM, along with NP colonization, only slightly (17–22). Smaller
reductions in rates of noninvasive disease were observed because
of serotype replacement, which was characterized by increased
levels of some pneumococcal nonvaccine serotypes (NVT) (23).

The capsular polysaccharide synthesis (cps) locus, which is re-
quired for capsule production, is situated between the highly con-
served dexB and aliA pneumococcal genes. The dexB and aliA
genes are not known to be used for capsule production (24). Ho-
mologous recombination at the cps locus can occur because of
these highly conserved flanking regions within the chromosome
(25, 26). There have been reports of increased isolation of nonen-
capsulated Streptococcus pneumoniae (NESp) from patients with
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NP colonization and noninvasive disease and occasionally from
patients with IPD (27–36). NESp can be classified into either
group I or group II isolates on the basis of the composition of the
cps locus (28). Group I NESp isolates have cps genes, but they do
not produce capsule due to mutations or deletions of specific cps
genes (28). Group II NESp isolates have novel genes in place of the
cps genes. Two aliB-like homologues, called aliC and aliD (also
called aliB ORF1 and ORF2, respectively), as well as the gene cod-
ing for pneumococcal surface protein K (pspK; also called nspA),
replace the cps locus of group II isolates (28, 31, 37). These differ-
ent variants of group II NESp have been subdivided into so-called
null capsule clades (NCCs) based on which genes are located
within the cps locus (31). NCC1 strains are pspK-positive (pspK�),
aliC negative, and aliD negative strains. NCC2 strains are pspK
negative, aliC�, and aliD� strains and are classified as either
NCC2a or NCC2b on the basis of the intergenic length polymor-
phism between a remnant capN gene and the flanking aliA gene
(31). To date, strains containing only the aliD gene (NCC3 [pspK
negative, aliC negative, and aliD� strains]) have been identified as
closely related streptococcal species and not true pneumococci.
Interestingly, aliD, but not aliC, is also found within the cps locus
of serogroups 25 and 38 and a truncated version is found within 66
other serotypes, while pspK has not been shown to occur with any
other cps genes (24).

Speculation on the increase in NESp isolation has been based
on two thoughts: (i) the introduction of PCVs as mentioned above
and (ii) an increase in awareness and more stringent typing of
collected samples. Pneumococcal colony morphology on agar
plates varies based on capsule status. NESp colonies have a classi-
cal “rough” morphology that contrasts with the “smooth,” and
sometimes “mucoid,” morphology of encapsulated pneumococci.
Also, NESp colonies may be smaller than those of encapsulated
pneumococci, making identification and collection more chal-
lenging. Together, these characteristics may cause NESp to be
overlooked in laboratories and underreported (38, 39). NESp
strains produce a null result when typed with capsular serotype-
specific antisera and are termed nontypeable (38–40). In general,
nontypeable S. pneumoniae strains include both NESp strains,
which do not produce capsule, and strains that express novel se-
rotypes or amounts of capsule below the limit of detection. This
distinction is important and necessary for understanding the true
prevalence of NESp in contrast to the emergence of novel patho-
genic serotypes. The U.S. introduction of the PCV in the year 2000
and in other countries shortly after preceded many of the reports

about NESp in the population. To draw a connection to the gen-
eral prevalences of NESp before and after the introduction of the
PCV is challenging due to the refinement of and greater sensitivity
in typing methods that developed over the years. Despite this,
some studies have been able to more directly address pre- and
postvaccine NESp prevalences (27, 29, 32, 35, 36). In general, these
studies have reported differing results, with some showing no
change in NESp prevalence and others showing greater or lesser
prevalences.

It is also important to differentiate NESp from other closely
related nonencapsulated streptococcal species, such as S. pseudo-
pneumoniae (41) and S. tigurinus (42), which are often confused
with S. pneumoniae. Molecular approaches can be used to confirm
both species and capsule status with greater precision and accu-
racy to demonstrate true prevalence (43, 44). These approaches
include multilocus sequence typing (MLST), which has allowed
reliable species identification of streptococcal isolates (45). Anal-
ysis of the cps locus can be used for verification of nonencapsu-
lated status. For example, the first and essential gene of the cps
locus, cpsA (also called wzg), is detected by several PCR assays and
can differentiate NESp strains as group I or group II (46).

PREVALENCE AND ANTIBIOTIC RESISTANCE
Prevalence. The human population most susceptible to pneumo-
coccal infections is that of children due to their immature immune
system (47). Children within day care centers are in close contact,
which promotes pneumococcal transmission (48). Therefore,
many studies that document NESp colonization involve children
(Table 1). One study in Portugal found that 7% of carriage isolates
collected in one day care center were NESp. Interestingly, the only
examples of concurrent colonization by multiple strains in that
study were of colonization with a NESp and either an encapsu-
lated 23F or 16F strain (49). In another study of Portuguese chil-
dren attending a day care center, it was found that 12% of pneu-
mococcal isolates were NESp (50). Within a Spanish population of
children, 6.2% of carriage isolates were NESp (51), while a study of
pneumococcal carriage isolates from Brazilian children found that
almost 19% of isolates were NESp (52). Over 13% of the strains
isolated from their sampling of children colonized with pneumo-
coccus in another Brazilian study were NESp strains (53). A pop-
ulation of Italian children contained 5.4% NESp carriage isolates
(54), and in southeastern France, children had a NESp carriage
rate of 9.4% (55). In Israeli pneumococcal carriage isolates, NESp
consisted of over 5% of the total number of collected samples (56),

TABLE 1 Prevalence of NESp within carriage isolates along with rates of resistance

Country Total no. of isolatesa No. of NESp isolates % NESp isolates % resistant NESp isolatesb Typing method(s) Reference

Portugal 254 18 7.1 100 Quelling 49
Portugal 202 25 12.4 100 Quelling 50
Spain 194 12 6.2 58 Quelling/dot blot 51
Brazil 253 48 19 100 Quelling/PCR 52
Brazil 166 22 13.3 47.4 (MDR) Quelling/latex beads/PCR 53
Italy 184 10 5.4 80 Quelling/latex beads 54
France 170 16 9.4 94 Quelling 55
Israel 1,763 90 5.1 30 (MDR) Quelling 56
Poland 139 5 3.9 100 (MDR) Quelling/PCR 57
Thailand 3,085 512 16.6 83.6 Genome sequencing 58
a Data represent numbers of isolates that were serotyped in the study.
b Data represent percentages of resistance to at least one antibiotic tested. Multiple drug resistance (MDR) data represent resistance to at least three classes of antibiotics and are
included where individual rates of resistance were not available.
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while a study in an unvaccinated population of children in an
orphanage in Poland found that 3.9% of the pneumococcal strains
isolated were NESp (57). In a cohort of 770 infants and mothers in
Thailand that had not received any pneumococcal vaccines, up to
16% of carriage isolates were found through genome sequencing
to be NESp (58).

Resistance. Resistance profiles for the collected NESp isolates
from the studies described above were also reported in most cases
and showed that high rates of resistance are common. For exam-
ple, in the study from Portugal described above, all 18 NESp iso-
lates were resistant to at least one antibiotic and 16 were resistant
to multiple drugs (49). Among these isolates, all of the NESp
strains of the NNN clonal cluster and 14 of 18 strains of the BE
clonal cluster, as defined by pulsed-field gel electrophoresis
(PFGE), were resistant to erythromycin, clindamycin, tetracy-
cline, and sulfamethoxazole-trimethoprim, and some were resis-
tant to penicillin. All isolates of the NNN and BE clusters were
multilocus sequence type (ST) ST344 or double-locus variants
(DLV) of ST344. Interestingly, in a previous study by this group,
the NNN cluster was found in only one day care center, while this
study isolated NNN clones from four different day care centers
(59). Sánchez-Tatay (51) found that 50% of NESp isolates were
resistant to penicillin and erythromycin (6 of 12 isolates) and that
all of the resistant isolates were ST344. One other NESp isolate was
resistant to only penicillin and was ST942 (51). One of the studies
of Brazilian children found that all of the NESp isolates were re-
sistant to penicillin and were ST2315 or a single-locus variant
(SLV) of ST2315 (ST4746) (52). Another study of Brazilian chil-
dren did not provide data for all resistance profiles determined,
but the NESp isolates had higher rates of multiple drug resistance
(MDR [resistance to at least three antibiotic classes]) than other
isolates, with 19 of 22 isolates being ST2315 (53). NESp isolates
from Italian children were all ST344, and 80% were resistant to at
least two antibiotic classes (54). Sixteen NESp isolates were col-
lected from children in southeastern France, and 15 were ST344 or
ST344 SLVs, with the remaining NESp isolate being ST63. Of these
16 NESp isolates, 15 were resistant to erythromycin and interme-
diately susceptible to penicillin, but it was not stated if all 15 resis-
tant NESp isolates were ST344 (55). NESp isolates collected from
Israel were divided into 6 clusters (clusters A to F) based on PFGE
results, with clusters A and B containing 44% of all 148 isolates.
MLST of clusters A and B was done and showed an ST448 SLV for
cluster A and a new ST for cluster B that varied from ST344 by
three alleles. Resistance profiles for these clusters indicate that at
least 70% of cluster A isolates were resistant to a least one antibi-
otic, while 96% of cluster B isolates were MDR. Rates of resistance
were also high in the other clusters (clusters C to F), with the
exception of cluster F, which was susceptible to all antibiotics
tested. NESp isolates from Poland were all ST344, and all were
MDR (57). The genomes of the NESp isolates from Thailand were
analyzed for known resistance genes for �-lactam antibiotics or
for allelic forms conferring resistance to co-trimoxazole (58).
Over 83% of the NESp isolates were predicted on the basis of their
sequences to be resistant to either of these antibiotic classes but
included no isolates from the ST344 cluster. Of the highly re-
combinogenic NESp strains contained within a polyphyletic se-
quence cluster (SC) called BC 3-NT, 86% of isolates were ST4133;
of these isolates, 30% had no genes or single nucleotide polymor-
phisms (SNPs) that would confer resistance to the tested antibi-
otics. This is in contrast to the ST448 cluster, all isolates of which

contained genes or SNPs for resistance to both antibiotic classes.
Interestingly, the genes for �-lactam antibiotics and co-
trimoxazole resistance occurred together more often than not de-
spite not being closely linked in the genome. Of the NESp isolates,
16.6% were sensitive to both antibiotics compared to the 1.17%
that were sensitive to only one antibiotic, showing that multiple
drug resistances were more common than resistance to a single
antibiotic.

These studies indicated that a significant proportion of colo-
nizing pneumococcal isolates are NESp, and this rate could be
higher in vaccinated individuals, as increases in NESp levels have
been observed following the introduction of the PCV (36). Also,
the results of these various studies show that the global distribu-
tion of NESp varies according to geographic location. This is not
surprising since the global distribution of pneumococcal sero-
types also varies based on geographic location (60, 61). While the
currently available data demonstrate that the highest rates of
NESp carriage are in Asia and South America, this may simply
reflect an increased awareness of NESp isolates in these regions.
Additionally, high rates of antibiotic resistance are seen for NESp,
specifically, within the ST344 cluster (49, 54, 55, 57). Together,
these results indicate that multiple antibiotic resistances may be a
common feature of NESp.

COLONIZATION

Colonization is requisite for pneumococcal disease (62, 63). Effec-
tive colonization within the NP allows the necessary dissemina-
tion into sterile tissue sites leading to disease (62, 63). The loss of
capsule from strains that normally express capsule abolishes col-
onization and virulence (12, 13). Current vaccines induce a strong
antibody response to specific capsule serotypes, allowing efficient
clearance from the host and reduced colonization of the targeted
capsule types, but these vaccines are ineffective against NESp
strains (64).

The phase-variable “transparent variants” of encapsulated
strains have increased epithelial cell adherence due to reduced
capsule expression (65, 66). This allows pneumococcal surface
proteins greater access to host cell receptors for adherence and
potential immunomodulatory effects (67, 68). Also, protein ex-
pression profiles alter depending upon the pneumococcal phase
phenotype (69). Increased capsule expression is observed when
encapsulated pneumococcal strains cause systemic infection (66,
70). It has been shown that the pneumococcus increases mucosal
secretions, leading to dysregulation of mucosal clearance by host
ciliary action (71, 72). While capsule is needed for encapsulated
pneumococcal colonization, strains that naturally lack capsule,
i.e., NESp strains, compensate for the absence of capsule and can
still effectively colonize. A potential mechanism of colonization
was found within group II NESp strains. Group II NESp isolates
with the pspK gene showed significantly greater NP colonization
of the mouse than an isogenic pspK mutant (31). Also, extrachro-
mosomal expression of PspK in a PspK� NESp strain increased
NP colonization in a mouse (73). Furthermore, it was found that
PspK� NESp strains were able to colonize the NP as effectively as
an encapsulated strain and that both colonize at greater densities
than PspK� NESp strains (31). The ability of PspK to increase
adhesion to epithelial cells may explain how the loss of capsule has
been compensated for in some NESp strains (73).

Despite the lack of capsule and PspK, group II NESp strains
that contain aliC and aliD within the cps locus are also able to
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colonize the nasopharynx (28, 31, 58, 74). Of 512 sequenced NESp
isolates from Thailand, 197 contained aliC and aliD, while 258
contained pspK (58). Recent work led to the conclusion that AliC
increased pneumococcal competence and AliD enhanced early
NP colonization of the mouse (74). The oligopeptide transporter
Ami-AliA/AliB was also found to be important for NP coloniza-
tion (75). Thus, results of current studies indicate that both PspK
and AliD have a role in colonization.

An important consideration during colonization and disease is
evasion of the innate immune response. Despite lacking some im-
portant colonization and immune evasion proteins (see Virulence
Factors below), NESp strains do colonize and are isolated from the
nasopharynx. Pneumococcal clearance is mediated through sev-
eral host factors, including neutrophil recruitment, macrophage
opsonophagocytosis, and CD4� T cells (76, 77). Interestingly, re-
sults from studies of available genome sequences (78, 79) indicate
that NESp strains contain DltA (80, 81) and EndA (82), which
have been shown to inhibit neutrophil extracellular traps, an im-
portant method of bacterial clearance (83).

BIOFILM FORMATION

Pneumococcal biofilm is important for colonization and persis-
tence within the NP (84, 85). Bacterial populations are almost
exclusively contained within these surface-associated communi-
ties when they are part of the nasopharyngeal community (86–
88). The ability to produce biofilm and interact with different
bacterial species or different pneumococcal strains is vital for col-
onization (89). It has been shown that NESp strains produce
larger amounts of biofilm than their encapsulated counterparts
(90–92). This observation might be attributed to increased expo-
sure to surface proteins that allow greater attachment and, subse-
quently, enhanced biofilm formation. Therefore, the very nature
of NESp may allow increased biofilm formation, which not only
enables greater colonization but also reduces susceptibility to an-
tibiotics and the host response (93). NP colonization and biofilm
formation allow the pneumococcus to disseminate to other body
sites and cause disease (62, 63). In these sites, biofilm formation
has been implicated in increased probability of disease, especially
during OM (94–97).

VIRULENCE FACTORS

Pneumococcal virulence factors tend to fall within one of three
groups: capsule, toxin, and surface proteins (11, 98, 99). The cap-
sule is not necessary for NESp strains as, by definition, they lack
this virulence factor. All pneumococci contain the cytolytic toxin
pneumolysin, and, in addition, some NESp strains have been re-
cently reported to contain a second pneumolysin gene that is
closely related to other streptococcal cytolysins (100, 101). As no
other toxins have been described for any pneumococcus, NESp
virulence is mainly mediated through surface proteins and other
surface structures. Surface proteins are attached to the bacterial
cell through various mechanisms, which include attachment to
choline on the pneumococcal surface by choline binding repeats,
lipid attachment via recognition of lipobox motif (LxxC) by Lgt
enzyme (102), and peptidoglycan anchoring through sortase-
mediated attachment via the LPxTG motif and other pilus-specific
sortases (103). The structure of pneumococcal surface proteins
allows anchoring to the pneumococcal surface with an extracellu-
lar portion that interacts with the environment, typically to pro-
mote survival (98, 104). NESp strains, like encapsulated pneumo-

cocci, reside in the NP, and surface proteins can aid in
colonization through attachment, immune modulation, or en-
hanced biofilm formation (67, 105, 106).

Interestingly, the first genome sequences of five genetically di-
verse NESp isolates lacked genes for common pneumococcal sur-
face proteins such as PspA, PspC (also called CbpA), and PcpA
(78). The absence of genes for PspA and PspC was also observed
with comparative genomic hybridization of 34 other NESp iso-
lates from diverse genetic backgrounds (107). The surface pro-
teins PspA and PspC have been studied as vaccine candidates
(108–111), but these proteins would not be effective immunogens
for NESp since they lack these proteins. Other potential protein-
based vaccine targets are the pneumococcal histidine triad pro-
teins (Pht). PhtD has been found in all encapsulated strains re-
gardless of serotype and shows a high degree of sequence identity
between strains. Despite this, PhtD is absent in the sequenced
PspK� NESp strains but is present in the sequenced PspK� strains
(78, 112). Genome sequences of hundreds of NESp isolates were
published during 2013 and 2014 (58, 78, 79, 113) and will provide
more information about the distribution of NESp virulence fac-
tors. However, the genes for some virulence factors, such as PspA
and PspC, are difficult to assemble with short-read sequence data,
as noted previously (114), so molecular confirmation of their
presence or absence may be needed.

Current results indicate that NESp strains lack surface proteins
that are common in encapsulated pneumococci. Thus, it is rea-
sonable to propose that the bacterial surface of NESp differs from
that of encapsulated strains. In fact, several novel surface proteins
were recently discovered in a genomic study of 21 NESp isolates
from patients with conjunctivitis (79). Some of these proteins
were reported to be divergent forms of choline-binding and
LPxTG-attached proteins (Fig. 1 [ECC_3504]), and others were
reported to have glycan and gp-340 binding domains that may
contribute to bacterial aggregation (79). As shown in Fig. 1, the
PspC (CbpA) of strain EC_3504, which was named CpbAC (79), is
divergent from the PspC protein of strain TIGR4. It is interesting
that the first 279 amino acids of CbpAC have 77% identity to PspK
of MNZ11 but show only 55% identity to the R1 region of the
PspC protein of TIGR4. We have shown that PspK enhances epi-
thelial cell attachment and binds secretory IgA (sIgA) (73), while it
was predicted that CbpAC binds dimeric IgA based on homology
to the beta antigen of S. agalactiae (79). PspK and CbpAC may
perform redundant roles, which could explain why CpbAC-
containing NESp strains have aliC and aliD in the cps locus and
not pspK. This may also indicate that the aliC and aliD genes,
which conjunctival isolates often contain, perform a function dur-
ing conjunctivitis (see Disease below). Another possible explana-
tion for the fact that PspK� NESp strains have not been observed
to cause conjunctivitis is their potentially recent emergence, with
the first known PspK� isolate collected in 2008 (31). While the
answer has yet to be experimentally verified, it is important to
determine what NESp virulence factors or combinations of viru-
lence factors can lead to various pneumococcal diseases. There-
fore, in-depth studies of the way NESp interacts with the host are
necessary because these strains have virulence gene repertoires
different from those of encapsulated pneumococci.

DISEASE
Conjunctivitis. The best-documented disease caused by NESp is
conjunctivitis, which is associated with sequence type 448 (ST448)
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and ST344 (56, 115, 116). There were reports of conjunctivitis
caused by NESp as early as 1980, indicating the presence of NESp
in the population for at least several decades (117). Of 271 con-
junctival isolates from across the United States, over 90% were
NESp and over 85% were represented by 4 STs, ST448, ST344,
ST1186, and ST2315, all of which are nonencapsulated (79). An
earlier Spanish study found that only 23.2% of conjunctival iso-
lates were nonencapsulated, all of which were represented by 4
STs, but only ST344 was common to that study and the study
described above (118). Another Spanish study reported that
34.8% of conjunctival isolates were NESp, with the majority re-
lated to ST344, ST448, or ST941. Rates of antibiotic resistance
were in agreement with the resistance rates of carriage isolates as
outlined above. ST344 were commonly MDR, with ST941 being
resistant to at least two antibiotics and ST448 being susceptible to
the tested drugs (119). In general, ST344 and ST448 NESp strains
commonly cause conjunctivitis outbreaks, while sporadic cases
have shown greater variation in both capsule status and ST.
Among those involved in outbreaks of pneumococcal conjuncti-
vitis, the majority are of the ST448 clonal cluster, in contrast to
reports of the high rates of carriage by the ST344 cluster (119–
122). While it is unknown why NESp strains, and specifically the
ST448 cluster, cause conjunctivitis at high rates, Valentino et al.
reported that all epidemic conjunctival isolates contain the aliC
and aliD genes within the capsule locus, indicating a potential role

in the virulence of NESp (79). Recent work has elucidated several
differences between the gene contents of encapsulated and non-
encapsulated S. pneumoniae strains. Some of these differences in-
crease colonization and virulence, but the majority of these differ-
ences are uncharacterized, necessitating increased research on
these emerging pathogens (73). Further information about con-
junctivitis can be found in a review article by Tarabishy and Jeng
(123).

Otitis media. NESp strains have been isolated from children
with otitis media (OM) (27, 29, 124). In fact, one study found that
as many as 8% of OM isolates were NESp (27), and, more recently,
NESp strains were found in 6.4% of OM isolates (125). This is
interesting because complement hinders pneumococcal infec-
tions in the middle ear (126) and NESp strains lack the protection
from complement afforded by the capsule and PspC (78, 107).
Other mechanisms to avoid complement-mediated clearance
must be used, and several other pneumococcal factors that reduce
the effect of complement were found in several NESp genomes.
These complement evasion proteins that NESp strains contain
include a phosphoglycerate kinase (PGK) (127) that inhibits
membrane attack complex formation; endopeptidase O (128),
which binds C1q; and Tuf (129), which binds various proteins in
the complement-regulating factor H family (130), including fac-
tor H. It is currently unknown if these proteins serve the same
function in NESp as they do in encapsulated strains.

FIG 1 Schematic of PspK from several geographic locations, highlighting homology to PspC and newly described CbpAC1. Representations of various PspK
proteins at the amino acid level, CbpAC1 from ECC_3504, and PspC from TIGR4 are shown. Countries of strain isolation and strain references are provided
adjacent to the representations. All representative structures have a highly conserved amino terminus for the first 279 amino acids. Variations in amino acids 203
to 279 have been observed in other strains, but the number of repeats after amino acid 279 is what most often varies between PspK sequences. The protein from
strain ECC_3504 was isolated from a conjunctival sample and was encoded at the pspC (also known as cbpA) locus instead of at the cps locus as PspK is. Despite
identical sequences for the first 279 amino acids, the location on the genome and the presence of choline binding repeats led to this structure being referred to as
a divergent PspC called CbpAC1. CbpAC1 also has an additional ~300 amino acids after the conserved region that are not seen in any known PspK sequences.
The final protein is PspC from TIGR4 (146) for homology comparison with PspK and variant PspC. Sequence data were obtained from an NCBI database query.
Each color in the color-coded key at the bottom of the figure corresponds to regions of the same color on the protein structures except where indicated.
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While there have been almost no studies that have examined
the mechanisms that allow NESp to persist and cause disease, the
chinchilla has emerged as an effective model of OM caused by
NESp (124, 131–133). In this model, the replacement of the cps
locus with pspK allowed efficient colonization in the NP along
with increased virulence in the middle ear (31, 132, 134). Our
study examined the ability of NESp to cause OM in the chinchilla
along with the function of PspK during infection. All strains that
contained pspK produced OM (132). In contrast, only half of the
NESp isolates tested that did not naturally contain pspK were able
to cause OM. Additionally, the PspK� NESp isolates that caused
disease had higher relative epithelial cell adhesion to nasopharyn-
geal epithelial cell line Detroit 562 than avirulent PspK� NESp
(132). While there was no correlation between epithelial cell ad-
herence and levels of recovered bacteria in PspK-containing
strains, it was postulated that PspK allows sufficient attachment
for other factors to then increase virulence (132). A recent study
determined the prevalence of pspK in NESp isolates from 12 Asian
countries (135). That study found that over 42% of the NESp
isolates from Thailand contained pspK and that over 15% of the
NESp isolates from Asia had the pspK gene (135). Interestingly,
the most common ST found was ST1106, which has been previ-
ously associated with serotype 14 isolates, and all of the ST1106
isolates were multiple drug resistant (135).

Invasive pneumococcal disease. NESp strains are able to cause
IPD, but the frequency is much lower than that caused by encap-
sulated strains (28, 30, 37, 136). This can potentially be explained
by the innate immune response, specifically, the complement sys-
tem. Activation of the host complement system by the pneumo-
coccus is the main mechanism of clearance during infection (137,
138). The classical complement pathway is responsible for initiat-
ing complement deposition and ultimately leading to clearance
through opsonophagocytosis (139). The presence of capsule hin-
ders the recognition of common pneumococcal antigenic sites on
the bacterial surface, while the absence of capsule allows rapid
recognition and efficient complement activation (140). This lack
of capsule reduces the ability of NESp to produce relevant infec-
tion in sterile sites that are inundated with complement. Despite
this, a review of South East Asian cases of IPD found that any-
where from 0% to 15% were caused by NESp, with some variation
by country (141).

The largest study to date on IPD isolates from the United States
found that 88 (0.61%) of 14,328 isolates tested were NESp, with
the majority being group I isolates (30). Of the 79 group I isolates,
22 were serotype 8 strains that expressed a dysfunctional cpsA gene
that stopped capsule production (30). It was suggested that op-
sonization of capsule-bearing pneumococci would deplete com-
plement levels in the microenvironment to allow transient sur-
vival of the cpsA escape mutants. Of the nine group II isolates
found in this survey, six contained aliB-like homologues aliC and
aliD, and the remaining three isolates were either unclassified or
lacked all genes in the cps locus (30). Another study of nearly 5,000
IPD isolates from Chile found that 3.43% of pneumonia cases
were caused by NESp, while only 1.5% of bacteremia cases were
caused by NESp (142). The first IPD study by Park et al. (30)
described above did not differentiate between types of IPD. Since,
as reported by Lagos et al. (142), NESp strains are more likely to
cause pneumonia than bacteremia, the study by Park et al. (30)
may have included higher numbers of isolates from patients with
bacteremia than from patients with pneumonia. This could result

in the observed lower prevalence of NESp IPD cases than that
reported from the earlier Chilean study. Alternatively, the differ-
ences between these studies in reported rates of IPD caused by
NESp could have been due to geographic differences in the host or
the pathogen (30).

These studies indicate that group II isolates may be specialized
for NP colonization. Thus, these upper respiratory commensals
may be important pathogens of noninvasive diseases such as otitis
media, sinusitis, and nonbacteremic pneumonia. A general model
of NESp pathogenesis is presented in Fig. 2.

GENETIC EXCHANGE

The pneumococcus has several mechanisms to mediate horizontal
gene transfer and recombination (here referred to simply as “re-
combination”), including transformation, integrative conjugative
elements (ICEs), and transducing phage. Several studies have
shown, in vitro, that capsule-negative mutants acquire genes
through recombination at a higher frequency than their encapsu-
lated progenitors (143–145). These results may indicate that cap-
sule is an anatomical barrier that impedes the receipt of DNA or
possibly that bacterial physiology changes with loss of capsule in a
way that promotes the receipt of DNA. However, inferences of the
frequency of recombination in natural populations of pneumo-
cocci are affected by many additional factors, including popula-
tion sizes, selection for or against the incoming DNA, and the
power of recombination tests to detect the recombinant DNA.
Several recent genomic studies have provided a nuanced view of
the frequency of recombination in natural populations of NESp
compared to encapsulated pneumococci, which we discuss below.

A study of the genomes of NP colonization isolates from
Massachusetts classified ST448 and ST344 NESp into an early-
branching, monophyletic sequence cluster (SC) called SC12
(114). Various other NESp strains were classified into a polyphyl-
etic sequence cluster called SC16 and were not further examined.
The per-site recombination-to-mutation ratio (r/m; the ratio of
the numbers of single nucleotide polymorphisms accumulated by
recombination versus point mutation) of SC12 was 12.3, which
ranked it only 7th among 15 SC’s in the order of highest per-site
r/m (114). These results indicate that the ST448 and ST344 NESp
strains are not particularly recombinant compared to most encap-
sulated pneumococcal strains isolated in Massachusetts. This con-
clusion is supported by a study of the genomes of globally sampled
ST448 and ST344 NESp strains, where the range of per-event r/m
(ratio of the number of recombination events to the number of
point mutation events) was 0.15 to 0.18 and was comparable to the
range of 0.13 to 0.23 determined for many encapsulated lineages
(58, 113). On the other hand, there is evidence that the sporadic,
polyphyletic NESp strains are much more recombinant than other
pneumococcal strains. The previously mentioned study of coloni-
zation isolates from Thailand classified many NESp strains into a
polyphyletic sequence cluster called BC 3-NT (58). The per-event
r/m of BC 3-NT was 0.32, significantly higher than that for all
other sequence clusters. More impressively, the 128 NESp isolates
of BC 3-NT, which do not contain NESp of the so-called classical
lineages of ST448 and ST334, were significantly more recombi-
nant than the 74 capsular serotype 14 isolates of BC 3-NT (per-
event r/m of 0.34 versus 0.20, respectively) (58).

The classical NESp lineages of ST448 and ST344 have been
noted to have relatively large genomes with novel gene content
in comparison to other pneumococci (77, 112), including an
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abundance of ICEs and novel regions of difference/genomic
islets in addition to the previously mentioned virulence factors
(77, 112). Apparently, the presence of multiple ICEs in the
ST448 and ST344 NESp strains has not resulted in increased
recombination frequency within these lineages or in export of
their novel genes to other pneumococci. These classical NESp
lineages contain 116 unique clusters of orthologous groups
(COGs), including 33 COGs within two ICEs, ICE1 S. pneu-
moniae ST344 (ICE1SpST344) and ICE2SpST344, and two COGs
within pneumococcal pathogenicity island 1 (113). ICE1SpST344
was found within both the classical and sporadic NESp lineages
and was shown to aid in epithelial cell adhesion but had reduced
growth rates compared to NESp lineages lacking this ICE (113).
The remaining COGs unique to NESp include mobilization and
conjugation proteins, a zinc ABC transporter, a zinc metallopro-
tease, a lipoprotein, and numerous hypothetical proteins of un-
known function. As discussed earlier, NESp strains are also distin-
guished by novel gene content that includes variants of surface
proteins found in the epidemic conjunctivitis cluster (79) and an
altered cps locus (31, 37, 73).

Despite potential colonization advantages conferred by some
of these novel elements, the large genomes of classical NESp may
hinder growth and result in reduced fitness (113). NESp strains
harbor multiple unique mechanisms to aid in colonization, and a
balance between growth, colonization, and unique gene content
must be maintained. In contrast to classical lineages of NESp,
sporadic lineages of NESp have higher rates of recombination
than other pneumococci (58, 113). Despite these differences, pen-

icillin nonsusceptibility levels of 0.06 �g/ml to 2.0 �g/ml are com-
mon in both classic and sporadic lineages. Moreover, resistance to
tetracycline and erythromycin is prevalent regardless of lineage.
ST448 bacteria were generally susceptible to trimethoprim-
sulfamethoxazole, but this was not true with ST344 (58, 113).
Thus, NESp could conceivably represent a growing reservoir of
antibiotic resistance genes that could be exported to encapsulated
strains, reducing treatment options and survival outcomes.

In summary, these results indicate that the early-branching,
monophyletic, classical lineages that include ST448 and ST344
NESp are not unusually recombinant, but they carry novel genes
and genetic elements that may aid survival. The polyphyletic, spo-
radic lineages that include other NESp sequence types such as
ST1106 are highly recombinant and also carry novel genes such as
pspK that may aid survival (58, 113). Therefore, both sorts of
NESp may be poised to increase in prevalence in the wake of PCV.

CONCLUSIONS

A century of research has led to the view that pneumococcal cap-
sule is required for colonization and virulence (12, 13); however, a
growing body of evidence is showing that this is not always the
case. The loss of the polysaccharide capsule does significantly de-
crease the chance of IPD but does not eliminate the possibility (30,
142). More commonly, noninvasive diseases such as OM and con-
junctivitis are caused by NESp (27, 79). The total number of clin-
ical cases caused by NESp is probably underestimated because
serotyping is not routinely performed and serotype-nontypeable
strains may not be further classified. Also, the numbers of pneu-

FIG 2 Proposed model for NESp colonization and disease. Initial attachment and colonization is mediated through surface proteins (1), including unknown
methods of immune evasion. NESp biofilm formation and persistence are aided by enhanced adhesive properties (2). Planktonic bacteria dissociate from the
biofilm matrix and ascend into the middle ear through the Eustachian tube or descend to the lung through the pharynx (3). Disruption of surface-associated
communities is followed by physical transmission to eye (4) or transmission to other hosts through aerosol droplets or fomite intermediates (5).
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mococcal carriage isolates that lack capsule have been underesti-
mated, with prevalences ranging from 3% to 19% of the pneumo-
coccal population (52, 57). NESp strains have been isolated from
the human population for several decades and have most likely
been present for much longer (117). Indeed, some of these NESp
strains appear to represent early-branching lineages of pneumo-
coccus whereas other NESp strains are highly recombinant, but
more work is needed to understand their evolutionary history (58,
113, 114). Increasing pressure against a specific subset of pneumo-
coccal isolates, namely, capsule types within the PCV, affects the
environmental niche that NESp strains are able to exploit. This
allows increasing numbers of NESp strains to occur within the
human population, increasing the risk of pneumococcal disease
caused by NESp. In addition, NESp strains have novel gene con-
tent that is just beginning to be cataloged and that has been rarely
studied from the functional and pathogenic perspectives. Under-
standing how these unique organisms colonize and have survived
within the human population despite the lack of an antiphago-
cytic capsule will lead to greater insights into bacterial methods of
persistence and evasion of the host defense.
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